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ABSTRA

Existence and uniqueness are proved for nonlocal (in time) for
solutions of linear parabolic partial differential equations. Instead of an
initial condition, there is a relation connecting the initial value to values
of the solution at other times. L2 error estimates are obtained for the
semidiscrete approximation of the problem using finite elements in the
space variables.
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1. INTRODUCTION

Let Q be a bounded open subset of R™ with a smooth boundary I'. The following

nonlocal problem will be considered:
u, + Au = f(z,t) on Q2x(0,T),
u|.,=0, (1.1)
u(z,0) + g(ty,.., ty,u) = ¥(z),
where 0 <t <t,<...<ty<T, y(z) € L¥Q), f(z,t) € L0, T} L3(R)) and g(t;,..otp, )

maps C°([0,T); L*(Q)) into L%(Q). Also assume A is a strongly elliptic operator defined by

Au= — i 61:1:5(055(:)53%) + iz::la,'(:c)(%f; + ag(z)u (1.2)

i,j=1

with a;;(2),a,(z) € C*(Q), with
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a(u,u) 20 ||ul| % =g llull % ue H(I)(Q)’ (1.3)
where 0 > 0,\y € R, || ul|2= || u]| 2L2(0) = (u, u),
a(u,v) = / ,](z)a“ dv. d z+ Z / ‘(a:) vd:n + /ao(m)uvdz (14)
oj =1 (4]

and H*(2) and H{(R) are the usual Sobolev spaces with norms || ||,. See Adams [1] or Lions
[10] for definitions.

Under the above condltlons, A with domain D(A)=H 2(Q)I"IH () generates an

analytic semigroup S(t) =e~ At such that for a = o — o

ISOFI <Me= | £, (1.5)
where M > 1 depends continuously on o and ) in (1.3). See Pazy [5].

The function u € C°([0, T]; L%()) is said to be a mild solution of (1.1) if

t
u(t) = S@(z) — Sty i)+ / S(t = 1)f (=, r)dr. (16)
0

We will assume for u,v € C%([0, T}; L*(R)) of the form u,v = w, where

¢
w(t) = S(tyw(0) + / S(t —1)f(z, 7)dr, (L)
1]
we have the Lipschitz condition
N
 9(tyye ot w) = g(tysetpn ) | D g || wlty) = o(2) |- (1.8)
i=1

The following are some examples of g(t;,...,tx,u): If hy(z) € C®(Q), let

N
9ty atyyu) = D h@)u(t;). (1.9)
i=1
The m; in (1.8) are m; = maz | hi(z)].

Another useful example is

N +
g(tl,...,tN,u)z.ZTCl— / hi(e, T)u(r)dr, (1.10)
1 =1 t

where k; > 0 and hj(z,t) € C°(Q x[0,T]). If u,v are asin (1.7) and t; < T < t;+k;, then
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lu(r)=o(r) || = 1S = t)(u(t) —o(t) 1| < Me™ T~ u(t) —u(z) |
Thus the m; in (1.8) are

m'=-(%—(1-

i “H).( ma

T
i (z,t) € x[t;t;+k;]

| k(1) |)-

Nonlocal parabolic problems have been studied by several authors. See Byszewski [2-
5], Chabrowski [6], Hess [7], Kerefov [8], and Vabishchewich [13].

2. EXISTENCE AND UNIQUENESS FOR NONLOCAL PROBLEMS

In this section we will prove under the conditions of section 1, (1.6) has a unique

solution.

Let W = C°([0, T'); L*()) with norm
u = su et u(t) ||,
|l w OpStS Il u() |

where a satisfies (1.5). We have the following:

N —at;
Theorem 2.1: Assume (1.5),(1.8) hold,y(z) € L}(Q), and Y mee *i < # for m; in
=
(1.8) and a, M in (1.5). Then there is a unique u in W such that L(t) satisfies (1.6).

Proof: Let ®:W—W be defined by
t
Pu(t) = S(t)h(x) - S(1)g(tys ..ty S(H)v(0) + / S(t—7)f(z,7)dr) (2.1)
0

t
+ /S(t—r)f(z,r)dr
(]
forveW.

We will show ® is a contraction mapping on W. Let u,v € W. Then
e || @u(t) - @u(t) ||
N
< e Me™ %Y m || S(1:)(u(0) - v(0)) |
i=1

N - at;
<MY mMe™ || u(0) - v(0) |

i=1

N
- at .
<MD me” M) lu—v|
i=1
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Thus @ is a contraction on W, which implies there is a unique u € W such that u = ®(u).

Since

i
u(0) = Bu(0) = P(z) = g(ty,- . 1 S()u(0) + / S(t = 7)f(w, 7)dr)
and 0
t
u(®) = S(t)u(0) + / S(t = 1)f(z,r)dr
it follows that u(t) satisfies (1.6). °

a
Since S(t) has the smoothing property, S(t)f € D(A2) for t >0, a >0 and f € L),

we have the following regularity property:

Corollary 2.2: If the conditions of Theorem 2.1 are satisfied, y¥(z) € D(A%), a>0;
f(=z,t) € L%([0,T); D(A*)), p = maz{5—1+¢,0} for some e>0; and g(t,...,ty, ) maps
o0, T}; D(A%)) into D(A%), then the solution u(t) of (1.6) satisfies u € C°([0, T'}; D(A%)).

Note: If ig:lm‘-e“" < -A—}—z is not satisfied, there may not be a unique solution. For

example, u,—u, +(a—72)u=0 on (0,1),u(0,t) =0 =1u(1,t), and u(z,0)—e ™ %u(z,1)=0

at

has solutions u(z,t) = 0 and u(z,t) = e~ “sinwz.

3. THE SEMIDISCRETE APPROXTMATION

Let {V,} be a family of finite dimensional subspaces of H'(Q) such that for
fem@,1<s<r,

inf {|If=xll +hllf=xll}<eh®|IFIl,, 3.1)
xEV,,

where ¢ is independent of h.

In this section we will assume (1.3) is satisfied with Ay = 0. If this is not the case, let
At
u=e¢ OW.

For fixed € > 0, assume A,:V,—V, satisfies
(ApfrofR) 2 o' | Full 2 if f1 € Vi, (3.2)
where 0 < o —e< o’/ <,

(Apfrogn) <cll frll il gplly for all fr,9, €V (3.3)

and
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@
I(PrA= = A3 P | Sch®+2|| A2f ||, 0<as<r-2, (34)

where P, is the L? projection of L%(Q) onto V.

Conditions (3.2),(3.3) and (3.4) are satisfied with ¢/ = o if the standard Galerkin
method is used with V,, € H}(Q) and A, is defined by

(Ahfh’ gh) = (Afh’ gh)’ fn’ v, € Vn‘

The conditions are also satisfied if Nitsche’s method is wused, where
vV, CHY(Q),V,| r< HYI), for2<s<r,

3
+h2|| f-x|l }<eh® || fl,

HY(T)

1
i - Al f— Il f—
g A=l + 21 =X+ B = g

and Ap:v,—v,, is defined by

3gh)

s]
(An98) = a1 38) = G 91) 2.0 = Ui g) 2y + ™ U 9) 2

for (3 large enough such that (3.2) holds. See Lasiecka [9].

We will first show the following nonlocal system on V; has a unique solution for

0<t<T:

u}'l(t) + Ahuh = th(l‘, t),

(3.5)
uh(O) -+ Phg(tl’ .oy tN’ uh) = Phw‘
Let Sp(t)=e Aht, then (3.5) is equivalent to
up(t) = SH(t)Ppy — SH(P,g(ty,.. oty up) + ]Sh(t —7)Ppf(z,T)dT. (3.6)
0
Since ||e fh || £ Mo'e™“ "t < -MT, where lim M _, = M, we can find ¢ > 0 for
0 -0
o'
(3.2) and é > 0 such that if m}=m,+ 6 and Z me ati<-Ml-2—, then
i=1
N -0 t
Z M - (3.7)
=1 o’

Thus by a similar proof to that of Theorem 1.1, we can prove the following;:
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Theorem 3.1: Assume the conditions in Theorem 1.1 are satisfied and V and A,
satisfy (3.1) — (3.4), where o' from (3.2) is such that (3.7) holds and

N
Il Pa(9(tss- oty up) = 9oty o)) | < D mi flup(t) = wp(t) | (3.8)

i=1

t
for up, v, =w,, of the form wy(t) = Sy(t)wy(0)+ [Sy(t—7)P,f(x,7)dT. Then there is a
unique solution u,(t) of (3.6) such that u, € C°([0,T}; V).

Since || Pr(h(z)fi) |l <( supQ [R(z) )| Fu || for f1 €V}, if o' is close enough to o,
T €
then g defined in (1.9) and (1.10) satisfy (3.8).

o
Under the assumptions (3.1)—(3.4), we have for a<s<r and f € D(A2),0<a<s

the condition

(5= 5u0PRF I <o 477 (3.9)
t

/

o
and for f(z,t) € L*(0,T;D(A2%)), 0<a'<r-2

t
| [ (=)= $att =P, e | < OB+ AnR) 1 | g - @10
0 L®(0,T; D(4?))
See for ezample Lasiecka [9] or Thomée [12].

We can now prove similar error estimates for the semidiscrete approximation to the

nonlocal problems.
Theorem 3.2: Let the assumptions of Theorems 1.1 and 3.1 be satisfied, and let the
[
hypotheses of Corollary 2.2 be satisfied for a <r, f(x,t) € L°(0,T; D(A2)),0 = maz{p,c'},
0 <o <r—2, and for u,v € C°([t,, T), LX(Q)),
" g(tl’ b tN’ u) - g(tl’ M tN’ 'U) " .<_ k “ u—v ” Lw(tIY T; L2(Q))' (3'11)

Also assume that u(t) is the solution of (1.6) and uy(t) is the solution to (3.6) for a <s<r.
Then

o3

llu(t) — up() | < Ch*(Lg+1)+Ch+ @D | £ po (312)
t? L%(0,T; D(42))
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Proof: We have
lu(®) =up@®) | < 1(S@) = Sp@®PRY | + | (S(2) = SpB)PR)(ty- - tn ) |l

+ “ Sh(t)Ph(g(tlv---’ tN7 u) - g(tlv--v tN) uh)) “

14
1l [ (St=r) =Syt =PI | (313)
0

Ch® g g o +2;1
<F=a( 11 A% || + || A%g(ty,. .ty u)||) + CR gl £l ,

- a

2 L%(0,T; D(A2))

~

1
+M_ e”? Fll gty tnnu) = g(ty ety ug) Il -
Since Ay, is bounded, Sp(—1) = ¢*h exists. Let ¢ > t,, then

” g(tp- ) tN’u) - g(tli' () tl\h uh) “

t
< N0t tys) = 3ty St = PAS(EIUO) + [ Salt = TIPS r)an) |
0

t
+ 10ty 0 SHOSK ~ ) PRSE)UO) + [ Sult=7)Puf (e i)
0
= gltyreentars ) | (3.14)

<k s
¢

t
121:<T( 1 (S(t—1,) = Syt = 1)) PR)S(t)u(O) || + I /(S'(t—f)—Sh(t—T)Ph)f(w,T)dT Il
- - 0

N
+ 37 M| SH(t)(SK( = t1)PyS(8)u(0)) = Sh(t; = t1)Sh(ty)up |

i=1

3 '
< Ch*|| A28(t,)u(0) || +Ch +2ng | £ | ,

a

L®(0,T; D(A?))

N —-a'(t;—t,)
+ Y o miM e 7T | S(ty)u(0) - Syt )up(0) |

i=1

s ]
< Ch* || A25(t,)u(0) || +Ch* +2nk | £ :

o

L®(0,T; D(A?))
ty
N —-a'(t; =)
+ 3 mM e ST ut) —ut) |+ 1| [ (=)= Sutt =P 1)
i=1 0
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s '
< OB || AZS(t)u(0) || +Ch* *2ing || £ | o
L®(0,T; D(A2))
N —o'(t; ~t,)
+ ) mM e T u(t) — uy(ty) ]
1=1

Let t = ¢, in (3.13), then

llu(ty) = up(t) I| < C(—E=g+1)+Che"+ 2y || £ | ,

s—a a

[}
t 2 L®(0,T; D(A2))

N o't (3.15)
+ M2 mle ™ L u(t) - up(t) |-

i=1

N '
Since M :,Z mle “tica, (3.12) holds for ¢ = t;. Therefore the theorem follows from (3.13)

i=1

and (3.15).
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