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The fixed point technique is used to prove the existence of a
solution for a class of variational inequalities related to odd order
boundary value problems, and to suggest a general algorithm. We also
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1. INTRODUCTION

Variational inequality theory is a very useful and effective technique for studying a

wide class of problems in a unified natural and general framework. This theory has been

extended and generalized in several directions using new and powerful methods that have led to

the solution of basic and fundamental problems previously thought to be inaccessible. Some of

these developments have made mutually enriching contacts with other areas of the

mathematical and engineering sciences. In recent years, the author has considered and studied

a new class of variational inequalities, which enabled him to study both odd and even order

boundary value problems having constrained conditions. In this paper, we use the auxiliary

variational principle technique to prove the existence of the solution of variational inequalities

for odd order boundary value problems and suggest a general iterative algorithm. We also

study the qualitative behavior of the solution of the variational inequalities when the given

operator and the feasible convex set vary with a parameter. Such a study is known as
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sensitivity analysis, which is also important and meaningful. Sensitivity analysis provides us

useful information for designing various equilibrium systems, and for predicting the future

changes of the equilibria as a result of the changes in the governing systems. In addition, from

a theoretical point of view, sensitivity properties of a mathematical programming problem can

provide new insight concerning the problems being studied and can sometime stimulate new

ideas and techniques for solving them.

Motivated and inspired by the recent research work going on in this area, we consider

a new class of variational inequalities. Using the fixed point technique of Glowinski, Lions and

Tremolieres [3], and Noor [7,8], we prove the existence of a solution of this variational

inequality. This approach enables us to suggest and analyze a general algorithm for these

variational inequalities. We also show that the variational inequality problem is equivalent to

solving a faxed point problem using the projection method. This equivalence is used to study

the sensitivity analysis of the parametric variational inequality. This approach is due to

Dafermos [2]. We also consider the sensitivity analysis for the general complementarity

problems. Several special cases are also discussed.

In Section 2, we formulate the variational inequality problem and review some

necessary basic results. The existence of the solution of variational inequality problem is

studied in Section 3 using the fixed point method along with a general algorithm. Sensitivity

analyhis is the subject of Section 4. The applications of the main results are considered in

Section 5.

2. VAKIATIONAL INEQUALITY FORMULATION

Let H be a real Hilbert space with norm and inner product denoted by

respectively. Let K be a nonempty closed convex set in H.

Given T, g: H---,H continuous operators, consider the functional I[v], defined by

I[v] = 1/2(Tv, g(v)),
which is known as the general energy (cost) functional.

operator, the functional I[v], defined by (2.1) becomes:

(2.1)

Note that for g = I, the identity

/I[Y] = (Tv, v),

which is the classical energy functional.

If the operator T is linear, g-symmetric, that is
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(T(,), ()) = ((), T(v)), fo a u, v e ,
and g-positive definite, then one can show that the minimum of I[v], defined by (2.1) on the

convex set K in H is equivalent to finding u fi H such that g(u) E K and

(Tu, g(v)- g(u)) >_ O, for all gv) e K. (2.2)

The inequality (2.2) is known as the general variational inequality, introduced and studied by

Noor [9]. We remark that if g = I, the identity operator, then problem (2.2) is equivalent to

finding u K such that

(Tu, v- u)

_
O, for all v K,

which is known as the variational inequality problem considered and studied by Lions and

Stampacchia [6].

If K = H, then the problem (2.2) is equivalent to finding u H such that

(Tu, g(v)) = 0, for all g(v) H. (2.4)

The problem (2.4) is known as the weak formulation of the odd order boundary value problems

and this appears to be a new one.

To illustrate this fact, we consider the third order two-point boundary value problem

-D3u(x) f(x), O<x<l

u(0) = u’(0) = =’() = 0,

where f(x) is a given function of z. Now using the technique of K-positive definite operators,

as developed in [12], we can show that the problem (2.5)is equivalent to finding u E H[0,1], a

Hilbert space [6], such that

(Tu, Kv) (f(x),Kv), for all Kv e H02[0,1],

where

and

with

1 1

(Tu, Kv) / D3uDvdx / D2uD2vdx
o o

1

(f(x),Kv) -- / f(z)Kvdz
o
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K=D=z.
It is clear that with g = K, we have the weak formulation (2.4) of the third order boundary

value problem (2.5).

If K* = {u E H; <u, v> _> 0 for all v E K} is a polar cone of the convex cone K in H and

K C g(K), then problem (2.2) is equivalent to finding u H such that

g(u) K, Tu K* and (Tu, g(u)) = O.

The problem (2.6) is known as the general complementarity problem. Note the symmetry role

played by the operators T and g, since K = K*-RN+. This problem includes many

previously known problems as special cases.

It is clear that problems (2.3), (2.4) and (2.6) are special cases of the general

variational inequality (2.2) introduced in this paper. In brief, we conclude that the problem

(2.2) is a most general and unifying one, which is one of the main motivations of this paper.

(a)
Definition .1: We say that an operator T: H--,H is said to be

.Strongly .0not0ne, if there exists a constant c > 0 such that

<Tu Tv, u v) >_ a II u v II 2, for all u, v e H

Lipschitz continuous, if there exists a constant/3 > 0 such that

II Tu Tv II < !1 II, for all u, v E H.

It is clear that if/3 exists, then so does a, and a _</3.

3. EXISTENCE TtIEORY

In this section, using the fLxed point technique of Glowinski, Lions and Tremolieres [3]
and Noor [7,8], we prove the existence of the solution of the general variational inequality

(2.2).

Theorem 3.1" Let the operators T,g:H--.H be both strongly monotone and

Lipschitz continuous respectively. If the operator g is one-to-one, then there exists a unique

solution u H such that g(u) K, a closed convex set in H and

(Tu, g(v)- g(u)) >_ O, for all g(v) K.

Proof:
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Uniqueness:. Its proof is similar to that of Glowinski, Lions and Tremolieres [3].

Eisten.e’... We now use the fixed point technique to prove the existence of the solution of

(3.1). For given u E H, we consider the auxiliary problem of finding w E H such that

g(w) . K satisfying the variational inequality

(w, v w) >_ (u, v w) p(Tu, g(v) g(w)), for all g(v) E K, (3.2)

where p > 0 is a constant.

Let wl, w2 be two solutions of (3.2) related to ul, u2 H respectively. It is enough to

show that the mapping u---.w has a fixed point belonging to H satisfying (3.1). In other words,

we have to show that for p > 0 well chosen

II Wl- W2 II <_ o II I- t2 Ii,

with 0 < < 1, where/ is independent of u and u2. Taking v w2, (respectively Wl) in (3.2)
related to u1 (respectively u2) we have

(W1, W2 Wl) > <t1, W2 Wl) p(TUl, g(w2) g(wl)

and

(w2, wI w2) >_ (it2, wI w2) p(Tt2, g(w1) g(w2)).

Adding these inequalities, we obtain

(Wl W2’ Wl "W2) <-- ("1 "tt2’ Wl W2) p(TUl Tit2, g(wl) g(w2))

(itI tt2 p(Tui Tit2) wI w2)

-I- p(T’tt1 Tit2, W1 W2 (g(Wl) g(w2))),

from which it follows that

II Wl W2 II 2 _< !1 =l 2 p(Tul T’tt2)I! il Wl W2 II
-4- p II wx w2 (g(w1) g(w2))II II TUl Tu2 II" (3.3)

Since T, g are both strongly monotone and Lipschitz continuous, so by using the

technique of Noor [10], we have

II Itl t2 p(T’ttl Ttt2)II 2 _< (1 2op q- 2p2)II ttl t2 II 2 (3.4)

and

!1 ox w2 -(g(wl) g(w2))II 2 < (x 2- + 2)II Wl W2 II 2. (3.5)
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From (3.3), (3.4) and (3.5), we obtain, by using the Lipschitz continuity of T,

where 0 = pk + t(p),

k = (1 28 + tr2 and t(p) =

We now/show that 0 < 1. It is clear that t(p) assumes its minimum value for

with t( = 1--. For p = if, pk + t(p) < 1 implies that pk < 1 and k < t. Thus it follows

that 0 < 1 for all p with

2 ,a,,,- k -/9 < f12_ 2’ /9 < and k < c.

Since 0 < 1, so the mapping uw defined by (3.2) has a fixed point, which is the solution of

(3.1), the required result.

Remark o.1: If g = I, the identity operator, then the problem (3.2) is equivalent

to find w E H, for a given u E H such that

(w, v w) >_ (u, v w) p(Tu, v w), for all v e K (3.6)

and p > 0. From the proof of Theorem 3.1, we see that k = 0 and 0= 1 ’2’,’; 2p2 <1 for

0 < p < 2_a so the mapping u--,w defined by (3.6) has a fLxed point, which is the solution of the
32,

variational inequality (2.3), studied by Lions and Stampacchia [6]. Consequently, we have a

new proof of the variational inequality problem (2.3).

Remark 3.2: We note that the solution of the variational inequality problem

(3.2) is equivalent to finding the minimum of the function r(w) on K, where

F(w) = 1/2(w, w) (u, w) + p(Tu, g(w)). (3.7)

Here p > 0 is a constant. It turns out that this auxiliary problem is very useful in suggesting

iterative algorithm for computing an approximate solution of the variational inequality (3.1).
Based on these observations, we extend the ideas of Cohen [1] and Noor [7] to propose a more

general algorithm:
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problem

General Algorithm 3.1: For some u E K, we introduce the following auxiliary

where

rain F[w],
toOK

F[w] = E(w) + p(Tu, g(w)) -(E’(u), (3.8)

Here p is a constant and E is a convex differentiable functional.

It is clear that the solution w of (3.8) can be characterized by the variational

inequality

(E’(w), u w) >_ (E’(u), v w) p(Tu, g(v) g(w)), for all v E K. (3.9)

We note that if w = u, then clearly w is a solution of (3.1).
following iterative algorithm.

(ii)

(iii)

This fact suggests the

Choose the initial vector w0.

At step n, solve the auxiliary problem (3.8) with u = wn. Let wn + t denote the

solution of this problem.

Calculate II Wn + t Wn II, If II w. + x-- w. II _< e, for given e > O, stop,

otherwise repeat (ii).

It is obvious that if E(w) = (w, w), then the general auxiliary problem (3.8) is exactly

the same as (3.7). Therefore, one may consider this algorithm as a generalization of the

previous ideas of Noor [7]. We remark that the general algorithm 3.1 is quite general and

flexible. By appropriate choice of the auxiliary problem, one may be able to select a suitable

method to solve the variational inequality and related optimization problems. Since the

auxiliary problem (3.8) is essentially a minimization problem, a large number of algorithms are

available to solve it.

4. SENSITIVITY ANALYSIS

In this section, we study the sensitivity analysis for the variational inequality of type

(3.1). This problem has attracted considerable attention recently. The methodologies

suggested so far vary with the problem settings being studied. Sensitivity analysis for

variational inequalities has been studied by Tobin [14], Kyparisis [4,5], Dafermos [2] and Qiu

and Magnanti [13] using quite different techniques. We mainly follow the ideas and technique
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of Dafermos [2], as extended by Noor [11] for a class of quasi variational inequalities, which is

based on the projection technique. This approach has strong geometric flavor. Using this

technique, one usually proves the equivalence between the variational inequality problem and

the fixed point problem. Consequently, this technique implies that continuity, Lipschitz

continuity and differentiability of the perturbed solution depends upon the continuity,

Lipschitz continuity and differentiability of the projection operator on the family of feasible

convex sets.

We now consider the parametric variational inequality version of problem (3.1). To

formulate the problem, let M be an open subset of H in which the parameter A takes values

and assume that {K.x:A E M} is a family of closed convex subsets of H. The parametric

general variational inequality problem is:

Find u E H such that g(u) KA and

IT(u,A),g(v)-g(u)l >_ O, for all g(v) K, (4.1)

where T(u, A) is a given operator defined on the set of (u,A) with A M and takes values in H.

We also assume that for some A M, the problem (4.1) admits a solution . We want to

investigate those conditions under which, for each A in a neighborhood of A, the problem (4.1)
has a unique solution u(A) near and the function u(A) is continuous, Lipschitz continuous

and differentiable. We assume that X is the closure of a ball in H centered at .
We also need the following concepts.

Delinition .1: Let T be an operator defined on X x M. Then for all E M and u,

v X, the operator T is said to be

a) Locally strongly monotone, if there exists a constant a > 0 such that

and

b)

(T(u, A) T(v, A), u v) _> a [[ u v [[ 2, (4.2)

Locally Lipschitz continuous, if there exists a constant > 0 such that

II T(u, A)- T(v, A)[[, -- [] u v ][. (4.3)

In particular, it follows that

We need the following results to prove the main result of this section. The first one is

due to Noor [9].
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I,emma 4.1 [9]. The function u E Kx is a solution of the parametric variational

inequality (4.1) /f and only if u is the fixed point of the map:

F(u,A) = u- g(u) + PKx[g(u) pT(u,)], (4.4)

for all A M and some p > O, where PKA is the projection of H of the family of closed convex

sets Kx.

We here consider the case, when the solutions of the variational inequality (4.1) lie in

the interior of X. For this purpose, we consider the map,

F*(u,A) = u-g(u)+ PKxr]x[g(u)-pT(u,A)], for all (u,A) X xM. (4.5)

We have to show that the map F*(u,A) has a fixed point, which by Lemma 4.1 is also a

solution of the variational inequality (4.1). First of all, we prove that the map F*(u,A) is a

contraction map with respect to u, uniformly in A G M by using the locally strongly

monotonicity and Lipschitz continuity of the operator T(u,A) defined on X x M.

I,emma 4.: For all u, v X, and A M, we have

II F*(u, A) F*(v, A)II _< o II , v II,

/12(2k k2

= + t(.) < 1 yo I-1 <

Proof: For all u, v E X, A 6 M, we have from (4.5),

II F*(u, ) F*(v, ) II -< II ’ v- (g() g(v)) II
+ Ii PK nx[g(u) pT(u,A)]- PKA nxig(v) pT(v,A)] II

_< 2 II v (g() g(v)) II / II - v p(T(,A) T(v,A)) II
since the projection operator PKA i’l X is nonexpansive, see [3].

Now the operators T(u,A) and g are both (locally) strongly monotone and Lipschitz

continuous, so by the method of Noor [10],

II v- p(T(u, A) T(v, A))II 2 (1 2ap +/2p:z) II , v II 2, (4.7)

and

II , ,-- (g(u)-- g())II < (z 2a + 2)II ,-- , II 2. (4.8)

From (4.6), (4.7)and (4.8), we obtain
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= (m + t())II - v II

where 0 = k + t(p),

Now, using the technique of Noor [9], one can show that 0 < 1 for

and k < 1, from which it follows that the map F*(u,A) defined by (4.5) is a contraction map,

the required result.

lemark 4.1: From Lemma 4.2, we see that the map F*(u,A) has a unique fixed

point u(A), that is u(A)= r*(u,),). Also by assumption, the function , for A = A is a

solution of the parametric variational inequality (4.1). Again using Lemma 4.2, we see that W

is a fixed point of F*(u,A) and it is also a fixed point of F*(u, ). Consequently, we conclude

that u(A = = r*(u(A, A ).

Using Lemma 4.2 and the technique of Dafermos [2], we prove the continuity of the

solution u(A) of the variational inequality (4.1), which is the motivation of our next result.

Lemma .S: If the operators T(-,A),g( W) and the map A---PKArx[g(W)--
pT(,’’] are continuous (or Lipschitz continuous), then the function u(A) satisfying (4.1) is

continuous (or Lipschitz continuous) at - A.

Proof: For A E M, using Lemma 4.2 and the triangle inequality, we have

II (- (X )11 = II F*(u(A), X)- F*(u( )," )11

_< !! F*(u(A),A)- F*(u(’ ),A)II / !1F*((X ),)- F*(X ), )11

_< 0 II (A) (X )11 + II F*(u( ),A) F*(u(’ ),’ )ll.

From (4.5) and the fact that the projection map is nonexpansive, we have

II F*(u(] ),A)- F*(u( ), )11

= II PKA n
x[g(u(- )) pT(u(’ ),A)]- PKA r x[g(u(" pT(u(’ ), )] II

_< p il T(u(A ),A)- T(u(A ),A )ll + II PKA n x[g(u(A ))- pT(u(A ), )]
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PK$ x[g(u( ))- pT(u( ), ,)] ll-

Now from Remark 4.1, and combining (4.9) with (4.10), we get

I! 0 Ii T( ,A) T( ,A )11 / i __-0 II PKx. X[g( ) pZ( , )]

PKx . x[g( )- pT( , )] II,

from which, the required result follows.

(4.ii)

Lemma 4.4: If the assumptions of Lemma 4.3 hold, then there exists a

neighborhood N C M of’ such that for E N, u() is the unique solution of the parametric

variational inequality (4.1) in the interior of X.

Proof: Its proof is similar to that of Lemma 2.5 in [2].

We now state and prove the main result of this section.

Theorem 4.1: Let be the solution of the parametric variational inequality (4.1)
and )t = " and T(u,)t) be the locally strongly monotone Lipschitz continuous operator for all u,

veX.
continuous (or Lipschitz continuous} at

such that for ) N, the parametric variational inequality (4.1) has a unique solution u()t) in

the interior of X, u(’ )-

Proof: Its proof follows from Lemmas 4.2- 4.4 and the Remark 4.1.

Remark 4-: The results obtained in this section can be extended, when the

operators T and g both are allowed to vary with the parameter along with the feasible

convex sets. The variational inequality problem (4.1) becomes:

Find u H such that g(u) . Kx and

<T(u,,),g(v,,)-g(u,,) > 0 for all g(v) Kx,

which is equivalent to finding u H such that

Ft(u, PKX[g(u, pT(u,)], (4.13)

for , E M and p > 0. This formulation allows us to obtain the similar results as in Theorem
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Remark .3: We note that for g = I, the identity operator, the parametric

variational inequality (4.1) reduces to:

Find u E Kx such that

(T(u, A), v- u) >_ 0, for all v E K),,

the problem studied by Dafermos. Consequently our results are exactly the same as proved in

[2]. We also remark that the function u() as defined in Theorem 4.1 is continuously

differentiable on some neighborhood N of. For this, see Dafermos [2].

5. GENEPL COMPLEMENTARITY PROBLEM

In this section, we illustrate that the results obtained in the Sections 3 and 4 can be

used to study the sensitivity analysis for the general complementarity problem. To be more

precise, given T,g: H---H, find u H such that

g(u) e K, Tu e K* and (g(u), Tu) = 0 (5.1)

where K* is the polar cone of the convex cone g in H. Since the problems (5.1) and (3.1) are

equivalent, so the results of Theorem 3.1 and Theorem 4.1 can be used to prove the existence

of a solution and the sensitivity analysis of the problem (5.1).

ACKNOWLEDGMENT

The author is indebted to the referee for helpful comments and suggestions.

[2]

[3]

ttEFEItENCES

G. Cohen, "Auxiliary problem principle extended to variational inequalities", J. Opt.
Theor. Appl. 59, (1988), pp. 325-333.

S. Dafermos, "Sensitivity analysis in variational inequalities", Math. Opers. Res. 13,
(1988), pp. 421-434.

R. Glowinski, J. Lions, and R. Tremolieres,
Inequalities", North-Holland, Amsterdam (1981).

"Numerical Analysis of Variational

[4] J. Kyparisis, "Sensitivity analysis framework for variational inequalities", Math.
Programming 38, (1987), pp. 203-213.

J. Kyparisis, "Perturbed solutions of variational inequality problems over polyhedral
sets", J. Optim. Theor. Appl. 57, (1988), pp. 295-305.



General Algorithm and Sensitivity Analysis for Variational Inequalities 41

[7]

[0]

[11]

[12]

[13]

[14]

J. Lions and G. Stampacchia, "Variational inequalities", Comm. Pure Appl. Math. 20,
(1967), pp. 493-51.9.

M.A. Noor, "General nonlinear variational inequalities", J. Math. Anal. Appl. 126,
(1987), pp. 78-84.

M.A. Noor, "Variational inequalities related with a Signorini problem", C.R. Math.
Rep. Acad. Sci. Canada 7, (1985), pp. 267-272.

M.A. Noor, "General variational inequalities", Appl. Math. Lett. 1, (1988), pp. 119-122.

M.A. Noor, "An iterative scheme for a class of quasi variational inequalities", J. Math.
Anal. Appl. 110, (1985), pp. 463-468.
M.A. Noor, "Some classes of variational inequalities in Constantin Caratheodory’, An
International Tribute, edited by T. Rassias, World Scientific Publishing Co., Singapore,
London (1990).

W.V. Petryshyn, "Direct and iterative methods for the solution of linear operator
equations in Hilbert space", Trans. Amer. Math. Soc. 105, (1962), pp. 136-175.

Y. Qiu and T.L. Magnanti, "Sensitivity analysis for variational inequalities defined on
polyhedral sets", Math. Oper. Res. 14, (1989), pp. 410-432.

I.L. Tobin, "Sensitivity analysis for variational inequalities", J. Optim. Theor. Appl.
48, (1986), pp. 191-204.


