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ABSTttACT
Existence and uniqueness are proved for nonlocal (in time) for

solutions of linear parabolic partial differential equations. Instead of an
initial condition, there is a relation connecting the initial value to values
of the solution at other times. L2 error estimates are obtained for the
semidiscrete approximation of the problem using finite elements in the
space variables.
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1_. INTRODU0N

Let fl be a bounded open subset of Rr’ with a smooth boundary F.

nonlocal problem will be considered:

The following

u + Au f(x, t) on (0, T),

Ulr =0,

0) + a(h,.-., tu,,)

(i.i)

where 0 < t1 < t2 < < tN <_ T, (x) C L2(), f(x, t) e L([0, T]; L2()) and g(tx,... tN,.
maps C([0, T]; L2(F)) into L2(F). Also assume A is a strongly elliptic operator defined by

0_/(a ,0jj, i1
= + +

i,j=l
(1.2)

with aij(x),ai(x) E C( ), with
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(1.3)

where tr > 0 Ao e R, II u II u II- II uL2(fl (U, U),

(1.4)

and HS() and H(fl) are the usual Sobolev spaces with norms [I II s" See Adams [1] or Lions

[10] for definitions.

Under the above conditions, A with domain D(A)= H2(f)r3Ho(f) generates an

analytic semigroup S(t) = e- At such that for a = tr- Ao

II s(t)f II Me- at II f II,

where M > 1 depends continuously on tr and A0 in (1.3). See Pazy [5].

The function u e C([O,T];L2()) is said to be a mild solution of (1.1) if

u(t) = s(t)(=)- s(t)a(ta, tN, u) -t- / S(t 7")f(,, r)dr.
o

(1.6)

We will assume for u, v (5 C([0, T]; L2(f)) of the form u, v = w, where

(t) = s(t),o(o) + f s(t -)/’(, -)d-,
0

we have the Lipschitz condition
N

II g(tl,.., iN, ")- g(tl,.., tN, v)II --< mi II u(ti)- v(ti) II
i=1

The following are some examples of g(t,..., tN, u): If hi(z) E C( ), let

N
g(tl"’"tN’U) = E hi(z)u(ti)"

i=1

The m in (1.8) are rni = ma z hi(z)

Another useful example is

(1.9)

(1.10)

where k > 0 and hi(z,t e C(f x [0,T]). If u,v are as in (1.7) and t < r < ti+ ki, then
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II ,(r) v(-)!1 : II s(- t)((t) v(t))II < M-0- -t)I! (t) v(t)II.

Thus the m in (1.8) are

aki)m -M-M(1- e .(= ak ma: hi(z, t) l).
(z,t) q. l X[ti, ti+ki]

Nonloeal parabolic problems have been studied by several authors. See Byszewski [2-
5], Chabrowski [6], Hess [7], Kerefov [8], and Vabishchewich [13].

2... EXISTENCE AND UNIQUENESS FOR NONLOCAL PROBLEMS

In this section we will prove under the conditions of section 1, (1.6) has a unique

solution.

Let W = C([0, T]; L2(fl)) with norm

II ’ II w = ’p ,t II ,(t)II,
O<t<T

where a satisfies (1.5). We have the following:

Theorem ,.1: Assume (1.5),(1.8) hold,(z) e L2(f), and mie-ati < 1 for m in
i--1 -’(1.8) and a, M in (1.5). Then here is a unique u in W such that u(t) satisfies (1.6).

Proof: Let (I): W--,W be defined by

v(t) = s(t)(=) s(t)a(h,...,t,s(t)v(O) + f s(t )y(=,
o

+ f S(t r)y(, r)dr
o

(2.1)

for v E W.

We will show is a contraction mapping on W. Let u, v E W. Then

N
< eatMe-atE mi II s(t)(,(0)- v(0))II

N
< ME miMe- ati II ,(o)- v(O)II

i=1

N
< M2(E mie- ati)II ’- v I! w.

i=1
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Thus (I) is a contraction on W, which implies there is a unique u E W such that u = (i)(u).
Since

and

u(O) = Ou(O) = ()- g(tx,...,tn, S(t)u(O) + / S(t- v)f(z, r)dv)
0

(t) = s(t)(o) + f s(t )y(,)d
o

it follows that u(t) satisfies (1.6).

Since S(t) has the smoothing property, S(t)f 6 D(A") for t > 0, _> 0 and f 6 L(f}),
we have the fllowing regularity property:

Corollary ,.: If the conditions of Theorem 2.1 are satisfied, () D(A), >_ 0;

f(z, t) L([0, T]; D(A#)), # = maz{- 1 + e, 0} for some e > 0; and g(tl,..., tN,. ) maps

cO((0, T]; D(A’)) into D(A’), then the solution u(t) of (1.6) satisfies u e cO(J0, T]; D(A’f)).
N 1Note: If role-at< is not satisfied, there may not be a unique solution. For

i_-I -example, ut-u==+(a-r2)u=O on (0,1),u(O,t)=O=u(1,t), and u(z,O)-e-au(z, 1)=O
has solutions u(z, t) = 0 and u(x, t) = e- atsinTrx.

THE .SEMID!SCE APPROBATION

Let {Vh} be a family of finite dimensional subspaces of Hl(f) such that for

f e HS(2), 1 _< s < r,

inf { II f- X II + h II f- x IIx} _< h" II f
xVh

(3.1)

where c is independent of h.

In this section we will assume (1.3) is satisfied with 0 = 0. If this is not the case, let

u = eAtW.
For fixed e > 0, assume Ah: Vh---.Vh satisfies

(Ahfh, fh) >-- o" II fh II 2 if fh - Wh, (3.2)

where 0 < r- e < r < r,

(Ahfh’ gh) <-- c II fh Ilxll gh I1 for all fh, gh Vh (3.3)

and
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II (PhA 1 A -hlPh)f II _< + z II A’f I!, 0 < a _< r- 2, (3.4)

where Ph is the L2 projection of L2(f) onto Vh.

Conditions (3.2),(3.3) and (3.4) are satisfied with a’= r if the standard Galerkin

method is used with Vh E H(f) and Ah is defined by

(Ahfh, gh) = (Afh, gh), fn, Vn

The conditions are also satisfied if Nitsche’s method is used, where

Vh

_
H(f), Val r

_
H(r), for 2 < s _< r,

1 3

inf { II f- X ]1 + h l[ f- X II1 + h2 ]l f- X 11L2(F) -t- h2 ]] f- X 11HI(F)} _< chS I[ f [I s
xEvh

and Ah: Vh---.vn is defined by

-Ofh,(Ahfh, gh) ---- a(fh, gh) (" gh)L2(F (fh,nh)L2(F) + h- l(fh, gh)L2(F
for fl large enough such that (3.2) holds. See Lasiecka [9].

We will first show the following nonlocal system on Vh has a unique solution for

0<t<T:

u(t) + AhUh Phf(:, t),

Uh(O) + Phg(tl, tN, Uh) = Ph"

-AhtLet Sh(t) --e then (3.5)is equivalent to

t

Uh(t) Sh(t)Ph Sh(t)Png(tl,... tN, Uh) + / Sh(t 7")Phf(z v)dr.
0

Since II < 77Y,1 where lira Mo., = M, we can find e > 0 for
Mr r’-r

N
(3.2) and 6 > 0 such that if m’. = m + 6 and mie

i=1

a’ti < 2’ then

N
’m(e-a’ti 1
i__Zl

"
(3.7)

Thus by a similar proof to that of Theorem 1.1, we can prove the following:
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Theorem .1: Assume the conditions in Theorem 1.1 are satisfied and Vh and Ah

satisfy (3.1)- (3.4), where ’ from (3.2) is such that (3.7) holds and

N

II Ph(g(tl, ., tN, Uh) g(tl,.-., tN, Vh)) II -< ]m II uh(ti) Vh(ti) II
i=1

(3.8)

for Uh, vh = wn of the form Wh(t) = Sh(t)Wh(O) + f Sh(t "r)Phf(X 7-)d’r.
o

unique solution Uh(t) of (3.6) such that uh E C([0,T]; Vh).

Then there is a

si. II Ph(h(:)fh) II --< ( up h(z)l)II Yh II o Yh Vh, iy ’ i toso to ,
then g defined in (1.9) and (1.10) satisfy (3.8).

Under the assumptions (3.1)- (3.4), we have for a < s < r and f D(A2), 0 < a <_ s

the condition

II (s(t)- Sh(t)eh)f !1 _< _,h, II A’f II

and for f(z, t) L(O, T; D(A 2 )), O<a <r-2

(3.9)

t

II f (s(t ) Sh(*- 7")Ph)f(e, r)dr I! _< ch"’ + -()II Y II
0

Oil
LOO(O,T;D(A 2 ))

See for example I, asiecka [9] or Thome [I].

We can now prove similar error estimates for the semidiscrete approximation to the

nonlocal problems.

Theorem 3.1& Let the assumptions of Theorems 1.1 and 3.1 be satisfied, and let the
o

hypotheses of Corollary 2.2 be satisfied for ( < r, f(z,t) L(O,T;D(A)),O = maz{p,a’},

0 <_ (t <_ r- 2, and for u, v C C([tl, T], L2(2)),

II g(tl,..., tN, u)- g(tl,..., tN, v)!1 _< II =- v Ii LOO(tl, T; L2(fl))" (3.11)

Also assume that u(t) is the solution of (1.6) and Uh(t) is the solution to (3.6) for a <_ s <_ r.

Then

s 1 + tn(hl-)I! f IiII u(t) h(t)!1 -< Ch - _- / 1) + Oh’
LCx(O, T; D(A 2 ))

(3.12)
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Proof: We have

II u(t)- Uh(t II <- II (s(t)- Sh(t)Ph)b II + II (s(t)- .h(t)Ph)g(tl,...tN, u)II

+ II Sh(t)Ph(g(tl,..., tN, u) g(tl,..., tN, Uh)) II

t

+ II f (s(t ) Sh(t ")h)Y(=,)d II
0

(3.13)

<-- -h( IIA II -I- I! A9(tl,..., tN, u)l[)+ Ch’ + ln II f II
L(O, T; D(A 2 ))

+ Mcr,e a’t II g(h,..., tN’ u) g(tl,"" ", tN, Uh) II"
Since Ah is bounded, Sh(- t) = eAht exists. Let t > t, then

II g(tt,..., tN, u) g(tl,..., tN, Uh) II

<_ II g(h,..., tN, =) g(l"’"tN’]h(t tl)PhS(tl)U(O) + / Sh(t -V)Phf(z’r)dr) II
0

t

+ II (h,..., tN’Sh(t)(Sh( tl)PhS(tl)U(O)) "1" / Sh(t 7")Phf(’
0

9(tl,"., tN, Uh) II (3.14)

<k P (11 (S(t tl) Sh(t tl)Ph)S(tl)u(O) II + II f (S(t ) Sh(t r)Ph)f(z, r)dT" II
1 <_t<_T 0

N
+ Em II Sh(ti)(Sh(- tl)PhS(tl)u(O))- Sh(ti- tl)Sh(tl)uh II
i=1

<_ ch II A’S(t)u(O) II / Ch"’ + 21n II ’ II
L(0, T; D(A 2 ))

N
+ E mMa’e- a’(ti tl) II s(tx),(o) ,.qh(tl)lth(O)II
i=1

<_ Ch" II ATS(ta)u(O) I! / ch’ + 21n II f II
LOO(o,T;D(A 2 ))
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<- Ch8 II AS(tl)u(O) il + Cha’ + 21n [[ f II
LOO(o,T;D(A 2 ))

N
/ E miM,,"e- a’(ti tl) II u()- ’l./,h(tl)II.

i--1

Let t = t1 in (3.13), then

h"II-(h) (h)I! < c( ,,,:,, + 1) + Cha’ + 2/r(--)II f II
tl 2 LOO(o,T;D(A 2 ))

N
Since M2,E
and (3.15).

N (3.15)
+ M2.r,Eme-a’ti II u(q)- uh(tx)I1"

-ati < 1, (3.12) holds for t = tl. Therefore the theorem follows from (3 13)
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