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ABST
The aim of this paper is to give a theorem about the existence

of a classical solution of a Fourier third nonlocal quasilinear parabolic
problem. To prove this theorem, Schauder’s theorem is used. The paper
is a continuation of papers [1]-[8] and the generalizations of some results
from [9]-[11]. The theorem established in this paper can be applied to
describe some phenomena in the theories of diffusion and heat conduction
with better effects than the analogous classical theorem about the
existence of a solution of the Fourier third quasilinear parabolic problem.
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1 INTRO,DLIIO,,,N,

In paper [7], the author studied the uniqueness of solutions of parabolic semilinear

nonlocal-boundary problems in the cylindrical domain. The coefficients of the nonlocal

conditions had values belonging to the interval [-1,1] and, therefore, the problems considered

were more general than the analogous parabolic initial-boundary and periodic-boundary

problems. In this paper we study in the cylindrical domain, the existence of a classical solution

of a Fourier third nonlocal quasilinear parabolic problem, which possesses tangent derivatives

in the boundary condition. The coefficients of the nonlocal condition from this paper can

belong not only to the interval [-1,1] but also to intervals containing the interval [-1,1].
Therefore, a larger class of physical phenomena can be described by the results of this paper
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than by the results of paper [7]. Moreover, this fundamental theorem of the paper, about the

existence of the solution of the nonlocal problem, can be applied in the theories of diffusion and

heat conduction with better effects than the analogous classical theorem. To prove this

fundamental theorem, Schauder’s theorem is used.

This paper is a continuation not only of paper [7] but also of papers [1]-[6] and [8].
The main result of the paper is the generalization of the Pogorzelski’s result (see [11], Section

22.11), and generalizations of Chabrowski (see [9]) and Friedman (see [10], Section 7.4) results.

paper.

The notation, assumptions and definitions from this section are valid throughout this

Let n be any integer greater than 2. Given two points, : = (Zl,...,Zn)E Rn and

Y = (Yt,’", Yn) - Rn, the symbol z- Y means the Euclidian distance between z and y. The

Euclidian distance between two points Pt and P2 belonging to Rn is also denoted by

P(Pt, P2).

To prove a theorem about the existence of a classical solution of a Fourier’s third

nonlocal quasilinear parabolic problem, some assumptions will be used.

umptiotm:

I. D: = Do x (0, T), where 0 < T < c and Do is an open and bounded domain in Rn such

that the boundary ODo satisfies the following Lyapunov conditions:

i) For each point belonging to ODo there exists the tangent plane at this point.

ii) For each points P and P2 belonging to ODo the angle (np, np2 between the

normal lines rip1 and np2 to ODo at points Pt and P2 satisfies the inequality

tc(rtp1, nP2) <_ eonst.[p(P1, P2)]hL,

where hL is a constant satisfying the inequalities 0 < hL <_ 1.

iii) There exists i > 0 such that for every point P belonging to ODo, each line e
parallel to the normal line to OD0 at point P has the property that

ODoglK(P,g)fqe (K(P,8) is the ball of radius di centered at point P) is equal at

most to the one point.

II. For each point P belonging to OD0 there exist q fields {tp(1)},..., {tp(q)} (q < n- 1) of

the tangent directions to OD0 at P such that the following inequalities

t(tpl(i),te2(i)) _< const.[p(P1, P2)]ht (i- 1, 2, q)
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III.

are satisfied, where x(tpx(i),tP2(i) (i = 1,2,...,q) denote the angles between tpl(i) and

tp2(i) (i = 1, 2,...,q), respectively, P1 and P2 are arbitrary points belonging to ODo,
and h is a constant satisfying the inequalities 0 < h <_ 1.

The real functions aij(z, t), hi(z, t) (i, j = 1, 2,..., n), c(z, t) are defined for (z, t) E
and satisfy the H61der conditions:

aij(z t)- ai( , )1 < const.(lz- h + It- h) (i, j = 1, 2,..., n),

hi(x, t) bi(, t) < const. x hx (i = 1, 2,..., n),

c(z, t)- c( , t) <_ const. z-’ hx

Vo

for all (x, t) E , ( ,Y D, where hI and h2 are constants satisfying the inequalities

0 < h1 _< 1, 0 < h2 <_ 1. Moreover, b (i = 1, 2,..., n) and c are continuous functions with

respect to t belonging to [0, T].
The quadratic form . aij(x,t),i)t is positive defined for all (x,t) D, i.e.,

n

aij(x,t)ai,j>O for every point (z,t) eD and for every real vector
,3=I

(,..., ,) # (0,..., 01.
The real function F(z,t, zo, z,...,Zn) is defined and continuous for (z,t)E DO x (0,T]
and z E R (i = 0,1,..., n). Moreover, F satisfies the inequality

IF(,t, Zo,...,z,)l <MFZ Izil +FI-P=I-Pt-"F (2.1)

for (x, ) E 170 x (0, T], i E R (i = 0,1,..., n), where in this paper P denotes the point

belonging to ODo such that p(z, Px) attains the minimum, and F satisfies the HSlder

condition

VI.

F(z, t, Zo,..., Zn) F( ,t, o,’" ", n)

_< C(D)Ix- hFt-"F +CF zi_T
h F (2.2)

i=0

for all (z, t), , t) E DO x (0, T], zi, z E R (i O, 1,..., n), where DO is an arbitrary

closed subdomain of Do; MF, MF, CF, hF, h F, IF, P are constants which do not

depend on D and satisfy the inequalities

MF, MF, CF > O, O < hF <_ I, O < h F <_ l, O <_ IF < 1, O <_ p < l,
and C(D) is a positive constant that depends on D.
The real function G(x,t, zo, zl,...,Zq) is defined and continuous for all
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(x, t) E ODo x (0, T] and z R (i = O, 1,..., q). Moreover, G satisfies the inequality

q

G(x,t, Zo,...,%)l <_ MG + -"G
i=0

for (x, t) ODo x (0, T], z R (i = O, 1,...q) and the H61der-Lipschitz condition

q

<_ CG[ x -.’Z hGt- ’G + Zo._’ o
h G + I i-- il]

i=1
(2.4)

for (z, t), ( , t) e ODo x (0, T], zi,T e R (i = 0,1,..., q), where MG, /IG, CG, hG,
h G and G are constants satisfying the inequalities

MG, MG, CG > O, O < ha <_ l, O < h a <_ l, O <_ PG <1"

VII. The real function g(z,t) denned, continuous and bounded for (x,t)e 0Dox(0,T]
satisfies the HSlder condition

g(a:,t)- g( ,t) _< Cg a:-- hg

for (z, t), (, t) E 0Do x (0, T], where Ca and ha are constants satisfying the inequalities

Ca > 0 and 0 < ha < 1.

VIII. The real function f(x) defined and integrable for x q Do satisfies the inequality

MI< iz_.p lvfor zCDo,

IX.

where MI is a positive constant and p is a constant from Assumption V. Moreover, the

set 0 of z belonging to Do such that f(z) is the continuous function is nonempty.

T1, T2,..., Tk are arbitrary positive numbers satisfying the inequalities

0 < T1 < T2 <... < Tk < T; Z is the set of real functions z(z, t) defined and continuous

for (z,t) Do x (0,T],

A(x, t): = (2]-)n-
for (x, t) C D,

and K: DO x (0, T)k x (0, T] x Rk-R is a function such that

K(z, T1,...,Tk, z(z, T1),...,z(z, Tk)): = A(x,O)K(z, T1,...,Tk, z(z, T1),...,z(z, Tk)

forxD0, zZ
(2.7)
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is integrable with respect to z E DO for each z E Z and

i(y, T1,...,Tk, Az(Y, T1) + (1 ) (y,T),...,Az(y, Tk) + (1 A) (y, Tk))dy

Do
= K(,r,...,r,(,r,...,(,rlle

+ (1 ) K(y, T1,...,Tk, (y, T1),..., (Y, Tk))dy

Do
for all z, Z, (0, 1). Moreover,

MK k
g(x, T1,...,Tk, z(x, T1),...,z(x, Tk))[ < z(,,T)

fora:Do, zZand

K(x, Tx,...,Tk, z(x,T),...,z(x, Tk) K(x,T,...,Tk, (x, Tx),..., (x, Tk))l

k
<_ Cg z(,Ti)- (z, Ti) (2.10)

i=1

for z E Do, z, Z, where MK and CK are positive constants. Finally, the set of a:

belonging to Do, such that for each z belonging to Z function

K(x, TI,. .., Tk, z(x, T),.. .,z(x, Tk))

is continuous, is equal to set/0 from Assumption VIII.

To find a solution of a Fourier’s third nonlocal quasilinear parabolic problem

considered in the paper, we shall use the space X of all the systems

(Oo(:, t), w(, t),..., o,,(, t), o(’, t))

of real functions, defined

respectively, and such that

and continuous for (z, t) e o x (0, T], (rl, t) . ODo x (0, T],

,r, t’ + z w(:, t) < (i = o, ,...,,),
(x,t) e D0 x (0,T

aup t’ + o(O, t) < c,
(o,t).ODoX(O,T]

where c and fl are characteristic for space X arbitrary fixed constants chosen according to the

conditions
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( > O, rnaz(lF, pG,1/2(1 + p)) < ,8 < 1, c + ,8 < 1. (2.11)

For two arbitrary systems (Wo, Wl,... wn, 0),( o, 1,"., n, b 0) belonging to X and

for each , belonging to R, the addition in X and the scalar multiplication are defined by the

formulae

(Wo, Wl," ", Wn, O) q- () 0, ) 1 ," ",
) n, 0): = (W0 4- W 0, Wl "4" W 1,. ., Wn -t- ) n,0 -[" 0),

"(WO’ Wl"’" Wn’ 0): = (W0, ’Wl,"" ", "Wn, "0)"

The norm of W = (Wo, Wl,..., Wn,O) belonging to X is defined by the formula

max sup
=0,1 n (x,t) q 0 x’0,T

t + t) + sup t + o(0, t) l.
(0, t) E OD0 x (0, T]

It is easy to see that X is the Banach space.

To find a solution of a Fourier’s third nonlocal quasilinear parabolic problem

considered in the paper, we shall also need a set E of all W = (wo, Wl,..., wn, o) belonging to

X, satisfying the inequalities

tf Wi(Z t) _< Pl for (a:, t) E 0 X (0, T] (i 0, 1,..., n), (2.13)

Wo(=, Ti) < Ni for x E 0 (i = 1, 2,..., k), (2.14)

t# 0(r/, t) -< P2 for (rl, t) E ODo x (0, T], (2.15)

t o(O, t) o(’ff t) _<lo- 17 for (rl, t), (’ t) e ODo x (O, T (2.16)

and such that

K (y, T1,..., TK, wo(Y, T1),..., w0(Y T))r(z, t, y, O)dy = B(x, t)

Do
for (z,t)E D0 x (0,T],

where Pl, P2, t are arbitrary f’Lxed positive constants, N (i = 1,2,...,k) are positive constants

such that

Ni <- Ti-flPl (i- 1,2,...,k),

7 is a fixed constant chosen according to the condition

0 < 7 < min{hG, h G, hg, hl,2h2, hL, ht, 1- p}, (2.19)
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and B(x, t) is a given real function defined and continuous for (x, t) E Do x (0,T] and such that
OB(x,t) (i = 1,2, n) are continuous for (z,t) e 0x(0 T] (i = 1 2, n).the derivatives Oi ..., ...,

Formulae (2.12)- (2.1S), (2.10) and (2.8) imply the following:

Lemma ..I: E is the closed convex subset of the Banach space X.

In this paper we shall also use the functions F and f given by the formulae:

F (x, t, Zo, zl,... Zn)" A(z, t)F(x, t, Zo, zl,..., Zn)

for (x, t) E DO x (0, T], z E R (i = 0,1,..., n),
(2.20)

f (x): A(x, O)f(x) for x Do,

where function A is defined by (2.6).

Moreover, we shall need the following:

umtion:

X. For all the systems of functions (w0, wl,... wn, b0) belonging to g functions F, f and K

satisfy the following condition:

(y, T,. ., Tk, &o(Y, T),..., &0(Y, T))r(z, t, y, O)dy = B(x, t) (x, t) e o x (0,for T],

Do
where Tj

vo(Y, Tj): = F(,r, Wo(,r),w(,r),...,wn(,r))F(y, Tj,,r))ddr
0 DO

Tj

+ f / o(5’r)F(Y’TJ’5’r)dS’dr
OODo

+ f (5)r(y, Tj,,O)d5
Do

J :(, T,..., T, w0(, T),..., w0(, T))r(y, T, , 0)d
Do

for y E o (J = 1,2,...,k),

functions F ,f ,K are given by formulae (2.20),(2.21) and (2.7), respectively, and r is

the fundamental solution of the homogeneous parabolic differential equation

" 02u " Ou Ou(’1 op+ ,(’ t) + c(,1- o-d-i
i,j=l i=l
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In the paper Z denotes the set of functions w belonging to Z such that the derivatives
0_..W_w fl__w
Ozl,... Ozn

are continuous in D.

3_.. DEFINITION, QF A FOUR!ER,S .,THI NON,LOCAL
QUASI-LINEAR PAPBOLIC PROBLEM

The Fourier’s third nonlocal quasilinear parabolic problem considered in the paper is

formulated in the form:

For the given domain D satisfying Assumptions I, II and for the given functions aij, b

(i, j = 1, 2,..., n), c, F, G, g, f, K satisfying Assumptions III-X, the Fourier’s third nonlocal

quasilinear parabolic problem in D consists in finding a function u belonging to ZI, satisfying

the differential equation

F(x, t, u(x, t), Ou(x’ t) Ou(z, t).
0i "’" 0. fo (, t) D,

satisfying the nonlocal condition

lira u(z,t) + K(z, TI,.. Tk, u(z,T),., u(z, Tk) = f() for E b0t-tO "’ " (3.2)

and satisfying the boundary condition

du(z,t)
d + g(, t)(, t)

= G(:, t, u(x, t), du(x’ t) du(x, t).
dt%-(- ,... -( for (z, t) e aDO x (0, T],

(3.3)

du(x,t)where for each t (0, T] the symbol a% denotes the boundary value of the transversal

derivative of function u at point and for each t (0, T] the symbols
dtx(i)

(i = 1,2,...,q)

denote the boundary values of the derivatives of function u in the tangent directions tx(i)
(i = 1,2,...,q) at point z, respectively.

A function u possessing the above properties is called a solution in D of the Fourier’s

third nonlocal quasilinear parabolic problem (3.1)- (3.3).
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THEOREM. ABOUT ETENCE

In this section we prove a theorem about the existence of a solution of the Fourier’s

third nonlocal quasilinear parabolic problem (3.1)-(3.3) assuming that Assumptions I-X

from Section 2 are satisfied.

For this purpose observe that, according to known theorems from the potential theory

(see [11], Sections 22.8 and 22.10), to find a solution of problem (3.1)- (3.3) it is sufficient to

find a function u belonging to Zx and satisfying the integral equation:

t

u(x, t) F (y, s, u(y, s), i)y1
,...,

0 DO t

+ / / (y,s)F(, t,y,s)dSyds
OODo

+ y
Do

f

/ (y, T1,..., Tk, u(y, T),..., u(y, T))r(z, t, y, O)dy

Do
for (x,t) E 0x (0, T], (4.1)

where (y, s) is an unknown function considered for (y, s) ODo x (0, T].

By the fact that function u satisfying equation (4.1) must satisfy boundary condition

(3.3), we get the following differential-integral equation:

-1/2A(x,t)-l(x,t)

t

OODo

+ g(z,t)F(z,t,y,s)}dSudsY, SJt dx
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where

r(h., 0)K (y, T,..., Tk, u(y, T),..., u(y, Tk))t dgx
Do

"t- g(x, t)F(x, t, y, 0)}dy

du(x, t) du(x’.t) for (x, t) e ODo x (0 T],= a(, t, (, t), ate(x)-,..., (),

t
,dr(z,t,y,s)...

OODo

,dF(z,t,y,

Do
dF(x, t, y, 0i (y, T,..., Tk, u(y, T.),..., u(y, Tk)) u,’"x(i)

)dy
Do

for (, t) e ono x (0, T] (i = 1, 2,..., q).

(4.2)

(4.3)

Then, to solve problem (3.1)-(3.3)it is enough to solve the system of the

differential-integral equations (4.1) and (4.2), where the variables u(z,t) and (q,t) of this

system are defined for (z, t) e 0 x (0, T] and (q, t) e ODo x (0, T], respectively. For this

purpose, consider the system of n + 2 integral equations

t

ui(x,t) F(y,s, uo(Y,S),u(y,s),...,u,(y,s))Fi(x,t,y,s)dyds
0 DO

t

+ f f
OODo

+ f(y)r(z,t,y,O)dy

Do
g(,r,...,r,,a(,r),...,,o(,T))r(,,,O)a

Do
fo (, t) e o x (o, T] (i o, 1,...,,), (4.4)

-1/2A(x,t)-l(x,t)
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t

If ldF(x’t’y’s)+ 4(y, s)t" du’z + g(x,t)F(x,t,y,s)}dSuds
OODo
t

// ..., idF(x, t, y, s)+ (,", o(, 1,(,1, .(’"11
0 DO

+ g(=, t)r(=, t, y, s)}dyds

f dr(z,t,y,O)+ 17 (){

Do
+ g(x, t)F(z, t, y, O)}dy

tdr(z, t, y, O)K (y, T1,..., Tk, uo(y, TI),..., uo(y, k))t dux + g(z, t)r(z, t, y, O)}dy

Do

= G(z,t, uo(z,t), t(x,t),...,’ a(z,t)) for (z,t) E aDO x (0, T],

where

o(, t),(, t),..., u,(, t), (o, t)

are unknown functions defined for (x, t) e D o x (0, T], (rl, t) aDO x (0, T], respectively,

and

or (i=1,2, )Fo: = F, Fi: =/ ...,

t

0 Do
t

,dr(z,t,y,s)...+ f f (y,,) ..,... a.as

OODo dta:(, u

for (z, t) E aDO x (0, T] (i = 1, 2,..., q).

(4.5)

(4.6)

System (4.4) and (4.5) will be solved in the class of

(Uo(Z,t),u(z,t),...,Un(Z,t),(l,t)) E E,

i.e., in the class of (Uo, u,..., un, ) belonging to X and satisfying the conditions

(4.7)
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and

t ui(x, t) < P for (x, t) 0 x (0, T] (i = 0, 1,..., n),

t3 (r/, t) _< P2 for (rl, t) ODo x (0, T],

t# (r/, t) (, t) _< g r/- " for (r/, t), (, t) ODo x (0, T]

K (y, T,..., Tk, uo(Y, Tx),..., uo(Y, T))F(z, t, y, O)dy = B(z, t)

Do
for (z, t) E ) o x (0, T].

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

To solve system (4.4) and (4.5) in the class of U = (Uo, Ul,...,Un,) belonging to E

define a transformation

i’: E-+E (4.13)

by the formula

U = V, (4.14)

where

v = (Vo,,,..., ., ),
t

vi(z,t = F(y,s, uo(y,s),u(y,s),...,Un(Y,S))i(z,t,y,s)dyds
0 DO

t

+ f f (, :)r,(,,,, , :)dS:d:
OODo

+ ()r(=, t, ,0)du

Do
K (y, T1,..., Tk, uo(Y T1),..., uo(y T))r(, t, y, O)dy

Do
for (x,t) E o x (O,T] (i = O, 1,...,n),

-1/2A(z,t)-l(z,t)

(4.15)

(4.16)
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t

F(Y’S’uo(Y’sl’u(Y’sl"’"u.(Y’s))" d% +g(,tlr(,t,y,s)}dyds
0 DO

[ dr(z,t,y,O)
!7
:Do

+ g(x, t)F(z, t, y, 0)}dy

x,dr(z, t, v, 0)+ g (y, T1,.. ., Tk, uO(Y, T1),..-, uo(Y,kt dz + g(x, t)F(z, t, y, 0)}dy

Do

+ G(z, t, Vo(Z t), (z, t),..., q(z, t)) for (z, t) 6 ODo x (0, T],

and (i- 1,2,...,q) are given by formulae (4.6).

We shall find sufficient conditions that an arbitrary point U =(Uo, Ul,...,un,)

belonging to set E might be transformed by into the point aJ’U = V = (Vo, Vl,...,vn,)
belonging to this set.

For this purpose introduce the functions

t

,,(,, t).- f f (,,0(,),(,),...,,(,))r(, t,, )dd
0 Do

t

OODo

f (y)Fi(x t, y, O)dy for (z, t) E D o x (0, T] (i 0, 1,..., n).+
Do

It is known (see [111, p. 131) that, by (2.20), (2.1), (2.21), (2.5), (4.8), (4.10), (4.11) and

(2.11), the following inequalities

(z,t) < AI(MFP1 4- P2 4- 4- F)t-+ 1-t. 4- A2MIt-
for (x, t) C D o x (0, T] (i O, 1,..., n)

(4.18)

hold, where p. is an arbitrary constant satisfying the inequality

-1/2 o, 1/2( + ))< . 1,

ho: = min(hl,2h2,hL),

(4.19)

(4.20)
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and A1, A2 are positive constants which do not depend on functions F,,f,u (i = 0,1,...,n)
and constant T. It is obvious that constants A1,A2 do not depend also on functions G, g and

K.

Simultaneously, by (2.7), (2.6), by Assumption III and by (2.9),

K (y, TI,..., Tk, uo(Y T),..., uo(Y, Tk))

MK k
<_ sup_ A(y, 0)l-i:..: o-, u0(y,T)l for y e D0. (4.21)
yED0

i yl

From inequalities (4.21), (4.9), (2.11) and from known properties of the Poisson-

Weierstrass integral (see [11], p. 106-107, Theorem 8), we get

f : (y, T,..., T, =o(Y, Tx),..., u0(Y, T))r(z, t, y, O)dy

D (4.22)
<A3MKt- for (x,t) eDox(O,T (i=0,1,...,n),

where A3 is a positive constant that does not depend on functions K, u0 and constant T. It is

easy to see that constant A3 does not depend also on functions F,G,g,f and u

(i =

Combining (4.18) and (4.22), we obtain

vi(x, t) <_ AI(MFP + P2 -4- t + /IF)t 3 + ts. + (A2M1 + A3MK)t

for (a:, t) e D 0 x (0, T] (i = O, 1,..., n).
(4.23)

To investigate function (z,t), observe that equation (4.17) has the form of the

following Volterra equation

-1/2A(z,t)-l(z,t)
t

dr(z.,t,Y,s)+ f f +
OODo

= E(z, t, Vo, Uo, ux,..., Un) for (z, t) E ODo x (0, T], (4.24)
where

.(, t, vo, uo, ul,..., u,,)
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t

//~ tdF(x,tys):---- F(y’s’uo(Y’S)’Ul(Y’S)"’"Un(Y’S"t d -+g(z,t)F(z,t,y, sl}dyds
0 DO

) + (, t)r(, t, ,0)}
Do

tdr(x, t, y, 0)+ g(y, T1,...,Tk, Uo(y, T1),...,uo(y,,k))l dUx
+ g(z,t)r(z,t,y,O)}dy

Do
+ G(x, t, Vo(X, t), l(X, t),..., q(x, t)) for (x, t) e ODo x (0, T]. (4.25)

It is known (see [111, p. 99, Theorem 2) that the kernel of equation (4.24) can be

estimated by

const. 1
(t 7")" iX y ln’t- 1 2,-- hO’

where tt is an arbitrary number satisfying the inequalities

h01--- </ < 1

and number ho is defined by (4.20). Therefore, equation (4.24) has the only one solution

given by the formula

(x, t) = 2A(x, t)Z(x, t, Vo, no, ltl,...

t

2 f f y, v0,

OODo

for (x, t) . i)Do x (0, T],

where .N" denotes the solving kernel of equation (4.24).

To find an estimation for function , observe that analogously as in the proof of

formula (4.23), using theorems from the potential theory (see [11], Section 22.8, Theorems 5, 8

and Section 22.10, Theorem 1), we obtain, by (4.6), (2.20), (2.1), (2.21), (2.5), (2.7), (2.9)
and (4.8)- (4.11) the following inequalities

Ii(x,t) _< 31(MFP1 + p2 + T F)t-D+ I-* q- 2(MI-I- MK)t -f
for (x, t) E ODo x (0, T] (i = 1, 2,..., q),

where constants and #. satisfy inequalities (2.11), (4.19) and B1, B2 are positive constants
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which do not depend on functions F, , G, g, f, K, u (i = 0, 1,..., n) and constant T.

Consequently, by (4.25), (2.20), (2.1), (2.3), (2.21), (2.5), (2.7), (2.9), (4.8)-(4.11),
(4.23) and (4.27), by Assumption VII and by known properties of the potentials

E(z, t, v0’ u0’ ul,..., u,)

<_ I(MFPl + p2 + tc +-IF)MGt-D+ I-tt* + 2(MFP1

+ 3(/rG + M! + MK + MGMI + MGMK)t for (z, t) . OD0 x (0, T], (4.28)

where constants and , satisfy inequalities (2.11), (4.19) and B (i = 1,2,3) are positive

constants which do not depend on functions F, , G, g, f, K, u (i = O, 1,..., n) and constant T.

Then, by formulae (4.26), (4.28) and (2.6), by Assumption III and by known

properties of the solving kernel , function satisfies the inequality

I(x,t)

< B(MFP +p2+tc+/IF)MGt-#+-t*+B2(MFP

+ B3(.ra + M! + MK + MGM! + MGMK)t for (z, t) OD0 x (0, T], (4.29)

where B (i = 1, 2, 3) are positive constants which

F, , G, g, f, K, u (i = O, 1,..., n) and constant T.

do not depend on functions

Now, we shall find the HSlder inequality for function . For this purpose observe that,

by (4.6), (2.20), (2.1), (2.21), (2.5), (2.7), (2.9), (4.8)-(4.11),by Assumption II and by some

properties of the potentials (see [11], Section 22.8, Theorems 6, 8 and Section 22.10, Theorem

for (x, t), (’ t) ODo (0, T] (i = O, 1,..., n),
(4.30)

where C is a positive constant which does not depend on functions F, , G, g, f K, u

(i = 0,1,. ., n) and constant T; and fl,7 are constants satisfying conditions (2.11), (2.19),
respectively.

Then, from (4.24), (4.29), (4.25), (2.4), (4.16), (4.30), (2.20), (2.1), (2.21), (2.5),
(2.7), (2.9), (4.8)-(4.11), from Assumption VII and from known properties of the potential

theory (see [11], Section 8) we get that the solution of the integral equation (4.24) satisfies

the HSlder inequality
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(=, t) ( t)

_< {Cl[t2(1 t*)(Ct/-k 1)MG -b CG] (MFP1 "b P2 -k t -b ’IF) h" 62t2(1 t*)(Cg -b 1). (MFP1 "b F)

-+- C3[t1 P*(Cg -- 1) + 1]-(/IG + M! +Mg + MGMI + MGMK)

+C4(MFPI + /IF+CG+ MI+ MK+CGMI+CGMK)}t- z-’ 7

for (z, t), ( " t) E ODo x (O, T],

where C (i= 1,2,3,4) are positive constants which do not depend on functions

F, , G, g, f, K, u (i = 1, 2,..., n) and constant T.

Comparing inequalities (4.23), (4.29) and (4.31) with inequalities (2.13), (2.15) and

(2.16), it is easy to see that if the system of the following inequalities

T1 U*AI(MFPl + P2 + n + F) + A2M] + A3MK <- Pl, (4.32)

T1 t*[BI(MFP1 h- P2 q" n -b F)MG h" B2(MFP1 -b/rF)]

q- B3(IG + My + MK + MGM! + MGMK) <_ P2, (4.33)

Cl[T2(1 *)(Cg + 1)MG + CG]. (MFP1 + P2 -b t + .IF) q- C2T2(1 t*)(Cg -I- 1)-(MFP1 -k IF)

+ C3[T1 *(Cg + 1) + 1]. (/IG + M] + MK + MGM1 + MGMK)

+ C4(MFPl + [F + CG + M1 + MK + CaM1 + CGMK) <- t (4.34)

is satisfied, then the inequalities

tf vi(z., t) < Pl for (z, t) e D o x (0, T] (i = 0, 1,..., n), (4.35)

(0, t) _< for (0, t) c ODo x (0, T], (4.36)

tf (q, t) ( , t) < n r/- " for (r/, t), , t) C ODo x (0, T] (4.37)

hold.

Moreover, if the system of the inequalities

AI(MFPI +p2++F)Ti-+-t’*+(A2MI+A3MK)Ti- <_N (i=l,2,...,k) (4.38)

is satisfied, then from (4.23),

o(, Ti) < Ni for z C o (i = 1, 2,..., k). (4.39)
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Finally, by Assumption X and by formulae (4.7), (4.16),

K (y, T1,..., Tk, vo(Y, T1),... vo(Y T))r(z, t, y, O)dy = B(x, t)
Do

for (x,t) E Do x (O,T].

Consequently, from (4.35)- (4.37) and (4.39), and from the above condition,

E C E. (4.40)

Now, assuming that not only Assumptions I-X are satisfied but also inequalities

(4.32)- (4.34), (4.38) are satisfied we shall prove two lemmas:

L.ema .. Transformation F defined by formulae (4.13)-(4.17) is continuous

in space X.

Proof: Let {U(m)} be a sequence of points U(m) -(u0(m),ux(m),... Un(m),f(m)
belonging to E such that

II u(")-u II maz sup t + Cm)(, t) (, t)
i=0,1 n (x,t).oX(O,T

,p t" + (’)(, t) (:, t) I--,o a m-,c,
(z, t) 60D0 x (0, T]

(4.41)

where U = (u0, Ul,..., Un, is a point belonging also to E.

To prove Lemma 4.1, it is sufficient to show that

tim II v(’)- v II = o (4.42)

where V(m) (v0(m), Vl(m),..., ,0n(m), (m)) and

transformation at points U(m) and U, respectively.

V - (VO, Vl,..., Vn,

For this purpose consider the difference

,(")(, t) ,(, t)

t

f/{(Y’S’uo(m)(y’s)’ul
0 Do

(")(u, ),..., ,,,(")(u, ))

F (y,S, uo(y,s),ux(y,s),...,un(y,s))}Fi(x,t,y,s)dyds

are values of
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t

+ f f [(m)(y’s)-(Y’S)]Fi(x’t’Y’s)dSlds
OODo

f ff(Y, TI,"’,Tk, uo(m)(Y, T1)"",uo(m)(Y, Tk))
DO
7 (y, T1,... Tk, uo(Y T1),..., uo(Y T))lri(z, t, y, O)dy

for (x, t) o x (0, T] (i = 0,1,..., n).

Since {U(m)} C E and U e E then, by (4.43), (2.17) and (4.12),

v()(z,t)-vi(z,t)

= / / {(y’s’uo(m)(y’s)’ul(m)(y’s)’’’’’un(m)(y’s))
0 DO

(y,s, uo(Y,S), u(y,s),..., Un(Y,S))}Fi(x, t,y,s)dyds

t

OODo

for (z, t) 6 Do x (0, T] (i = 0,1,..., n).

(4.43)

(4.44)

Consequently, using the argumentation from Section 22.11 from [11] we conclude, by

(4.44) and (2.2), by known properties of the potentials and by (4.41), that

lira sup ta +/ vi(m)(z, t) vi(x t) = O.
m-*oo (x,t) b0x(0, T

(4.45)

where

Now, consider the difference

(")(, t) (,t)

= 2A(x, t)[E(x, t, Vo(m) Uo(m) u(m),..., Un(m)) .--.(x, t, Vo, Uo, u,..., Un)

t

f f v0
OODo

Z(y, s, Vo, Uo, Ul,..., Un)]dSuds for (x, t) . cOD0 x (0, T],

(X, t, vo(m) Uo(m) Ul(m),... un(m) ,(Z, t, 1)0, UO, Ul,...

t

/ /[- (y, S, lto(m)(y S), tl(m)(y S),..., ltn(m)(y $))
0 Do

(4.46)
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dr(, ,, s)r (y,s, uo(Y,S),u(y,s),...,Un(Y,S))]t dV + g(,t)r(,t,y,s)}dyds

+ / [." (y, T1,..., Tk, Uo(m)(y, T1),..., Uo(m)(y, Tic))
Do

.v xasdr(z, t, y, O)K(,T,...,T,uo(,T),...,uo(,, +

")(, t),.. ")(, t)) (, t, Vo(Z, t), (, t),...,a (z, t))+ G(z, t, Vo(’)(z, t), .,

for (x, t) . ODo x (0, T], (4.47)

dr(z,t,y,O

Do
, dr(z, t, y,g (y, T1,... Tk, uo(m)(y T),..., Uo(m)(y,k) O)dy

Do
for (z, t) e ODo x (0, T] (i = 1, 2,..., q) (4.48)

and functions W (i = 1,2,...,q) are given by formulae (4.6).

Since {U(m)} C E and U E then, by (4.47), (2.17) and (4.12),

(z, t, Vo") Uo(’), ux(’),..., u,(")) E(z, t, vo uo ux, ., u,)

t

(y,s, uo(Y,S), ul(Y,S), Un(Y,S)].dF(x-’.y’s) s)}dyds"’" d% + g(, )r(, , y,

(m)(:g, t)) G(;g, 7t, Vo(X t),’ l(X, t), .,’ q(,+ G(z, t, Vo(’)(z, t), (")(z, t),..., q

for (x, t) cOD0 x (0, T]. (4.49)

Consequently, using the argument from Section 22.11 from [11], we obtain, by (4.46),
(4.49), (2.4), (4.44), (4.48), (4.6), (2.20), (2.2), (2.17)and (4.12), by Assumption VII, by

known properties of the potentials and by (4.41), the condition
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i. ,p t’ + c,,,)(:, t) (z, t) = 0.
’" (, t) ooo x (o, T]

Then, formulae (4.45), (4.50) and (2.12) imply (4.42). Therefore, the proof of Lemma

4.1 is complete.

E is precompact.

Let {V(m)} be a sequence of points

in E. Then

and

V(m) = (Vo(m) vx(m),..., v,(m) ("))

tlv(m)(,t)l <p for (x,t) )ox(O,T (i=O, 1,...,n),

vo()(x, Ti) < N for z e D0 (i = 1,2,...,k),

t (m)(r/, t) P2 for (0, t) e ODo x (0, T],

t ()(o, t) (m)(, t) 0 for (0, t), (, t) e ODo x (0, T]

(y, T1,..., T/c Tx),... Tk))F(x, t, y,vo(m)(y vo(m)(y O)dy t)

Do
for (z,t)e D0 x (0,T].

(4.51)

(4.52)

(4.53)

Inequalities (4.51) and (4.53) imply that the sequences

{ta + vi(m)} and {ta + (m)} (4.56)

are equi-bounded and equi-continuous in 0x(0,T] and ODox(O,T], respectively.

Consequently, by the Ascoli-Arzela theorem, it is possible to choose uniformly convergent

subsequences

{ta + #vi(mj)} and {ta + (mj)} (4.57)

of sequences (4.56). This uniformly convergence implies that subsequences (4.57) are

convergent in the sense of norm (2.12). Since functions vi
(mj) (i = 0,1,...,n) and (m)

satisfy conditions (4.51)-(4.55), where vi(m) (i = 0,1,...,n) and (m) are replaced by vi
(m)

(i- O, 1,..., n) and (mJ), respectively, then the proof of Lemma 4.2 is complete.

Now we shall give the fundamental theorem about the existence of a solution in D of
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the Fourier’s third nonlocal quasilinear parabolic problem (3.1)- (3.3).

Theorem If boundary ODo of domain DO satisfies Assumptions I and II, if
coefficients aij b (i,j = 1,2,...,n), c of equation (3.1) satisfy Assumptions III and IV, if
functions F, G, 9, f and K satisfy Assumptions V-X, if constants T, MF, .IF, MG, ’IG,
M1, MK, Ca and Co satisfy inequalities (4.32)-(4.34),(4.38) and if constants Ti, N

(i = 1,2,...,k) satisfy inequalities (2.18), then the Fourier’s third nonlocal qnasilinear parabolic

problem (3.1)- (3.3) has a solution in D.

Proof: From Lemma 2.1, from formula (4.40) and from Lemmas 4.1 and 4.2, it is

easy to see that all the assumptions of the Schauder’s theorem (see [10], p. 189) are satisfied.

Therefore, there exists a point

U*=(u,u,...,Un,*)eE

which is invariable with respect to the transformation given by (4.13)- (4.17). This point is a

solution of the integral equations (4.4) and (4.5). From known properties of the potentials (see
[11], Section 22.8) and from equations (4.4), (4.5) we get

* z = (i = 1, 2,..., n) for (z, t) e D.

Then functions u and * satisfy the system of the functional-differential equations (4.1) and

(4.2). It is obvious that function u satisfies the boundary condition (3.3) and the nonlocal

condition (3.2). Moreover, by (2.20), (2.6), by Assumption III, by (2.2), (4.4), (2.20), (2.21),
(2.6), (2.1), (2.9), (2.13)-(2.16), (2.11)and by some properties of the potentials (see [11],
Section 22.8, Theorems 1, 6, 8), the function

(I)(z, t): = F (z, t, u(:, t), u(z, t),..., u(z, t)), (z, t) E DO x (0, T]

satisfies the HSlder condition

C.(D)(I)(x, t) (b(, t) < t x "r for (x, t), (, t) E DO x (0, T],

where C.(D) is a positive constant which depends on D and if---min{7,hF,’F}.
Consequently, by theorems from the potential theory (see [11], Section 22.8, Theorems 7 and 8)
function u satisfies equation (3.1) in domain D. Therefore, this function is a solution in D of

the Fourier’s third nonlocal quasilinear parabolic problem (3.1)- (3.3).

5 REMARK

If K(x, T,..., Tk, z(z, T),..., z(z, Tk) is defined by the formula
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k

K(z’Tl"’"Tk’z(a:’T1)"’"z(a:’Tk)) = E i(z)z(a:’Ti) for a: E D0, z e Z,
i=1

where i(z) (i = 1,2,...,k) are given functions defined and integrable for a: Do, then

condition (2.8) holds.

Moreover, if

M
(z) _< I Pxl ’p for m DO (i = 1,2,..., k),

where MQ (i = 1,2,...,k) are positive constants and p is a constant from Assumption V, then

condition (2.9) is satisfied, where the constant MK is given by the formula

Additionally, if

MK: = rna:r{Ml,...,Mk}.

_< for DO (i = 1,2,...,k),

where C(i (i = 1,2,...,k) are positive constants such that

Mi for DO (i = 1,2, k),Ci -< z PI p "’"

then condition (2.10) holds, where the constant CK is defined by the formula

CK: = maz{CQ,...,Ck}.

It is easy to see that if i(z)= 0 for a: DO (i = 1,2,...,k), then the Fourier’s third

nonlocal quasilinear parabolic problem (3.1)-(3.3), where function K is given by formula

(5.1), is reduced to the classical initial-boundary problem. Moreover, if k = 1, T1 = T,

t(z) = -1 for z e D0, f(z)= 0 for z D0 and CQ >_ 1, then problem (3.1)- (3.3), where

function K is given by formula (5.1), contains the periodic problem, i.e., the Fourier’s third

nonlocal quasilinear parabolic problem (3.1)-(3.3), where condition (3.2)is replaced by the

condition

lim u(z, t) = u(z, T) for z e b0.t--

It is obvious, from the above considerations, that it is sensible to consider the Fourier’s

third nonlocal quasilinear parabolic problem (3.1)-(3.3) since this problem is always more

general than the analogous classical Fourier’s third quasilinear parabolic problem and,

additionally, if k- 1,
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and

f(x) = 0 for x DO

1
MQ-< P"’I p for x e Do,

where p is a constant from Assumption V, then this problem is also more general than the

analogous Fourier’s third periodic quasilinear parabolic problem.

ff u(z, t) is, for example, interpreted as the temperature of a physical substance then

Theorem 4.1 can be applied for all the physical phenomena from the theory of the heat

conduction, where the temperatures

u(x, 0), u(Tx, x), ., u(Tk, x), u(T, x) (5.2)

satisfy condition (3.2) in the general sense or maybe in a particular sense considered in this

section.

It is obvious, that to use Theorem 4.1 it is not necessary to know quantities (5.2). It is

only necessary to know relations between these quantities. Therefore, the physical

interpretations of nonlocal problems are significant and the author is of the opinion that, in

general, nonlocal problems possess deep physical and philosophical meanings. It is the reason

for which, in the opinion of the author, nonlocal problems should be developed and applied in

the near future.
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