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D.D. BAINOV and S.I. KOSTADINOV2

Department of Mathematics
Plovdiv University
BULGARIA

and

N. VAN MINH, N. HONG THAI, and P.P. ZABIEIKO

Department of Mathematics
Byelorussian University

Minsk, USSR

ABSTPCT

The present paper is concerned with the existence of integral manifolds
of impulsive differential equations as t-,+oo. Under the assumption of
exponential trichotomy on the linear part of the right-hand side of the
equation, it is proved that if the nonlinear perturbation is small enough, then
there exist integral manifolds as t- / oo for the perturbed equations.
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1. INTRODUUrlON

Impulsive differential equations have found many applications in physics, chemistry,

control theory, etc. In recent years, may interesting results on qualitative theory of these

equations have been obtained [1], [2], [5], [10]. The existence of stable and unstable integral

manifolds of such equations has been investigated in [10] under the assumption that the linear

part of the right-had sides of these equations is hyperbolic. In [2], the authors have

investigated the existence of integral manifolds, some components of which remain bounded as

In this paper we are concerned with the existence of integral manifolds, some

components of which remain bounded as t+ oo. Introducing the notion of trichotomy of the

linear part of the right-hand sides of these equations, we have proved that under a small
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nonlinear perturbation there exist integral manifolds with properties mentioned above for

differential equations with impulse effect.

2. PRELIMINARIES

In the present paper, we consider equations of the form

d.z = A(t)z + F(t,z) if tn, t E R +
dt (1)

Az It = n
= Bnz(tn O) + In(z(tn 0)), n N

=z(r+O)-x(r-O) F:R + xXX is awhere x X, X is a complex Banach space, Azl r

piecewise continuous function with discontinuities of the first kind at the points t = tn,

n = 1,2,... with respect to t and continuous with respect to z, A(t) is a continuous and

bounded operator with respect to t, Bn are bounded linear operators, In: XoX are impulsive

operators. Furthermore,

O < tl < t2<..., lira t. = +oo.

We assume that there exists uniformly in t E R +

lira
i(t,t + T)

T-, + oo T = p < "4- (2)

where i(a,b) is defined as the number of points tn belonging to (a, b).

Definition 1: By solution of (1), we understand a piecewise continuous function z(t),
t R + with discontinuities of the first kind at the points tn, n N such that for every t # tn

we have

d__.z = A(t)z(t) + F(t,z(t))dt

and z(t) satisfies (2) for every

Definition 2: The linear part of (1) is said to have an ezponential trichotomy if there

exists a splitting X = X1 X2 O X3 and positive constants , c, , a >/3 with the following

properties:

i) A(t), Bn leave Xi, = 1,2,3 invariant for every t R + and n N,

II x3(t)x -1(s) II _< ep( (3 t)), for s >_ t

II Xx(t)X "x()II -< ep(lt a [), for all t,a

where X(t)= diag(Xl(t),X2(t),X3(t)) is a fundamental solution operator of the linear part of
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(1).

Definition 3: We call an integral manifold of (1) any subset M of the extended phase

space consisting of whole integral curves.

From now on we shall deal with integral manifolds which can be represented in the

form of a graph of a mapping with certain properties.

In what follows L(p, rl) denotes the set of mappings o:R + x X3-,X1 X2 enjoying the

following properties:

II o(t, u)II p for (t, ,) E R / s3

II o(t,,)-o(t,) II _<,11 u-,ll fo all tER+,u, vE X3.

We shall consider only nonlinear perturbations F, In in (1) satisfying the Lipschitz condition

with respect to z, i.e.

IIF(t,)-F(t,Y)ll llz-ll for all t ER+,z, uE X

II I.(=) In(Y II _< 6 II =-- u II for all n E N, z, y E X.

Furthermore, we assume that

II F(t,z)II <_ , II r.(,)II <_ fo,, all t,n,:.

3. PREPARATORY LEMMAS

The proof of our main result needs some technical preparations which we carry out in

this section.

Lemma 1: Suppose that the nonlinear perturbations F, In in (1) are independent of x
and X3 = {0}, (/.e., the linear part of (1) has an exponential dichotomy), then (1) has at least

one bounded solution. In addition, all bounded solutions of (1) satisfy the following equation

z(t) = X(t)y + G(t, r)F(r’)dr" + G(t, ti)I
o i=1

(3)

where X(t) is the principal fundamental solution operator of the homogeneous equation O.e.,
X(O) = Id), G(t, r) is Green’s function of the homogeneous equation, y E X2.

Proof: The proof of the lemma can be carried out in a well known way (see e.g. [1]).
Thus we omit it.
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Lemma 2: Assume that X3 = {0}. Then (1) has at least one bounded solution (as
and all bounded solutions of(l) satisfy the equation

z(t) X(t)y + G(t,s)F(t,z(s))ds + Z G(t, ti)Ii(z(ti)
0

(4)

where the notation is the same as in [,emma 1.

It may be noted that under the assumptions stated above equation (1) satisfies the

Existence and Uniqueness Theorem.

Now we rewrite equation (1) in another form

d._.U.U = Al(t)u + Fl(t u, v), u e X1, v E X2 ) X3dt

d__p.v A2(t)v + F2(t u, v), if t # t., t e +
dt-

ZX I, ’n = B"u(t" O) + t,((t, 0), (t, 0))

AV t. = Bv(t. O) + I(u(t. 0), v(t,, 0)).

Suppose that M is any integral manifold of (5) which is represented by the function

o:R + x X1--,X2 X3, o L(p, rl). Now we are going to find the equation defining o. Let

z(t) be any solution of (1) such that (t,z(t)) M for all t +. Then z(t) (u(t),o(t,u(t)),
where u(t)---P1 (t), P2, P2, P3 denote the projections: XX1,X2, X3 respectively. It is

clear that u(t) is a solution of the following equation

dUd.... = A (t)u + Fl(t u, o(t, u)) if t # tn

Au It = Binu + Iln(u, (tn, U)).
(6)

On the other hand, (t, u(t)) is a solution of the equation

d(t, u(t)) = A=(t)(t, u(t)) + F(t, u(t) (t u(t))) if # t., t a +dt

X . = .,(t., (t. 0)) + .(u(t. 0), (t., (t. 0))).
(7)

From Lemma 2, it follows that there exists y X2 such that

(t,u(t)) = x(t, to)y +/G(t,s)F2(s,u(s),(s,u(s)))ds +
o

+ Z G(t, ti)I(u(ti), (ti, u(ti))).
i=1

(8)
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Lemmn 3: Suppose that u(t) is piecewise continuous with discontinuities of the first
kind at the points tn, n = 1,2,... on the interval [to, + oo) and satisfies

u(t) >_ f u(s)v(s)d, + F(t) + Z fliu(ti + ai(t (9)
to o < < o < <

where v >_ 0 is piecewise continuous, ei, F are increasing, fli > O. Then we have

u(t) <_ (F(t) + Z ai(t))
to<ti<t

H (l+l)i)etO
to<t<t

Proof: See [2].

Now we assume that SO(t, u,y) satisfy the inequality

II ’(*, ux, y,) o(,, ’2, y2)il ’ II ’ ’2 II +/; ,(t- o) II yx y2 II (10)

where Ul, u2 E X1; Yl, Y2 E X2, 0 < r/, 0 < v.

Let u(t,s, ulto) be the solution of (6) corresponding to So,starting at the moment s

from u. We denote

(t) = u(t,, , ’), 2(t) u(t,,, u21 2).

It is easy to verify that for equation (6), we have the variation of parameters formula

1(t)- Xl(t,8)/z1 -.]- fXx(t,)F(,ux,(,,=x,y)d +
$

+ Z Xl(t’ti)I(l(ti) + So(ti’l(ti)))
s<ti<t

(ii)

where Xl(t,s is the Cauchy operator of the linear part of (6). So, we have the following

estimate for t > s

I1x--11 _< IIx(t,s) ll Ilul--uell //II Xl(t,r)ll IIFl(r,l(r)/Ol(r,(r)))

s<ti<t

Fl(r, 2(r) + So2(r, 2(r)))il dr +

II x(t, ti)II Ii I(l(ti) + Sol(t/, l(ti))) I(02(ti) "l-

+ ,(t, (t)))II <
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<7 ge/3(t- s)[[ 1/1 z2 ]] _[_ / e/3(t- r)( ]l 1 @2 1] "[" 1 ]i bl @2 1[ +

+ Le v(r- to)[[ Yl Y2 [[ )dr + Z se(t- i) x
s<ti<t-(ti-to)

where 91, 92 denotes 9(t,., Yl), 9(t, -, Y2) respectively.

But

,(t) = t il 1(t) 2(t) II, v(t) = a(1 + ,)

v(r- to)- #rdrF(t) = ae- 13s II "x u II + 5L il u u: II e

/i = (1 + r/)gtS, ai(t = 8gLe -(+ v)ti+ vt II Yl Y2 II.
Thus, applying Lemma 3, we obtain for _> s

.tSL _eVtO (e#( s)- vs++ Ilu-ull -e -vt) +

+ aLet-(+)ti+tl[ Yx -Y: II ](1 +(1 + rl))i(s’t)ea(1 +o)(t-s).
s<ti<t

Now for t < s, we have

//)1 2 [[ - Ee(s -t)11 tl t2 [[ + / Eet(r- t)(((1 _]_ r])1[ 1 2 1[ -I-ll

+ ie v(r -to)1[ Yl Y2 [[ )dr + Z el(ti -t)((1 + r/)11 l(ti)- b2(ti)[[ +
t<ti<s

+ Le- v(ti to) II ux- u II ),

where 1(t) = (t,s, uI I), 2(t) (t, s, z z). Thus we get

+ a/ L II y u II

$

zt II (t)- (t)II _< ," II u , II + / a(i + ,)z II () (,’)II dr +
$

v(r- to)+ #rdr + E a(i + o)et il (t) (t)II +
t<ti<s

+ B 8Le- "(ti-t) + ti II Yl Y2 II.
t<ti<s

(12)
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Put

=(t) et II Cx(t) 2(t) II ,(t) = a,( +
_,(,. to)+F(t) = eDs II Ul lt2 II + ,t, II YI Y2 II e d,-

z --- ( + o),a, a(t) -- a,cte- ,)t + to I! y y II.
We have the inequality

,,(t) <_ F(t) + ]()()+ U() + (t).
J < ti< s < ti< s

Note that for < s, F is nonincreasing. So we have Gronwall’s inequality of the same type as

for the case t > s. Finally we get the estimate for each < s

II (t,,,x ll)-(t,s, u2l2)II _< ((,-t)II ’x -u2 II +

e’to (e(, t)- , lt) aLe
t<ti<s

t + (- ,)t + ,,to II yx ym II

x (I + (I + rl)6)i(t’S)e(1 + n)(s t) (3)

We define L(p, R, rh L, u, ) as

II ,(t,,,u)I! _< p to t >_T >_ to,

the

satisfying

space of functions

condition (10) and

IIi,!il ,p II ,(t, u, y)II.
t>_T;,, Ilull <R

In this space we shall investigate the operator S defined by the formula

u, u) = x( ,to)u + +
o

+(a,(s,t,u ),y)ds + G(t, ti)I((ti, t,u
i=1

+ (ti, (ti, t, u I)) (14)

Lemma 4: Let R,p, rl be positive constants, L > ,0 < < a. Then there exist 6o, Qo
and t > to such that for every O < 8 < o,O < Q < Qo, > tl the operator S acts in

L(p, R, rl, L, u,T ).
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Proof: First of all, we shall prove that for 6, Q small enough, 7" large enough, we have

IilSlll < . In fact,

(t 0) il II + / ,e It -s Qds +
o

-alt-ti[+ O.
i=1

II (&o)(t, ,, s)II

Since {tn} satisfies condition (2), it is easy to show that

-alt-tile <Ca<
t=l

where Ca depends only on a and {In}. Thus if we choose Q small enough, Y large enough,

we gt !1 (&o)(t, ,, y) II -< p for II y I! -< R, [7, / oo), u S. Now we are going to choose

Q, ti so small that = So satisfies condition (10). We have

,(t 0)II 7 (t, ttx, yx) 7 (t, u2, y2)II -< ,e II yl y2 II /

+ face-
o

+ E6ne
i=1

+ z- "(" -t)II v= il )a +

-lt-til((1 +n)II (t,t,ux Il)-b(ti, t, u212)ll +

+ Le- t’(ti to) II Yl --Y2 II ).

Based on the estimates (12), (13), we obtain

-,(t- o) II 11 /2 II +

o

-m It- s ,,,(s- to)II ’x ’= II d + &tEe
i----’l

+l)e -lt-sl II W(s,t,ux Ix)--b(s,t, u21)llds+
o

+ E 6R(1 + r/)e
a It- til II b(ti, t, itI O1) b(ti, t, u2 02) II _<

i=1

N(a)II Yl Y2 II + / 6(1 + rl)e- a(t- s)(tce(t- s)!1 tl U2 I! +
o

+ II ,, u: II D(e#(t- s)-

s<ti<t

+ (z ’)’i + "to II u 2 II x
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x (1 + (1 + rl)6)i(s’t)es’(1 + n)(t- S)ds +

+ / 6(1 + rl)e a(s t)(ce/(s t)II Ux 2 II + D’ il yx y2 II (,f( t) t

--e-) + -(/)t/t II ya y II )(1 + (1 + )8)i(t’S)e6’(1 +o)(s-t) +
t<ti<s

+ E &ce
ti<t

Ot(t ti)(tge/(t- ti)II/tl U2 II + D II y y2 II

x (e/3(t ti ’t ’ti)e + E
ti<tj<t

at + (- ,)t + ,to II y y II x

x (1 + (1 + rl)Kt)i(ti’t)e6K(1 + o)(t- ti) + E (1 + rl)e -a(ti- t)

t<t

(,(t- t)II ’x , I! + D’ I! yx 2 II ((t- t)- ,t -,- ,.,

(16)

where N(8)--,0 as --,0 and t1 is large enough, D,D’ are positive constants. Put 6(1 + r/) = 7.

Then, if is small enough and (2) is satisfied, we have

0 < (1 + 7)i(s’t)e"(s- t) < e- e(s- t), 0 < e < a- ft.

Finally, we get the estimate

I (t, ux, y) (t, u, y)II _< M(d)I! ’x ’ !1 + ,(a) (t- o) II Yx Y2 !1

where M(di)-.O as 8-,0, (di) < L if is small enough and < L. This completes the proof of

Lemma 4.

4. MAIN RESULT

Theorem 1: Assume that the linear part of (1) has an exponential trichotomy with the

above notation. Then for every rl, p,R,O < , < and L large enough, there exist positive

constants Qo, 8o," with the following properties:

Let 5, belong to (O, 5o), (O, Qo) respectively. Then fo every y x2, II y !1 _< R
equation (1) has an integral manifold represented by a function E L(p, rl). In addition,

satisfies the conditions:
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)

2)

3)

P2(u + SO(t, u, y)) = y, P2 is the projection: X--,X
2

II (t, u, y)II _< p for t--- o > 7, II y II _< R

II So(t, Ux,yx)-so(t, u2,y2)II _< ’ II u u II / le-V(t"t)II y Y2 II.
Proof: From Lemma 4, it follows that there exist positive constants Qo,6o, 1 such

that S acts in L(p,R, rI, L,v,T). Now we are going to show that if Q0,o are chose small

enough, then S is contracting. In fact, we have

II (s,)(t, u, y) (s’)(t, u, y) II <_ / II G(t,)II 5( I1 (,t,, I,)-
o

+ II (t, t)il 6( II (t, t, u I)-- (t, t, u I")II +
i----1

SO(t/, Ct(ti, t,/t ISO)) SOt(t/, (ti, t, It SOt))II,

where (t,s, u SO) is the solution of (6).

On the other hand, we have

II (s, t, u I) (s, t, u I,’)II S’en(’- e)( II 1 2 !! + !11, ,’lll)d5

+ ,(’-’)( II ’’I(’)-" ’’2(’t{)II + II1,- ,’111).
t<ti<s

Setting u(s) = e s II 1() ()II and applying Gronwall’s inequality, we have

$

t<ti<s

(1 + g)i(t’S)eSn(s t).
So we have

II (, t, ,, ) ’(, t,,, I,’)II _< D()el3(s- ’)111, ,’111

where D(6)O as

Substituting (19)into (17), we have

II (Sl(t,u, vl-(S’)(t,u,v) !1 _< [ f -:it-’i(n()ni:-tl + lids
o

+ Z Se-< It-til(D()elti-t + 1)] II1- ’111.
i=1

(18)

(19)

(20)
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From (2), (20) it follows that if 6 is sufficiently small, then S is contracting.

the proof of the theorem.

This completes
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