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1. Introduction

The purpose of this paper is to estimate the value of a multivariate distribution function, called
the target distribution function, at a given point, when observing a nonstationary process.
Clearly, there must be a connection between the process and the target distribution. We will
assume that as time goes, the marginal distribution of the process gets closer and closer to the
target in a suitable sense. The point at which we want to estimate the target distribution is not
any bona fide vector, for we will assume that it can be estimated by a vector of U-statistics.
Such a problem is clearly out of reach with that generality, and we will assume that, though
nonstationary, the process exhibits an asymptotic form of stationarity and has a suitable mixing
property. Those will be defined formally after this general introduction.

Let (Xi)i≥1 be a stochastic process indexed by the positive integers, taking value in a finite
dimensional Euclidean space H. Identifying H with a product of a finite number copies or the
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real line, we write Fi for the distribution function of Xi. We will assume that the process has
some form of asymptotic stationarity, implying that the sequence Fi converges in a sense to be
made precise to a limiting distribution function F.

For i ≤ j, let Aj

i denote the σ-algebra of events generated by Xi, . . . , Xj .
We will say that the nonstationary stochastic process is absolutely regular if

sup
n∈N∗

max
1≤j≤n−m

E

{

sup
A∈A∞

j+m

| P(A | Aj

1

) − P(A) |
}

= β(m) ↓ 0 asn −→ ∞, (1.1)

where N
∗ = {1, 2, . . .}.

Assume that for some positive δ less than 2/5,

β(n) = O
(

n−(2+δ)/δ
)

. (1.2)

We consider a parameter ξ in H whose components can be naturally estimated by U-
statistics. To be more formal and precise, we assume that ξ is defined as follows. Let m be an
integer to be the degree of the U-statistics. Let Φ be a function from H

m into H, invariant by
permutation of its arguments. We are interested in parameters of the form

ξ =
∫

Hm

ΦdF⊗m =
∫

Hm

Φ
(

x1, . . . , xm

)

m
∏

l=1

dF
(

xl

)

, (1.3)

and the function Φ is called the kernel of the parameter ξ.

Example 1.1. Take H to be R. Themean vector corresponds to takingm = 1, andΦ is the identity.

Example 1.2. Take H to be R
2. Consider ξ to be the 2-dimensional vector whose components are

the marginal variances. We take m = 2 and Φ is going to be a function defined on (R2)2. It has
two arguments, each being in R

2, and it is defined by

Φ
(

(u, v),
(

u′, v′)) =
(

u2 + u′2

2
− uu′,

v2 + v′2

2
− vv′

)

. (1.4)

Such a parameter can be estimated naturally byU-statistics, essentially replacing F⊗m in
(1.3) by an empirical counterpart. By using the invariance ofΦ, the estimator of ξ is then of the
form

̂ξn =

(

n
m

)−1
∑

1≤i1<···<im≤n
Φ
(

Xi1 , . . . , Xim

)

. (1.5)

Now, we have described the parameter ξ and its estimator, going back to our problem,
we need to define an estimator of the distribution function F.

A natural one would be the empirical distribution function calculated on the observed
values of the process. Even if the empirical distribution function is optimal with respect to the
speed of convergence of the mean square error, it is not appropriate for not taking care of the
fact that F is smooth, and particularly of the existence of a density f .

It is, therefore, natural to seek an estimator of the target distribution which is smooth. A
good candidate is to smooth the empirical distribution function with a kernel. Another way to
introduce this estimator is to say that we integrate a standard kernel estimator of the density.
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Such an estimator estimates the mean distribution function

Fn = n−1 ∑

1≤i≤n
Fi. (1.6)

But since the sequence Fi has a limit F, it estimates the limit F as well. To be explicit, we
consider a sequence Kn, n ≥ 1, of distribution function converging, in the usual sense of
convergence in distribution, to that of the point mass at the origin. We write Fn for the
empirical distribution function pertaining to the measure having mass 1/n at each sample
point Xi, 1 ≤ i ≤ n. Our nonparametric estimator of F is

̂Fn = Fn � Kn, (1.7)

where � denotes the convolution operator. Finally, our estimator of F(ξ) is ̂Fn(̂ξn).
Our method is the adaption of some of the ideas of Puri and Ralescu [1] who proved

a central limit theorem of ̂Fn(̂ξn) for the i.i.d. case which was generalized by Sun [2] for
the stationary absolutely regular case, then Sun [3] proved the asymptotic normality of ̂Fn

and the perturbed sample quantiles for the nonstationary strong mixing condition. We also
have to mention Harel and Puri [4, 5] who proved central limit theorems of U-statistics for
nonstationary (not necessarily bounded) strong mixing double array of random variables,
Ducharme and El Mouvid [6] who proved limit theorems for the conditional cumulative
distribution function by using the convergence of the rapport of two U-statistics, and Oodaira
and Yoshihara [7] who obtained the law of the iterated logarithm for the sum of random
variables satisfying the absolute regularity, then Harel and Puri [8] proved the law of the
iterated logarithm for perturbed empirical distribution function when the random variables
are nonstationary absolutely regular; later, this result was generalized for the strong mixing
condition by Sun and Chiang [9]. In addition, some of the ideas of Billingsley [10] and
Yoshihara [11] have been used to study our problem. For the study of some limit theorems
dealing with U-statistic for processes which are uniformly mixing in both directions of time,
the reader is also referred to Denker and Keller [12].

2. Preliminaries

To specify our assumption on the process, it is convenient to introduce copies of H. Hence we
write Hi, i ≥ 1, an infinite sequence of copies of H. The basic idea is to think of the process at
time i as taking value in Hi and we think of each Hi as the ith component of H

∞.We then agree
on the following definition.

Definition 2.1. A canonical p-subspace of H
∞ is any subspace of the form Hi1 ⊕ · · · ⊕ Hipwith

1 ≤ i1 < · · · < ip. We write Sp for a generic canonical p-subspace.

Remark 2.2. For (i1, . . . , ip)/= (j1, . . . , jp), if we note Sp = Hi1 ⊕ · · · ⊕Hip and S
′
p = Hj1 ⊕ · · · ⊕Hjp ,we

have Sp /= S
′
p with Sp ⊂ H

∞ and S
′
p ⊂ H

∞.
The origin of this terminology is that when H is the real line, then a canonical p-subspace

is a subspace spanned by exactly p distinct vectors of the canonical basis of H
∞. We write

∑

Sp⊂Hn for a sum over all canonical p-subspaces included in H
n.
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To such a canonical subspace Sp = Hi1⊕· · ·⊕Hip , we can associate the distribution function
FSp

of (Xi1 , . . . , Xip) as well as the distribution function with the same marginals

F⊗Sp = ⊗1≤j≤pFij = ⊗Hi⊂Si
Fi. (2.1)

Clearly, the marginals of F⊗Sp are independent, while these of FSp
are not.

Consider two nested canonical subspaces Sp and Sm−p, where Sm−p ⊂ H
n  Sp. For a

function φ symmetric in its argument and defined on Sp ⊕ Sm−p, we can define its projection
onto the functions defined on Sp by

x ∈ Sp −→ φ
(

x, Sm−p
)

=
∫

Sm−p
φ(x, y)dF ⊗Sm−p(y). (2.2)

Identifying Sp ⊕ Sm−p with H
m and H

p with Sp allows to project functions defined on
H

m onto functions on H
p. However, with this identification, the projection depends on the

particular choice of Sm−p in H
n. To remove the dependence in Sm−p, we sum over all choices of

Sm−p in H
n  Sp by

φSp
(x) =

(

n − p
m − p

)−1
∑

Sm−p⊂HnSp

φ
(

x, Sm−p
)

. (2.3)

Given U-statistics of degree m,

Un =

(

n
m

)−1
∑

1≤i1<···<im≤n
φ
(

Xi1 , . . . , Xim

)

, (2.4)

we can then define an analogue of Hoeffding decomposition (e.g., Hoeffding [13]) when the
random variables come from a nonstationary process. For this purpose, consider, firstly, an
expectation ofUn if the process had no dependence, namely,

Un,0 =

(

n
m

)−1
∑

Sm⊂Hn

∫

Sm

φdF ⊗Sm. (2.5)

Then for any p = 1, . . . , m, we define

Un,p =

(

n
p

)−1
∑

Sp⊂Hn

∫

Sp

φSp
d⊗Hi⊂Sp

(

δXi
− Fi

)

, (2.6)

where δ{·} is the Dirac function.
Finally, for p > m, we set

Un,p = 0. (2.7)

The analogue of Hoeffding decomposition is the equality

Un =
∑

0≤p≤m

(

m
p

)

Un,p. (2.8)



E. Elharfaoui and M. Harel 5

When we have a vector of U-statistics defined by a function Φ as in (1.3), we can write the
decomposition componentwise. This is a little cumbersome to write explicitly. Identifying
H with R

d says, we write ̂ξn = (̂ξn, j)1≤j≤d and each U-statistics ̂ξn, j has a Hoeffding type
decomposition

̂ξn,j =
∑

0≤p≤mj

(

mj

p

)

̂ξn,j,p, (2.9)

where

̂ξn,j,p =
∑

Sp⊂Hn

∫

Sp

φj,Sp
d⊗Hi⊂Sp

(

δXi
− Fi

)

(2.10)

and φj,Sp
is defined by (2.3) for the component φj of Φ.

We can construct the vector

̂ξn,·,p =

((

mj

p

)

̂ξn,j,p

)

1≤j≤d
. (2.11)

Now, writing m for the largest of the mj ’s, we can write a vector version of the Hoeffding
decomposition

̂ξn =
∑

0≤p≤m
̂ξn,·,p. (2.12)

Note that this decomposition makes an explicit use of convention (2.7), and this is why this
convention was introduced.

We now need to specify exactly what wemean by asymptotic stationary of a process. For
this, recall the following notion of distance between probability measures.

Definition 2.3. The distance in total variation between two probability measures P and Q
defined on the same σ-algebra A is

|P −Q|A = sup
A∈A

|P(A) −Q(A)|. (2.13)

If Sp is a canonical subspace of H
∞, we write σSp

as the σ-algebra generated by the Xi’s with
Hi ⊂ Sp. We write P as the probability measure pertaining to the process (Xi)i≥1, which is a
probability measure on H

∞.

Definition 2.4. The process (Xi)i≥1 with probability measure P on H
∞ is geometrically asymp-

totically (pairwise) stationary if there exists a strictly stationary process with distributionQ on
H

∞, and a positive τ less than 1, such that for 1 ≤ i < j,

|P −Q|σHi⊕Hj
≤ τi. (2.14)

Since Q is strictly stationary in this definition, its restriction to σHi⊕Hj
depends in fact only on

j − i. Hence, this definition asserts that the process Xi,Xi+1, . . . is very close of being stationary
when i is large. It also implies that

|P −Q|σHi
≤ τi. (2.15)
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This asserts that the marginal distribution of the process converges geometrically fast to a fixed
distribution.

We suppose that there exists a strictly stationary process (X∗
i )i≥1 with probability

measure Q on H
∞, which is absolutely regular with the same rate as the process (Xi)i≥1. F

is the distribution function of X∗
i .

We define the function φ∗ on H1 by

x ∈ H1 �−→ φ∗(x,Hm  H1
)

=
∫

HmH1

φ(x, y)dF ⊗(m−1). (2.16)

Next, we denote

ξ∗l,1 =
∫

Hl

φ∗d
(

δX∗
l
− F
)

. (2.17)

Identifying H with R
d says, the vector of U-statistics being defined by a vector function Φ, we

can write

ξ∗l,1 =
(

ξ∗l,j,1
)

1≤j≤d. (2.18)

We can construct the vector

ξ∗l, ·,1 =
(

mjξ
∗
l,j,1

)

1≤j≤d. (2.19)

Let

Al = s
(

ξ −X∗
l

) − F(ξ) +DF(ξ)
(

ξ∗l, ·,1
)

, (2.20)

where s(x) = 1 for x ≥ 0, s(x) = 0 otherwise, and D is the differential operator.
We have

E
(

Al

)

= 0, 1 ≤ l ≤ n. (2.21)

We also define

σ2 = E
(

A2
1

)

+ 2
∞
∑

l=1

E
(

A1Al+1
)

. (2.22)

3. Weak convergence of the smoothed empirical distribution function

In this section, we identify H with R
d and we have, of course, a vector of U-statistics defined

obviously by a vector function Φ = (φj)1≤j≤d, where the degree of φj is mj .
Let k be a probability density function on H and let (an)n≥1 be a sequence of positive

window-width, tending to zero as n → ∞. Denote kn(t) = a−1
n k(ta−1

n ), Kn(x) =
∫

t≤x kn(y)dy, and
consider the perturbed empirical distribution function ̂Fn defined by (1.7) corresponding to
the sequence (Kn)n≥1.
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Consider the smoothed empirical distribution ̂Fn defined in (1.7) and using the kernel
density estimator ̂fn, where ̂fn(x) = (nan)

−1∑n
l=1k((x −Xl)/an), and define

̂Fn(x) =
∫

t≤x
̂fn(t)dt, x ∈ H. (3.1)

Note that this is of the form (1.7), with Kn(x) =
∫

t≤x kn(t)dt, where kn(t) = a−1
n k(ta−1

n ).
For a better understanding of the use of the integral type estimators ̂Fn, it is of interest

to study the asymptotic behavior of the distribution of ̂Fn (defined by (3.1)) evaluated at a
random point ̂ξn (defined by (1.5)). Such a statistic is useful in estimating a functional F(ξ) if
F is unknown.

Supposing that the conditions introduced in Section 2 are satisfied, our main result
establishes that ̂Fn(̂ξn) is an estimator which converges to F(ξ), and the asymptotic normality
will allow us to obtain confidence intervals for F(ξ). Finally, by using the notations introduced
in Section 2, we can write the following result.

Theorem 3.1. We suppose that

(i) there exists a finite positive constantM0 such that

max
1≤j≤d

sup
Smj

⊂H∞

∫

Smj

|φj |2+δdPσSmj
< M0, (3.2)

max
1≤j≤d

sup
Smj

⊂H∞

∫

Smj

|φj |2+δdQσSmj
< M0, (3.3)

where δ is the number introduced in (1.2);

(ii) the mixing rate of absolute regularity verifies Condition (1.2);

(iii) condition (2.14) is verified;

(iv)
∫

H

‖t‖k(t)dt < ∞, ‖t‖ = max
1≤j≤d

|tj |, (3.4)

where k is a probability density function;

(v) the sequence Fi and F are twice differentiable on H with uniformly bounded first and second
partial derivatives.

Then n1/2{ ̂Fn(̂ξn) − F(ξ)} converges in law to a normal distributionN(0, σ2) as n → ∞, where
σ2 is defined in (2.22).

We are then faced with a difficulty as the variance σ2 defined in (2.22) is unknown.
In order to overcome this difficulty, we can proceed to an estimation of the variance σ2 by
truncating the expansion of σ, keeping only the first I more informative terms and estimating
σ2 by its empirical counterpart σ̂2

n defined by

σ̂2
n = n−1

n
∑

l=1

(

̂Al − ̂An

)2 + 2n−1
I
∑

i=1

n−I
∑

l=1

(

̂Al − ̂An

)(

̂Al+i − ̂An

)

, (3.5)
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where

̂An = n−1
n
∑

l=1

̂Al,

̂Al = s
(

̂ξn −Xl

) − ̂Fn

(

̂ξn
)

+D ̂Fn

(

̂ξn
)(

̂ζn,l, ·,1
)

,

̂ζn,l, ·,1 =
(

mj
̂ζn,l,j,1

)

1≤j≤d,

̂ζn,l,j,1 =
∫

Hl

̂φj,Hl
d
(

Xl − Fn
)

,

̂φj,Hl
(x) =

(

n
m − 1

)−1
∑

1≤i1<···<im−1≤m
φ(x,Xi1 , . . . , Xim−1),

D ̂Fn(x) = n−1
n
∑

l=1

DKn(x −Xl).

(3.6)

From condition (1.2), we have

|E( ̂Al
̂Al+i
)| ≤ {β(i)}δ/(1+δ)M = O(i−(2+δ)/(1+δ)), (3.7)

whereM is some finite positive constant.
To obtain a suitable value for I, a simple criterion consists of computing the smallest

integer I for which

∑I
i=1i

−(2+δ)/(1+δ)
∑∞

i=1i
−(2+δ)/(1+δ) ≥ 1 − α, (3.8)

where α would be the needed level of precision.
From the empirical construction of the estimator σ̂2

n, we deduce easily the convergence
in distribution of σ̂2

n to σ2
I =E(A

2
1) + 2

∑I
l=1E(AlAl+1) � σ2.

4. Applications

4.1. Application to an ARMA process

First, we give an example for which the the stochastic process (Xi)i≥1 satisfies our general
condition. It means that (Xi)i≥1 is a multivariate asymptotical stationary absolute regular
stochastic process.

Example 4.1. ARMA process.
Consider a d-variate ARMA(1,1) process (Xi)i≥1 defined by

Xi = AXi−1 + Bεi−1 + εi; i ≥ 1, (4.1)

where the initial vector X1 has a measure which is not necessarily the invariant measure and
admits a strictly positive density, A and B are square matrices and (εi)i≥1 is a d-variate white
noise with strictly positive density and geometrical absolute regularity. If the eigenvalues of the
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square matrixA have modulus strictly less than 1, then the process (Xi)i≥1 satisfying Condition
(2.14) (for a proof, see (5.4) in [8]), the process is asymptotically stationary and geometrically
absolutely regular.

Consider the strictly stationary process (X∗
i )i≥1 satisfying (4.1), associated to the process

(Xi)i≥1 where X∗
1 has a measure which is the invariant measure. Some parameters of the model

(4.1) can be estimated by estimators of the form (1.5) and we can apply Theorem 3.1.
For example, take d = 2 and denote by μ the mean and by Γ(·) the covariance function of

the process (X∗
i )i≥1.

Consider ξ to be the 2-dimensional vector which is the column matrix μ, and suppose
that we want to estimate μ, then one possibility should be to use the estimator ̂ξn, and its
associated kernel Φ is, of course, the identity.

For estimating the two parameters ξ1 and ξ2, where ξ1 is the first column and ξ2 is the
second column of Γ(·), we could also use the estimator ̂ξn, where the associated kernel Φ1 of ξ1
is defined by

Φ1
(

(u, v),
(

u′, v′)) =
(

u2 + u′2

2
− uu′,

1
2
(u − u′)(v − v′)

)

, (4.2)

and the associated kernel Φ2 of ξ2 is defined by

Φ2
(

(u, v),
(

u′, v′)) =
(

1
2
(

u − u′)(v − v′),
u2 + u′2

2
− uu′

)

. (4.3)

4.2. Application to estimation of the median

We give a very simple example for which it is useful to estimate F(ξ). For simplicity, we
suppose d = 1.

LetX1, . . . , Xn be a random sample for which the sequence of distribution functions Fi of
Xi converges to the limiting distribution function F with median ξ. Awell-known estimator of
ξ is the Hodges-Lehmann estimator ̂ξn defined by

̂ξn = median
{

1
2
(

Xi +Xj

)

: 1 ≤ i < j ≤ n

}

. (4.4)

The ̂ξn estimator is a weighedU-statistic with kernel φ(x1, x2) = (1/2)(x1 + x2).
The theorems of convergence for U-statistics remain true for weighted U-statistics. We

can easily conclude that ̂ξn convergence in law to ξ, and also ̂Fn(̂ξn) converges in law to 1/2.
We can confront these two results to evaluate the validity of the estimation of the parameter ξ
by ̂ξn.

5. Proof of Theorem 3.1

We are going to use the following lemma proved by Harel and Puri [4, Lemma 2.2], which is a
generalization of a lemma of Yoshihara [11, Lemma 2].
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Lemma 5.1. Suppose that (3.2), (3.3), and Condition (ii) of Theorem 3.1 are satisfied, then

E
(

̂ξn,j,p
)2 = O(n−1−λ); 2 ≤ p ≤ mj, 1 ≤ j ≤ d, (5.1)

where λ ismin ((2 − 5δ)/6δ, 1).

Writing ̂Fn(̂ξn) − F(ξ) as

̂Fn(̂ξn) − ̂Fn(ξ) + ̂Fn(ξ) − Fn � Kn(ξ) + Fn � Kn(ξ) − F(ξ) (5.2)

will allow us to determine the contributions of the stochastic behavior of ̂ξn and that of ̂Fn to
the limiting distribution.

First, we use smoothness of our nonparametric estimator to linearize the term ̂Fn(̂ξn) −
̂Fn(ξ), approximating it by the differentialD ̂Fn(ξ)(̂ξn−ξ)minus a centralization termDFn(ξ)(̂ξn
−ξ). The second term ̂Fn(ξ)−Fn � Kn(ξ), plus the centralization term defined above, is analyzed
using an empirical process technique for dependent random variables. Finally, the last term
satisfies Fn � Kn(ξ) − F(ξ) = o(n−1/2), using the exponential asymptotic stationarity.

Setting

Hn,1(ξ) = n1/2{
̂Fn(ξ) − Fn � Kn(ξ) +DFn(ξ)

(

̂ξn − ξ
)}

,

Hn,2(ξ) = n1/2{
̂Fn

(

̂ξn
) − ̂Fn(ξ) −DFn(ξ)

(

̂ξn − ξ
)}

,
(5.3)

we can rewrite the first and second terms as

n1/2{
̂Fn

(

̂ξn
) − ̂Fn(ξ) + ̂Fn(ξ) − Fn � Kn(ξ)

}

= Hn,1(ξ) +Hn,2(ξ). (5.4)

Lemma 5.2. Under the conditions of Theorem 3.1,Hn,1(ξ) converges in law to the normal distribution
N(0, σ2) as n → ∞, where σ2 is defined in (2.22).

Proof. From the decomposition

DFn(ξ)
(

̂ξn − ξ
)

= DFn(ξ)
(

̂ξn,·,1
)

+
∑

2≤p≤m
DFn(ξ)

(

̂ξn,·,p
)

, (5.5)

we can write

Hn,1(ξ) = n−1/2
n
∑

l=1

Tn,l + n−1/2
n
∑

l=1

E
(

Kn

(

ξ −Xl

)) − n1/2(Fn � Kn(ξ)
)

+ n−1/2
n
∑

l=1

∑

2≤p≤m
DFn(ξ)

(

̂ξl, ·,p
)

,

(5.6)

where

Tn,l = Kn

(

ξ −Xl

) − E
(

Kn

(

ξ −Xl

))

+DFn(ξ)
(

̂ζl, ·,1
)

,

̂ζl, ·,1 =
(

mj
̂ζl,j,1
)

1≤j≤d,

̂ζl,j,1 =
∫

Hl

φj,Hl
d
(

δXl
− Fl

)

; 1 ≤ l ≤ n,

(5.7)

and φj,Hl
is defined by (2.3) for the component φj of Φ.
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From the exponential asymptotic stationarity,

n−1/2
n
∑

l=1

E
(

Kn

(

ξ −Xl

)) − n1/2(Fn � Kn(ξ)
)

(5.8)

converges to zero, and from Lemma 5.1 and Markov inequality, we deduce that

n−1/2
n
∑

l=1

∑

2≤p≤m
DFn(ξ)

(

̂ξl, ·,p
)

(5.9)

converges to zero in probability.
It remains to show that n−1/2∑n

l=1Tn,l converges to a normal distribution, noting that
(Tn,l)1≤l≤n is a nonstationary absolutely regular unbounded sequence of random variables
which verifies the mixing rate (1.2). To prove the asymptotic normality of n−1/2∑n

l=1Tn,l, we
use the following lemma, obtained by Harel and Puri [4, Lemma 2.3].

Lemma 5.3. Let (Yn,l)1≤l≤n be a nonstationary absolutely regular unbounded sequence of random
variables, which verifies the mixing rate (1.2). Suppose that for any positive K, there exists a sequence
(YK

n,l
)1≤l≤n of random variables satisfying (1.2) such that

sup
n∈N∗

max
1≤l≤n

∣

∣YK
n,l

∣

∣ ≤ BK < ∞, K > 0, (5.10)

where BK is a positive constant;

sup
n∈N∗

max
1≤l≤n

E
∣

∣Yn,l − YK
n,l

∣

∣

2+δ −→ 0 as K −→ ∞, (5.11)

1
n
E

(

n
∑

l=1

Yn,l

)2

−→ c2 asn −→ ∞, (5.12)

where c2 is a positive constant;

1
n
E

(

n
∑

l=1

(

YK
n, l − E

(

YK
n, l

))

)2

−→ c2K as n −→ ∞, (5.13)

where c2K is a positive constant;

c2K −→ c2 as K −→ ∞. (5.14)

Then n−1/2∑n
l=1Yn,l converges in law to a normal distribution with mean zero and variance c2.

First, we prove (5.10) and (5.11) for the sequence (Tn,l)1≤l≤n.
Put

TK
n,l = Kn

(

ξ −Xl

) − E
(

Kn

(

ξ −Xl

))

+DFn(ξ)
(

̂ζKl, ·,1
)

, (5.15)
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where

̂ζKl, ·,1 =
(

mj
̂ζKl,j,1
)

1≤j≤d,

̂ζKl,j,1 =
∫

Hl

φK
j,Hl

d
(

δXl

) −
∫

Hl

φj,Hl
dFl ; 1 ≤ l ≤ n,

φK
j,Hl

=

⎧

⎨

⎩

φj,Hl
if |φj,Hl

| ≤ K,

0 if |φj,Hl
| > K.

(5.16)

From condition (v), we have

sup
n∈N∗

max
1≤l≤n

∣

∣TK
n,l

∣

∣ = 1 + ‖m‖ sup
n∈N∗

max
1≤l≤n

DFn(ξ)(K + |ξ|) < ∞, (5.17)

where ‖m‖ = max1≤j≤d|mj |, and (5.10) is proved.
Now, by using the inequality

∣

∣

∣

∣

∣

d
∑

l=1

al

∣

∣

∣

∣

∣

h

≤ 2h(d−1)
d
∑

l=1

∣

∣al

∣

∣

h ; h ≥ 1, d ≥ 2, (5.18)

let ε > 0 such that (2 + δ)(1 + ε) = 2 + 2δ, we obtain

sup
n∈N∗

max
1≤l≤n

E
∣

∣Tn, l − TK
n, l

∣

∣

2+δ

= sup
n∈N∗

max
1≤l≤n

E
∣

∣DFn(ξ)
(

̂ζl, ·,1
) −DFn(ξ)

(

̂ζK
l, ·,1
)∣

∣

2+δ

= sup
n∈N∗

max
1≤l≤n

E

∣

∣

∣

∣

DFn(ξ)
((∫

Hl

φK
j,Hl

d
(

δXl
− Fl

)

)

1≤j≤d

)∣

∣

∣

∣

2+δ

≤ d2(d−1)(2+δ)‖m‖2+δ sup
n∈N∗

max
1≤l≤n

[

DFn(ξ)
(((∫

|φj,Hl
|>K

|φj,Hl
|2+δdFl

)1/(2+δ))

1≤j≤d

)]2+δ

≤ d2(d−1)(2+δ)‖m‖2+δ sup
n∈N∗

max
1≤l≤n

1
K(2+δ)ε

[

DFn(ξ)
(((∫

Hl

|φj,Hl
|2+2δdFl

)1/(2+δ))

1≤j≤d

)]2+δ

= d2(d−1)(2+δ)
1

K(2+δ)ε
‖m‖2+δ sup

n∈N∗
max
1≤l≤n

[

DFn(ξ)
(((∫

Hl

|φj,Hl
|2+2δdFl

)1/(2+δ))

1≤j≤d

)]2+δ

.

(5.19)

From (3.2), we have

sup
n∈N∗

max
1≤l≤n

E |Tn,l − TK
n,l|

2+δ ≤ 2(d−1)(2+δ)
1

K(2+δ)ε
M1, (5.20)
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whereM1 is constant positive, which implies

sup
n∈N∗

max
1≤l≤n

E
∣

∣Tn,l − TK
n,l

∣

∣

2+δ −→ 0 asK −→ ∞, (5.21)

and (5.11) is proved.
We now show (5.12).
We first denote that

1
n
E

(

n
∑

l=1

Tn, l

)2

=
1
n

n
∑

l=1

n
∑

k=1

E
(

Tn, lTn, k
)

=
1
n

n
∑

l=1

E
(

T2
n, l

)

+
2
n

n
∑

l=1

n−1
∑

k=1

E
(

Tn, lTn, k
)

=
1
n

n
∑

l=1

ϕ(l, l) +
1
n

n
∑

l=1

n−1
∑

k=1

ϕ(l, k),

(5.22)

where

ϕ(l, l) =
∫

Hl

{

Kn(ξ − x) − E
(

Kn

(

ξ −Xl

))

+DFn(ξ)
(

̂ζl, ·,1
)}2

dFl(x),

ϕ(l, k) = 2
∫

Hl⊕Hk

{

Kn(ξ − x) − E
(

Kn

(

ξ −Xl

))

+DFn(ξ)
(

̂ζl, ·,1
)}

× {Kn(ξ − y) − E
(

Kn

(

ξ −Xk

))

+DFn(ξ)
(

̂ζk, ·,1
)}

dFHl⊕Hk
(x, y), k > l.

(5.23)

It results that
∣

∣

∣

∣

∣

1
n
E

(

n
∑

l=1

Tl, n

)2

− σ2

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

1
n

n
∑

l=1

ϕ(l, l) +
1
n

n
∑

l=1

n−1
∑

k=1

ϕ(l, k) − ρ(1) −
∞
∑

l=1

ρ(l)
∣

∣

∣

∣

≤ 1
n

n
∑

l=1

|ϕ(l, l) − ρ(1)| + 1
n

∣

∣

∣

∣

n
∑

l=1

n−1
∑

k=1

ϕ(l, k) −
n
∑

l=1

(n − l)ρ(l)
∣

∣

∣

∣

+
∞
∑

l=n+1

|ρ(l)| + 1
n

n
∑

l=1

l|ρ(l)|

= L1, n +
∣

∣L2,n
∣

∣ + L3,n + L4,n,

(5.24)

where

ρ(1) = E
(

A2
1

)

=
∫

H

{

s(ξ − x) − F(ξ) +DF(ξ)
(

ξ∗1, ·,1
)}2

dF(x),

ρ(l) = 2E(A1A1+l) = 2
∫

H1⊕H1+l

{

s
(

ξ −X∗
1

) − F(ξ) +DF(ξ)
(

ξ∗1, ·,1
)}

× {s(ξ −X∗
1+l

) − F(ξ) +DF(ξ)
(

ξ∗1+l, ·,1
)}

dQσH1⊕H1+l
.

(5.25)
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Thus to prove (5.12), we have to show that

L1,n +
∣

∣L2,n
∣

∣ + L3,n + L4,n −→ 0 asn −→ ∞. (5.26)

From (2.14) and the convergence of Kn to the function s, L1,n → 0 as n → ∞, and by using [4,
Lemma 3.1] of Harel and Puri, |L2,n| → 0 as n → ∞.

From the well-known inequality on moments of absolute regular processes, we have, for
δ′ < δ/2,

|ρ(l)| ≤ 24{β(l)}δ′/(1+δ′)∥
∥Al

∥

∥

2
p = 24{β(l)}δ′/(1+δ′)

{

E
(

Al

)2+2δ′}1/(1+δ′)
, (5.27)

where

E
(

Al

)2+2δ′
= E
(

s
(

ξ −X∗
l

) − F(ξ) +DF(ξ)
(

ξ∗l, ·,1
))2+2δ′

≤ 22+2δ
′{
1 + E

∣

∣DF(ξ)
(

ξ∗l, ·,1
)∣

∣

2+2δ′}

≤ 22+2δ
′
{

1 + E

∣

∣

∣

∣

DF(ξ)
((∫

Hl

φ∗
j,Hl

d
(

δX∗
l
− F
)

)

1≤j≤d

)∣

∣

∣

∣

2+2δ′}

≤ 22+2δ
′
{

1 + ‖m‖2+2δ′
E

∣

∣

∣

∣

DF(ξ)
((∫

Hl

∣

∣φ∗
j,Hl

∣

∣

2+2δ′
dF

)1/(2+2δ′))

1≤j≤d

)∣

∣

∣

∣

2+2δ′}

.

(5.28)

From (3.3), we have

E
(

Al

)2+2δ′ ≤ M1+δ′
2 , say, (5.29)

whereM2 is a finite positive constant which implies

|ρ(l)| ≤ 24{β(l)}δ′/(1+δ′)M2, (5.30)

so that

L3, n ≤ 24M2

n

n
∑

l=1

O(l−(2+δ′)/(1+δ′)) < ∞, (5.31)

then

L3,n −→ 0 as n −→ ∞. (5.32)

We have

L4, n ≤ 24M2

n

n
∑

l=1

O(l−1/(1+δ′)) −→ 0 as n −→ ∞. (5.33)

We deduce that

L4, n −→ 0 as n −→ ∞. (5.34)

Consequently, (5.12) is verified. Analogously, we show (5.13).
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We put

σ2
K = E

(

AK
1

)2
+ 2

∞
∑

l=1

E
(

AK
1 AK

l+1

)

, (5.35)

where

AK
l = s

(

ξ −X∗
l

) − F(ξ) +DF(ξ)
(

ςK·,1
)

,

ςK·,1 =
(

mjς
K
l,j,1

)

1≤j≤d,

ςKl,j,1 =
∫

Hl

φ∗,K
j dδX∗

l
−
∫

Hl

φ∗
j dF,

φ∗,K
j =

⎧

⎨

⎩

φ∗
j if

∣

∣φ∗
j

∣

∣ ≤ K,

0 if
∣

∣φ∗
j

∣

∣ > K,

(5.36)

and φ∗
j is defined by (2.16) for the component φj of Φ.
By using the Lebesgue dominated convergence theorem, we obtain

E
(

AK
1

)2 −→ E
(

A1
)2
, E

(

AK
1 AK

l+1

) −→ E
(

A1Al+1
)

as K −→ ∞, (5.37)

which implies that

lim
K→∞

σ2
K = σ2, (5.38)

which proves (5.14). Thus, assumptions (5.10) and (5.14) are satisfied, and n−1/2∑n
l=1Tn,l

converges in law to the normal distribution N(0, σ2). Consequently, Hn,1(ξ) converges in law
to the normal distribution N(0, σ2). Therefore, Lemma 5.2 is proved.

Lemma 5.4. Under the conditions of Theorem 3.1, Hn,2(ξ) converges to zero in probability.

Proof. We write

Hn,2(ξ) = An + Bn, (5.39)

where

Bn = n1/2
∫

H

{

Fn

(

̂ξn − t
) − Fn(ξ − t) −DFn(ξ)

(

̂ξn − ξ
)}

dKn(t),

An =
∫

H

{

Vn

(

̂ξn − t
) − Vn(ξ − t)

}

dKn(t),
(5.40)

with

Vn(x) = n1/2{Fn(x) − Fn(x)
}

. (5.41)

Of course Vn is a multidimensional empirical process.
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From [11, Theorem 3] by Yoshihara, we have

̂ξn − ξ = Op

(

bn
)

, (5.42)

where

bn = {n−1 log(log(n))}1/2. (5.43)

Then, we deduce that

∣

∣An

∣

∣ ≤ sup
‖̂ξn−ξ‖≤Cbn

∣

∣Vn

(

̂ξn − t
) − Vn(ξ − t)

∣

∣, (5.44)

where C is a positive constant.
To prove that

An
P−−→ 0 as n −→ ∞, (5.45)

it suffices to show that

sup
‖̂ξn−ξ‖≤Cbn

∣

∣Vn

(

̂ξn − t
) − Vn(ξ − t)

∣

∣

P−−→ 0 as n −→ ∞. (5.46)

Since Fn is differentiable, there exists θ in ]0, 1[ such that

Fn(y) − Fn(x) = DFn(x + θ(y − x)) · (y − x). (5.47)

The differential DFn being bounded, there exists a positive constantM3 such that

∣

∣Fn(y) − Fn(x)
∣

∣ ≤ M3‖y − x‖, (5.48)

which implies that

sup
‖y−x‖≤Cbn

∣

∣Vn(y) − Vn(x)
∣

∣ ≤ sup
‖Fn(y)−Fn(x)‖≤CM3bn

∣

∣Vn(y) − Vn(x)
∣

∣. (5.49)

We have

Vn(x) = n−1/2
n
∑

l=1

{

I[Fl(Xl)≤u] −Gn(u)
}

= Wn(u),

(5.50)

where Gn is the copula of Fn and I[·] denotes the indicator function.
We have

∣

∣An

∣

∣ ≤ sup
‖u−v‖≤CM3bn

∣

∣Wn(u) −Wn(v)
∣

∣ = ω
(

Wn, ηn
)

, (5.51)
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with

ηn = CM3bn −→ 0 as n −→ ∞, (5.52)

where ω is the module of continuity for any bounded function f : [0, 1]d → R
+ defined by

ω(f, η) = sup
{|f(u) − f(v)|; u, v ∈ [0, 1]d, ‖u − v‖ ≤ η

}

, η > 0. (5.53)

We generalize [2, Relation (3.11)] by Sun from the univariate case to the multivariate case by
using similar methods as in [14, Lemmas (6.3) and (6.5)] by Harel and Puri. Therefore, we get

lim
n→∞

supP
{

ω
(

Wn, ηn
) ≥ ε

} ≤ ε; ∀ε > 0. (5.54)

It results from the inequalities (5.51) and (5.54) that An converges to zero in probability as
n → ∞.

For the second term of Hn,2 and using the Lagrange form of Taylor theorem, applied to
Fn on the points ̂ξn − t and ξ − t until the second order, there exists θ′ such that

Fn

(

̂ξn − t
) − Fn(ξ − t) = DFn(ξ − t)

(

̂ξn − ξ
)

+
1
2
D2Fn

(

zθ′
)(

̂ξn − ξ, ̂ξn − ξ
)

, (5.55)

with zθ′ = ξ − t + θ′(̂ξn − ξ), 0 < θ′ < 1.
In the same way, there exists θ′′ such that

DFn(ξ − t)
(

̂ξn − ξ
) −DFn(ξ)

(

̂ξn − ξ
)

= D2Fn

(

zθ′′
)(

̂ξn − ξ,−t), (5.56)

with zθ′′ = ξ − θ′′t, 0 < θ′′ < 1,

∣

∣Bn

∣

∣ =
∣

∣

∣

∣

n1/2
∫

H

{

D2Fn

(

zθ′′
)(

̂ξn − ξ,−t) + 1
2
D2Fn

(

zθ′
)(

̂ξn − ξ, ̂ξn − ξ
)}

dKn(t)
∣

∣

∣

∣

≤
∣

∣

∣

∣

n1/2D2Fn

(

zθ′′
)(

̂ξn − ξ, 1
)

∣

∣

∣

∣

∫

H

‖t‖dKn(t) +
∣

∣

∣

∣

n1/2

2
D2Fn

(

zθ′
)(

̂ξn − ξ, ̂ξn − ξ
)

∣

∣

∣

∣

∫

H

dKn(t).

(5.57)

From Harel and Puri [5], we deduce that n1/2{̂ξn − ξ} converges to a multinormal distribution
as n → ∞.

From Condition (iv), we have
∫

H

‖t‖dKn(t) =
∫

H

‖t‖a−d
n k(t)dt = a−d

n

∫

H

‖t‖k(t)dt −→ 0 asn −→ ∞, (5.58)

which implies

Bn
P−−→ 0 asn −→ ∞. (5.59)

Consequently, we deduce thatHn,2 converges to zero in probability, and Lemma 5.4 is proved.
Therefore, the proof of Theorem 3.1 follows from Lemmas 5.2 and 5.4.
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