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Let Xt = {X(t), t ≥ 0} be a one-dimensional symmetric Cauchy process. We prove that, for any
measure function, ϕ, ϕ − p(X[0, τ]) is zero or infinite, where ϕ − p(E) is the ϕ-packing measure of
E, thus solving a problem posed by Rezakhanlou and Taylor in 1988.
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1. Introduction

Let Xt = {X(t), t ≥ 0} be a strictly stable Levy process taking values in Rn (n-dimensional
Euclidean space) of index α ∈ (0, 2], that is, a Markov process with stationary independent
increment whose characteristic function is given by

E
[
ei(u,Xt)

]
= e−tψα(u). (1.1)

Here, u and Xt are points in Rn, (u, x) is the ordinary inner product in Rn, and ‖x‖2 =
(x, x). The Levy exponent ψα(u) is of the form

ψα(u) = |u|α
∫

Sn

wα(u, y)μ(dy), (1.2)

where

wα(u, y) =
[
1 − i sgn(u, y) tan

(
πα

2

)](∣∣∣∣
u

‖u‖ , y
∣∣∣∣

)α

if α/= 1,

w1(u, y) =
∣∣∣∣

(
u

‖u‖ , y
)∣∣∣∣ +

2i
π
(u, y) log

∣∣(u, y)
∣∣.

(1.3)
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μ(dy) is an arbitrary finite measure on the unit sphere Sn in Rn, not supported on a
diametrical plane. If in (1.2) μ is the uniform distribution on Sn, Xt is called the isotropic
stable Levy process with index α. In this case, ψα(u) = λ|u|α for some λ > 0. When α = 1, μ
must also have the origin as its center of mass, that is,

∫

Sn

yμ(dy) = 0, (1.4)

and the resulting process is the symmetric Cauchy process.
If
∫
Sn
yμ(dy)/=0 for α = 1,we have the strictly asymmetric Cauchy process. When α = 2,

we obtain the standard Brownian motion.
We assume that our process has been defined so that the strong Markov property is

valid and all sample paths are right continuous and have left limits everywhere.
It is well known that the sample paths Xt of strictly stable Levy processes determine

trajectories in Rn that are random fractal sets.
We are interested in the range of the processes, that is, the random set Rτ generated by

Xt and defined by

Rτ = X
(
[0, τ]

)
=
{
x ∈ Rn : x = X(t) for some t ∈ [0, τ]

}
. (1.5)

The Hausdorff and packing measures serve as useful tools for analyzing fine
properties of Levy processes.

The problem of determining the exact Hausdorff measure of the range of those
processes for α ∈ (0, 2] has been completely solved. See, for example, [1].

The study of the exact packing measure of the range of a stochastic process has a more
recent history, starting with the work of Taylor and Tricot [2].

The packing measure of the trajectory was found in [2] by Taylor and Tricot for
transient Brownian motion. The corresponding problem for the range of strictly stable
processes,α < n, was solved by Taylor [3].

Further results on the asymmetric Cauchy process and subordinators have been
established by Rezakhanlou and Taylor [4] and Fristedt and Taylor [5], respectively.

For the critical cases, α = n, the only known result is due to Le Gall and Taylor [6].
They proved that if X(t) is a planar Brownian motion, α = n = 2, ϕ− p[X([0, t])] is either zero
or infinite for any measure function ϕ. Hence, the packing measure problem of the symmetric
Cauchy process on the line remained open.

The main objective of this paper is to show that for α = n = 1, a similar result to that of
planner Brownian motion holds for the packing measure of the range of a one-dimensional
symmetric Cauchy process with different criteria on ϕ.

2. Preliminaries

In this section, we start by recalling the definition and properties of packing measure and
packing dimension introduced by Taylor and Tricot [2].

Let Φ be the class of functions:

ϕ : (0, δ) −→ (0,∞) (2.1)

which are right continuous and monotone increasing with ϕ(0+) = 0 and for which there is a
finite constant k > 0 with

ϕ(2s)
ϕ(s)

≤ k for 0 < s <
δ

2
. (2.2)
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The inequality (2.2) is a weak smoothness condition usually called a doubling
property. A function ϕ in Φ is often called a measure function:

ϕ − P(E) = lim sup
ε→0

{∑

i

ϕ
(
2ri

)
: B

(
xi, ri

)
are disjoint, xi ∈ E, ri < ε

}
, (2.3)

where B(xi, ri) denotes the closure of the open ball B(xi, ri) which is centered at x and has
radius r.

A sequence of closed balls satisfying the condition on the right side of (2.3) is called a
ε-packing of E.

ϕ − P is a ϕ-packing premeasure. The ϕ-packing measure on Rn, denoted by ϕ − p, is
obtained by defining

ϕ − p(E) = inf
{∑

n

ϕ − P(E) : E ⊆
⋃

n

En

}
. (2.4)

It is proved in [2] that ϕ − p(E) is a metric outer measure, and hence every Borel set in Rn is
ϕ − pmeasurable.

We can see that for any E ⊂ Rn,

ϕ − p(E) ≤ ϕ − P(E). (2.5)

This gives a way to determine the upper bound of ϕ − p(E). Using the function ϕ(s) = sα,
α > 0 gives the fractal index

dimp(E) = inf
{
α > 0 : sα − p(E) = 0

}
= sup

{
α > 0 : sα − p(E) = ∞}

, (2.6)

called the packing dimension of E.
In order to calculate the packing measure, we will use the following density theorem

of Taylor and Tricot [2], which we will call Lemma 2.1.

Lemma 2.1. For a given ϕ ∈ Φ, there exists a finite constant k > 0 such that for any Borel measure μ
on Rn with 0 < ‖μ‖ = μ(Rn) <∞ and any Borel set E ⊆ Rn,

k−1μ(E)inf
x∈E

{
D
ϕ
−μ(x)

}−1 ≤ ϕ − p(E) ≤ k‖μ‖sup
x∈E

{
D
ϕ
−μ(x)

}−1
, (2.7)

where

D
ϕ
−μ(x) = lim inf

r↓0
μ
(
B(x, r)

)

ϕ(2r)
(2.8)

is the lower ϕ-density of μ at x.

One then uses the sample path Xt to define the random measure

μ(E) =
∣∣{t ∈ [0, τ] : X(t) ∈ E}∣∣ (2.9)

known as the occupation measure of the trajectory; |·| denotes the Lebesgue measure.
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This gives a Borel measure with μ(R) = ‖u‖ = τ , and it is concentrated on X[0, τ] and
spreads evenly on it.

If

x = X
(
t0
)
, 0 < t0 < τ, (2.10)

then

μ
(
B(x, r)

)
=
∫ τ

0
IB(x,r)

(
X(t)

)
dt = T(x, r) (2.11)

is the sojourn time of Xt in the ball B(x, r) up to the time τ . Define τ = inf{t > 0 : |x(t)| > 1};
then by a result in [7] about τ one has E0τ = 1, where E0 is the associated expectation for the
process started at 0. Denote

∫∞
0 by

∫
0+. If x = 0, one denotes T(x, r) by T(r).

In [8], we exhibited a measure function ϕ satisfying the following criteria.

Theorem 2.2. Suppose ϕ = rh(r), where h(r) is a monotone nondecreasing function and

T(r) =
∫ τ

0
IB(0,r)

(
X(t)

)
dt; (2.12)

then

lim inf
r↓0

T(r)
ϕ(r)

=

⎧
⎪⎨

⎪⎩

0 if
∫

0+

h(s)
s ln(1/s)

= ∞,

∞ otherwise,
(2.13)

where Xt is a one-dimensional symmetric Cauchy process.

For any t0 ≥ 0, X(t + t0) − X(t0) is also a symmetric Cauchy process on the line since
the finite-dimensional distribution of X(t + t0) − X(t0) is independent of t0; see, for example,
[1] for the strong Markov property of Cauchy processes.

The following corollary is then immediate.

Corollary 2.3. Let Xt, t ≥ 0, be a one-dimensional symmetric Cauchy process. Then, for any t0 ≥ 0
with probability one,

lim inf
r↓0

T
(
X
(
t0
)
, r
)

ϕ(r)
=

⎧
⎪⎨

⎪⎩

0 if
∫

0+

h(s)
s ln(1/s)

= ∞,

∞ otherwise,
(2.14)

where ϕ is as defined in Theorem 2.2.

One will also need an estimate for the small ball probability of the sojourn time T(r),
taken from [8, Theorem 3.1].

Lemma 2.4. Suppose ϕ(r) = rh(r), where h(r) is a monotone increasing function. For T defined in
(2.12), then for any fixed constant c1 and ak = ρ−k, ρ > 1,

P
{
T
(
ak+1

)
< c1ϕ

(
ak

)} ≤ c2
h
(
ak

)

k
. (2.15)

In the next section, we will use the above results and some known techniques to
calculate the packing measure of the trajectory of the one-dimensional symmetric Cauchy
process.
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3. The measure of the trajectory

In this section, we proceed to the main result.

Theorem 3.1. Let X(t) = {X(t): t ≥ 0} be a one-dimensional symmetric Cauchy process. If ϕ(r) =
rh(r), where h is a nondecreasing function, then with probability one,

ϕ − p(X(
[0, τ]

))
=

⎧
⎪⎨

⎪⎩

0 if
∫

0+

h(s)
s ln(1/s)

<∞,

∞ otherwise,
(3.1)

where ϕ − p(X([0, τ])) is the ϕ-packing measure of X([0, τ]).

Proof. In order to apply the density Lemma 2.1, we have to calculate

lim inf
r↓0

μ
(
B(x, r)

)

ϕ(2r)
. (3.2)

But by Corollary 2.3, for each fixed t0 ∈ (0, τ) with probability one,

lim inf
r↓0

μ
(
B
(
X
(
t0
)
, r
))

ϕ(r)
= lim inf

r↓0
T
(
X
(
t0
)
, r
)

ϕ(r)
= 0 if

∫

0+

h(s)
s ln(1/s)

= ∞. (3.3)

Then a Fubini argument gives

∣∣∣∣

{
t ∈ (0, τ) : lim inf

r↓0
μ
(
B
(
X(t), r

))

ϕ(r)
= 0 a.s.

}∣∣∣∣ = τ <∞ (3.4)

so that if E = {X(t0): t0 ∈ (0, τ)}, then E ⊆ X([0, τ]) and μ(E) = τ < ∞ a.s. Using an
application of the inequality of the density Lemma 2.1, we have

ϕ − p(E) = ∞, (3.5)

and thus ϕ − pX([0, t]) = ∞with probability one if
∫
0+(h(s)/s ln(1/s)) = ∞.

In order to prove the upper bound, we use density Lemma 2.1 in the other direction,
as well as a “bad-point” argument similar to that in [3].

For each point x ∈ R, let Vk(x) denote a semidyadic interval with length 2−k whose
complement is at distance 2−k−2 from a dyadic interval of length 2−k−2 which contains x.

Let

ΓE =
{
Vk(x) : k = 1, 2, . . . , x ∈ E}. (3.6)

We use the intervals in ΓE to replace the balls B(x, r) in (2.3) with length 2−k replacing 2r =
diamB(x, r).
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This gives a new premeasure ϕ − Pxx(E) comparable to ϕ − P as follows. There exist
positive finite constants k1, k2 such that, for all Borel sets E ⊂ R,

k1ϕ − Pxx(E) ≤ ϕ − P(E) ≤ k2ϕ − Pxx(E), (3.7)

where

ϕ − pxx(E) = inf
{∑

i

ϕ − Pxx(Ei
)
: E ⊂ ∪Ei

}
. (3.8)

For

∫∞

0+

h(s)
s ln(1/s)

<∞, (3.9)

let

G =
{
t0 ∈ (0, τ) : lim inf

μ
(
B
(
X
(
t0
)
, r
))

ϕ(2r)
= ∞

}
(3.10)

be the set of “good” points. A Fubini argument tells us that |G| = τ < ∞ a.s.; then using the
density lemma in the other direction, we have

ϕ − P(X(G)
)
= 0. (3.11)

Let

[0, τ] \G =
∞⋃

i=1

Gj, (3.12)

where

Gj =
{
t ∈ (0, τ) : lim inf

μ
(
B
(
X(t), r

))

ϕ(2r)
≤ j

}
(3.13)

is the set of “bad” points.
For t ∈ Gj , by monotonicity, we have for a positive constant c,

μ
(
B
(
X(t), 2−k

)) ≤ cjϕ(2−k), (3.14)

for infinitely many k.
For fixed j, we can only get a contribution to ϕ−Pxx(X(Gj)) from semidyadic intervals

of length 2−k if the dyadic interval of length 2−k−2 is entered by X(t) at time t ≤ τ and the
restarted process leaves the interval of length 2−k−2 in less than jϕ(2−k).

Thus, if Sk is a semidyadic interval of length 2−k, then Sk is bad if X(s) enters inside
dyadic interval of length 2−k−2 but spends less than jϕ(2−k) in Sk; otherwise it is “good”. Any
t ∈ Gj will be in infinitely many such bad Sk.



A. C. Okoroafor 7

The probability that Sk is bad given that it is entered is at most

P
{
T
(
2−k

) ≤ cjϕ(2−k)} ≤ ch
(
2−k

)

k
, (3.15)

by Lemma 2.4.
LetNk(τ) be the number of intervals of length 2−k that are entered by the time τ , and

let Bk(τ) denote the number of those that are bad; then

EBk(τ) ≤ ENk(τ)
h
(
2−k

)

k
. (3.16)

Leaving out the nonoverlapping requirement, we have, for a positive constant c3, Eϕ −
pxx(X(Gj)) ≤ c3

∑∞
k=k0EBk(τ)ϕ(2

−k). Now, by [1, Lemma 4.1], ENk(s) ≤ c22m, for a positive
constant c2.

Thus, using (3.16), we have

Eϕ − pxx(X(
Gj

)) ≤ c3
∞∑

k=k0

(
h
(
2−k

))2

k
−→ 0 a.s. as k0 −→ ∞ (3.17)

since
∑
((h(2−k))2/k) <∞ if

∑
(h(2−k)/k) <∞ for h(2−k) sufficiently small.

It follows that ϕ − pxxX(Gj) = 0 a.s., and from (3.8), ϕ − pxxX(Gj) = 0 a.s. So ϕ −
pxxX(

⋃∞
j=1Gj) ≤

∑
ϕ − pxxX(Gj) = 0.

By (3.12),G∪⋃∞
j=1Gj =[0, τ], and therefore ϕ−pX[0, τ] = 0 if

∫
0+(h(s)/s ln(1/s))ds <∞.

This completes the proof.
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