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1. Introduction

In recent years, participating life insurance products become more and more popular in
major insurance and finance markets around the world. These products can be regarded
as investment plans with associated life insurance benefits, a specified benchmark return,
a guarantee of an annual minimum rate of return, and a specified rule of the distribution
of annual excess investment return above the guaranteed return. To enter the contract,
policyholders pay annual premiums to an insurer, who will then manage and invest the funds
in a specified reference portfolio. One key feature of these investment plans is the sharing of
profits from an investment portfolio between the policyholders and the insurer. The specified
rule of surplus distribution commonly used by insurers is known as reversionary bonus,
which is employed to credit interest at or above a specified amount of guaranteed rate to the
policyholders every year. The policyholders can receive an additional bonus at the maturity of
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the contract, namely, the terminal bonus, if the terminal surplus of the fund is positive at the
maturity. If the insurer defaults at the maturity of the policy, the policyholders can only receive
the outstanding assets. For more comprehensive discussion on various features of participating
policies, refer to Grosen and Jørgensen [1]. Due to the internationally growing trend of
adopting the market-based and fair valuation accountancy standards for the implementation
of risk management practice for participating policies, it is practically important to develop
appropriate, realistic, and objective models for valuing these policies.

Earlier works on exploring the use of the modern option pricing theory to value
embedded options in with-profits life insurance policies go back to Brennan and Schwartz
[2, 3] and Boyle and Schwartz [4]. Since then, there has been considerable interest on utilizing
option pricing theory and its modern technologies to determine fair values of these policies.
Grosen and Jørgensen [1] develop a flexible contingent claims model to incorporate the
minimum rate guarantee, bonus distribution, and surrender risk. Prieul et al. [5] adopt a
partial differential equation approach to value a participating policy and employ the method
of similarity transformations of variables to reduce the dimension of the partial differential
equation governing the value of the policy. Bacinello [6, 7] adopt binomial schemes for
computing the numerical solutions to the fair valuation problems of participating policies
with various contractual features. Bacinello [7] introduces a model for describing the feature
of annual premiums. Grosen and Jørgensen [8] use a barrier option framework to study and
document the effect of regulatory intervention rules on reducing the insolvency risk of the
policies. Chu and Kwok [9] develop a flexible contingent claims model that describes rate
guarantee, bonuses, and default risk. Siu [10] considers the pricing of a participating policy
with surrender options when the market values of the reference portfolio are governed by a
Markov-modulated geometric Brownian motion.

In this paper, we propose a model for valuing participating life insurance products under
a generalized jump-diffusion model with a Markov-switching compensator. We suppose that
the jump component is specified by the class of Markov-modulated kernel-biased completely
random measures. The class of kernel-biased completely random measures is a wide class of
jump-type processes. It has a very nice representation, which is a generalized kernel-based
mixture of Poisson random measures (or, in general, random measures). The main idea of the
kernel-biased completely random measure is to provide various forms of distortion of jump
sizes of a completely random measure using the kernel function. This provides a great deal
of flexibility in modeling different types of finite and infinite jump activities compared with
some existing models in the literature. We also provide additional flexibility to incorporate
the impact of structural changes in macroeconomic conditions and business cycles on the
valuation of participating policies by introducing an observable, continuous-time and finite-
state Markov chain. Here the states of the Markov chain may be interpreted as proxies of some
observable macroeconomic indicators, such as gross domestic product and retail price index.
They might also be considered economic ratings of a region or sovereign ratings. The model
we considered here is general enough to nest a number of important and popular models
for asset price dynamics in finance, including the two important classes of models, namely,
the jump-diffusion models and the Markovian regime-switching models. These models are
justified empirically in the literature and are shown to be practically useful for pricing and
hedging derivatives. Our model can also be related to other important and popular classes of
financial models, namely, the VG model pioneered by Madan et al. [11] and the CGMY model
pioneered by Carr et al. [12].
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For valuing participating products under the generalized jump-diffusion model, we
employ a well-known tool in actuarial science, namely, the Esscher transform, which provides
a convenient and flexible way to determine an equivalent martingale measure under the
incomplete market setting. We consider various special cases of the Markov-modulated kernel-
biased completely random measure for the jump component, namely, the Markov-modulated
generalized Gamma (MGG) process, the scale-distorted version of the MGG process, and the
power-distorted version of the MGG process. The MGG process encompasses the Markov-
modulated weighted Gamma (MWG) process and the Markov-modulated inverse Gaussian
(MIG) process as special cases. We compare the fair values of the options embedded in the
participating products implied by our generalized jump-diffusion models with those obtained
from other existing models in the literature via simulation experiments and highlight some
features of the qualitative behavior of the fair values that can be obtained from different
parametric specifications of our model. The paper is outlined as follows.

Section 2 presents the generalized jump-diffusion model for the market value of the
reference asset and the Esscher transform for valuation. We also provide some discussion for
the hedging and risk management issues. In Section 3, we consider three important parametric
cases of the Markov-modulated kernel-biased completely random measures, namely, the
MGG, the scale-distorted and power-distorted versions of the MGG process. The simulation
procedure and the simulation results of the fair values of the options embedded in the policy
are presented and discussed in Section 4. The final section summarizes this paper. The proofs
of the lemmas and propositions are presented in the appendix.

2. The valuation model

In this section, we consider a financial model consisting of a risk-free money market account
and a reference risky asset or portfolio. We suppose that the market value of the reference
asset is governed by a jump-diffusion model with the jump component being specified as a
kernel-biased completely random measure with Markov-switching compensator. We assume
that the market is frictionless and that the mortality risk and surrender option are absent.
We further impose certain assumptions on the rule of bonus distribution in our valuation
model. We aim at developing a fair valuation model for participating life insurance policies
which can incorporate the impact of the switching behavior of the states of the economy on
the market value of the reference asset and fair value of the policy. The market described by
the model is incomplete in general (see [13–16]). Hence, there are infinitely many equivalent
martingale measures and there is a range of no-arbitrage prices for a policy. Here, we determine
an equivalent martingale measure by the Esscher transform. In the sequel, we introduce the set
up of our model.

2.1. The price dynamics

In this subsection, we describe the price dynamics of the reference portfolio underlying the
participating policy. Firstly, we fix a complete probability space (Ω,F,P), where P is the real-
world probability measure. Let T denote the time index set [0, T] of the economy. We describe
the states of the economy by a continuous-time Markov chain {Xt}t∈T on (Ω,F,P) with a finite
state space S := (s1, s2, . . . , sN). Without loss of generality, we can identify the state space of the
process {Xt}t∈T to be a finite set of unit vectors {e1, e2, . . . , eN}, where ei = (0, . . . , 1, . . . , 0) ∈ RN .
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WriteQ for the generator orQ-matrix [qij]i, j=1,2,...,N . Then, from Elliott et al. [17], we have
the following semimartingale decomposition for the process {Xt}t∈T:

Xt = X0 +
∫ t

0
QXsds +Mt . (2.1)

Here {Mt}t∈T is an RN-valued martingale with respect to the filtration generated by {Xt}t∈T.
Let {r(t, Xt)}t∈T be the instantaneous market interest rate of a bank account or a money

market account, which depends on the state of the economy. That is,

r
(
t, Xt

)
=
〈
r, Xt

〉
=

N∑
i=1

ri
〈
Xt, ei

〉
, t ∈ T, (2.2)

where r := (r1, r2, . . . , rN) with ri > 0 for each i = 1, 2, . . . ,N and 〈·, ·〉 denotes the inner product
in the space RN .

For notational simplicity, we write rt for r(t, Xt). In this case, the dynamics of the price
process {Bt}t∈T for the bank account is described by

dBt = r
(
t, Xt

)
Btdt,

B0 = 1.
(2.3)

In the sequel, we first describe a Markov-switching kernel-biased completely random measure.
James [18, 19] propose a kernel-biased representation of completely random measures,
which provides a great deal of flexibility in modeling different types of finite and infinite
jump activities by choosing different kernel functions. Here we employ the kernel-biased
representation of completely random measures proposed by James [18, 19] and adapt this
representation to the Markov-modulated case in which the compensator of the underlying
random measure switches over time according to the state of {Xt}t∈T.

Let (T,B(T)) denote a measurable space, where B(T) is the Borel σ-field generated by
the open subsets of T. Write B0 for the family of Borel sets U ∈ R+, whose closure U does not
contain the point 0. Let X denote T × R+. The measurable space (X,B(X)) is then given by
(T × R+,B(T) ⊗ B0).

For each U ∈ B0, let NXt
(·, U) denote a Markov-switching Poisson random measure on

the space X. Write NXt
(dt, dz) for the differential form of the measure NXt

(t,U). Let ρXt
(dz|t)

denote a Markov-switching Lévy measure on the spaceX depending on t and the state Xt; η is
a σ-finite (nonatomic) measure on T. Note that if Xt = ei (i = 1, 2, . . . ,N), write ρi := ρei(dz|t).
To ensure the existence of the kernel-biased completely random measure to be defined in the
sequel (see [18–20]), we assume that for an arbitrary strictly positive function on R+, h, ρi,
and η are selected in such a way that for each bounded set B in T,

N∑
i=1

∫
B

∫
R+

min
(
h(z), 1

)
ρi(dz|t)η(dt) <∞. (2.4)

We assume that the Markov-switching intensity measure νXt
(dt, dz) for the Poisson random

measure NXt
(dt, dz) is given by

νXt
(dt, dz) := ρXt

(dz|t)η(dt) =
N∑
i=1

(
ρi(dz|t)

〈
Xt, ei

〉)
η(dt). (2.5)
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By modifying the kernel-biased representation of James [18, 19], we define a Markov-
modulated kernel-biased completely random measure μXt

(dt) on T as follows:

μXt
(dt) :=

∫
R+
h(z)NXt

(dt, dz), (2.6)

which is a kernel-based mixture of the Markov-modulated Poisson random measure
NXt

(dt, dz) over the state space of the jump size R+ with the mixing kernel function h(z). See
also Perman et al. [20] for discussion on representations of completely random measures. In
general, we can replace the Poisson random measure with a random measure and choose some
quite exotic functions for h(z) to generate different types of finite and infinite jump activities.

Let mXt
denote the mean measure of μXt

. That is,

mXt
(dt) =

∫
R+
h(z)νXt

(dt, dz) =
N∑
i=1

(∫
R+
h(z)ρi(dz|t)

〈
Xt, ei

〉
η(dt)

)
. (2.7)

Let {Wt}t∈T denote a standard Brownian motion on (Ω,F,P) with respect to the P-
augmentation of its natural filtration FW := {FWt }t∈T. We suppose that W, X, and μ̃Xt

(dt) are
independent. Let ÑXt

(dt, dz) denote the compensated Poisson random measure defined by

ÑXt
(dt, dz) :=NXt

(dt, dz) − ρXt
(dz|t)η(dt). (2.8)

Let μt and σt denote the drift and volatility of the market value of the reference asset,
respectively. We suppose that μt and σt are given by

μt :=
〈
μ, Xt

〉
=

N∑
i=1

μi
〈
Xt, ei

〉
,

σt :=
〈
σ, Xt

〉
=

N∑
i=1

σi
〈
Xt, ei

〉
,

(2.9)

where μ := (μ1, μ2, . . . , μN) and σ := (σ1, σ2, . . . , σN); μi ∈ R and σi > 0, for each i = 1, 2, . . . ,N.
Then, we assume that the dynamic of the market value A of the reference portfolio is

governed by the following general geometric jump-diffusion process with a Markov-switching
kernel-biased completely random measure:

dAt = At−

[
μtdt −mXt

(dt) + σtdWt+
∫
R+
(eh(z) − 1)NXt

(dt, dz)
]
. (2.10)

By convention, we suppose that A0 = 1, P-a.s. Similar to the Merton jump-diffusion model, the
drift term of A is given by the mean μtdt minus the Markov-switching compensator mXt

(dt) of
μXt

(dt). We can then write the dynamic of A as follows:

dAt = At−

[
μtdt +

∫
R+

(
eh(z) − 1 − h(z)

)
ρXt

(dz|t)η(dt) + σtdWt +
∫
R+

(
eh(z) − 1

)
ÑXt

(dt, dz)
]
.

(2.11)
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In general, one can consider the situation that the drift μt and the volatility σt depend not only
on the current economic state Xt, but also other state variables or market information, such as
the current value of the reference portfolio At, when dealing with a long-term maturity. This
represents an interesting and practically relevant direction for further generalizing the model.
To focus on modeling and examining the impact of transitions of economic states on the price
dynamics of the reference portfolio and the fair value of the policy, we assume here that μt and
σt depend on the current economic state Xt only.

Let Yt := ln(At). Note that Y0 = 0, P-a.s., since A0 = 1. Then, by Itô’s formula,

dYt =
(
μt −

1
2
σ2
t

)
dt + σtdWt +

∫
R+
h(z)ÑXt

(dt, dz). (2.12)

2.2. The crediting scheme

Now, we describe the scheme for evaluating the interest rate credited to the policy reserve. Let
Rt denote the book value of the policy reserve and Dt the bonus reserve, at time t ∈ T. Then,
as in Chu and Kwok [9], we have the following accounting identity for At, Rt, and Dt:

At = Rt +Dt, t ∈ T, (2.13)

where R0 := αpA0, αp ∈ (0, 1], and R0 is interpreted as the single initial premium paid by the
policyholder for acquiring the contract and αp is the cost allocation parameter. In this case, the
αp-portion of the initial asset portfolio is financed by the policyholder.

Write cR(A,R) for the interest rate credited to the policy reserve. Then we have

dRt = cR(A,R)Rtdt. (2.14)

In practice, the specification of cR(A,R) depends on the rule of bonus distribution, which
is decided by the management level of an insurance company. Typically, an insurer distributes
to his/her policyholder a certain proportion, say δ, of the excess of the ratio of bonus reserve
Dt to the policy reserve Rt over the target ratio β, which is a long-term constant target ratio
specified by the management. The proportional constant δ is called the reversionary bonus
distribution rate and it is assumed that δ ∈ (0, 1]. For the crediting scheme of interest rate, it is
also assumed that there is a specified guarantee rate rg for the minimum interest rate credited
to the policyholder’s account. This means that the interest rate cR(A,R) ≥ rg . Here, we adopt
the interest rate crediting scheme used in Chu and Kwok [9] as follows:

cR
(
At, Rt

)
= max

(
rg,

(
ln
At

Rt
− β

))
, (2.15)

where the interest rate cR(At, Rt) credited to the policyholder’s account depends on both the
reversionary bonus β and the guaranteed rate rg .

2.3. Pricing by the Esscher transform

In this subsection, we describe how to determine an equivalent martingale measure by the
Esscher transform in the incomplete market specified by the generalized jump-diffusion
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model. Firstly, we provide a short discussion on other existing approaches for option valuation
in an incomplete market.

Different approaches have been proposed in the literature on how to pick an equivalent
martingale pricing measure in an incomplete market. Föllmer and Sondermann [21], Föllmer
and Schweizer [22] introduce the notion of a minimal martingale measure and select a
unique equivalent martingale measure via risk-minimization. Duffie and Richardson [23] and
Schweizer [24] propose the mean-variance criterion for determining an equivalent martingale
measure. Davis [25] adopts the marginal rate of substitution, which is a sound equilibrium
argument in economic theory, to pick a pricing measure by solving a utility maximization
problem. The pioneering work by Gerber and Shiu [26] provides a pertinent solution to the
option pricing problem in an incomplete market by the Esscher transform, a time-honored
tool in actuarial science introduced by Esscher [27]. The Esscher transform provides market
practitioners with a convenient and flexible way to value options. Here, we employ the regime-
switching Esscher transform in the work of Elliott et al. [16] and present the idea of this
transform in the sequel.

Firstly, we describe the information structure of the model. Let FX := {FXt }t∈T and FY :=
{FYt }t∈T denote theP-augmentation of the natural filtration generated byX and Y , respectively.
For each i = 1, 2 and t ∈ T, write Gt for the σ-algebra FXT ∨F

Y
t . Let BM(T) denote the collection

of B(T)-measurable and nonnegative functions with compact support onT. Write B(T) for the
Borel σ-field of T. For each process θ ∈ BM(T), write (θ ·Y )t for

∫ t
0θudYu, for each t ∈ T. Let

MY (θ)t := EP[e−(θ ·Y )t | FXT ], where EP represents expectation under P.
Let {Λt}t∈T denote a G-adapted stochastic process defined as below:

Λt :=
e−(θ ·Y )t

MY (θ)t
, t ∈ T. (2.16)

Applying Itô’s differentiation rule for jump-diffusion processes (see, e.g., [28, 29]), we have

e−(θ ·Y )t = 1 −
∫ t

0
e−(θ ·Y )sθs

(
μs −

1
2
σ2
s

)
ds −

∫ t

0
e−(θ ·Y )sθsσsdWs

−
∫ t

0

∫
R+
e−(θ ·Y )s−θs−h(z)ÑXs

(ds, dz) +
1
2

∫ t

0
e−(θ ·Y )sθ2

sσ
2
sds

+
∫ t

0

∫
R+
e−(θ ·Y )s−

(
e−θsh(z) − 1

)
ÑXs

(ds, dz)

+
∫ t

0

∫
R+
e−(θ ·Y )s−

(
e−θsh(z) − 1 + θsh(z)

)
ρXs

(dz|s)η(ds).

(2.17)

Conditioning on FXT for both sides of (2.17),

E
[
e−(θ ·Y )t

∣∣FXT ] = 1 −
∫ t

0
E
[
e−(θ ·Y )s

∣∣FXT ]θs
(
μs −

1
2
σ2
s

)
ds +

1
2

∫ t

0
E
[
e−(θ ·Y )s

∣∣FXT ]θ2
sσ

2
sds

+
∫ t

0

∫
R+
E
[
e−(θ ·Y )s−

∣∣FXT ](e−θsh(z) − 1 + θsh(z)
)
ρXs

(dz|s)η(ds).

(2.18)
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Hence,

MY (θ)t = exp
[
−
∫ t

0
θs

(
μs −

1
2
σ2
s

)
ds +

1
2

∫ t

0
θ2
sσ

2
sds+

∫ t

0

∫
R+

(
e−θsh(z) − 1 + θsh(z)

)
ρXs

(dz|s)η(ds)
]
.

(2.19)

Therefore,

Λt = exp
[
−
∫ t

0
θsσsdWs −

1
2

∫ t

0
θ2
sσ

2
sds −

∫ t

0

∫
R+
θsh(z)ÑXs

(ds, dz)

−
∫ t

0

∫
R+

(
e−θsh(z) − 1 + θsh(z)

)
ρXs

(dz|s)η(ds)
]
.

(2.20)

Lemma 2.1. Λ is a (G,P)-martingale.

Then, the Esscher transform Q∼P on Gt with respect to {θt | t ∈ T} is defined as

dQ
dP

∣∣∣∣
Gt

= Λt, t ∈ T. (2.21)

Harrison and Kreps [30] and Harrison and Pliska [31, 32] establish the relationship between
the absence of arbitrage opportunities and the existence of an equivalent martingale measure.
This is called the fundamental theorem of asset pricing. Delbaen and Schachermayer [33] point
out that the equivalent relationship does not hold “true” in general and show that the absence
of arbitrage is “essentially” equivalent to the existence of an equivalent martingale measure
under which the discounted stock price process is a martingale. Write Ãt := exp(−

∫ t
0rudu)At.

In our setting, the martingale condition is given by

Ãs = EQ
[
Ãt|Gs

]
, for any t, s ∈ T with t ≥ s, (2.22)

where EQ represents expectation under Q.

Proposition 2.2. Suppose there exists a function η′(·) : (0, T)→R+ such that η(dt) = η′(t)dt. Then,
the martingale condition is satisfied if and only if θt satisfies

μt − rt − θtσ2
t +

∫
R+

[
e−θth(z)

(
eh(z) − 1

)
− h(z)

]
ρXt

(dz|t)η′(t) = 0, (2.23)

for each t ∈ T.

Proposition 2.3. Let W̃ := {W̃t∈T} denote a standard Brownian motion and let ÑQ
Xt
(dt, dz) denote a

compensated Markov-modulated Poisson random measure with compensator ρQXt
(dz|t)η′(t)dt underQ,

where ρQXt
(dz|t) := e−θth(z)ρXt

(dz|t). Then, under Q,

dYt =
(
rt −

1
2
σ2
t

)
dt +

∫
R+

(
1 − eh(z) + h(z)

)
ρQXt

(dz|t)η′(t)dt + σtdW̃t +
∫
R+
h(z)ÑQ

Xt
(dt, dz),

(2.24)

where X is governed by (2.1).
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2.4. Fair valuation

Here, we present the procedure for the fair valuation based on an equivalent martingale
measure chosen by the regime-switching Esscher transform in the last subsection.

Let V (AT,RT ,XT) denote the terminal payoff of the participating policy on the policy’s
maturity date T , when the state of the economy XT at time T is X. Then,

V
(
AT,RT ,XT

)
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

AT, if AT < RT ,

RT , if RT ≤ AT ≤
RT

αp
,

RT + γP1T , if AT >
RT

αp
,

(2.25)

where γ is the terminal bonus distribution rate and P1T := max(αpAT − RT, 0) is the terminal
bonus option.

Let P2T := max(RT − AT, 0), where P2T represents the terminal default option on the
policy’s maturity date T . Then, the terminal payoff V (AT,RT ,XT) can be written in the
following form:

V
(
AT,RT ,XT

)
= RT + γP1T − P2T . (2.26)

Note that the bonus option can be viewed as a standard European call option that grants the
policyholder the right to pay the policy value as a strike price to receive αp-portion of the
asset portfolio. Instead of evaluating the fair value of the terminal payoff of the policy, we
consider the fair valuation for each of the components of the terminal payoff of the policy,
namely, the guaranteed benefit RT , the terminal bonus option P1T , and the terminal default
option P2T . Given knowledge of Gt, the conditional fair values of the guaranteed benefit, the
terminal bonus option, and the terminal default option at time t are, respectively,

G(t) = EQ
[

exp
(
−
∫T

t

rsds

)
RT

∣∣∣∣Gt
]
,

P1(t) = EQ
[

exp
(
−
∫T

t

rsds

)
P1T

∣∣∣∣Gt
]
,

P2(t) = EQ
[

exp
(
−
∫T

t

rsds

)
P2T

∣∣∣∣Gt
]
.

(2.27)

Note that the discount factor here is stochastic and switches over time according to the states
of the Markov chain.

As in Buffington and Elliott [14, 15], given that At = A, Rt = R and Xt = X, the fair
values of the guaranteed benefit, the terminal bonus option, and the terminal default option at
time t are, respectively,

G
(
At, Rt, Xt

)
= EQ

[
exp

(
−
∫T

t

rsds

)
RT | At = A, Rt = R, Xt = X

]
, (2.28)

P1
(
At, Rt, Xt

)
= EQ

[
exp

(
−
∫T

t

rsds

)
P1T | At = A, Rt = R, Xt = X

]
, (2.29)

P2
(
At, Rt, Xt

)
= EQ

[
exp

(
−
∫T

t

rsds

)
P2T | At = A, Rt = R, Xt = X

]
. (2.30)
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2.5. Hedging and risk management

Besides fair valuation of the options embedded in the participating policy, it is interesting to
investigate how the risks inherent in these options can be hedged once the policy has been sold
from a risk management perspective. The main focus of the current paper is the fair valuation
issue of the policy. In practice, the hedging and risk management issues of the policy are also
important. So, we provide some discussion for the hedging and risk management issues of the
policy here. The hedging and risk management issues of the policy are certainly interesting
and important topics for future research.

There are different ways to hedge the risks inherent in the options embedded in the
policy. Hedging via the Greeks and the risk-minimizing hedging represent two popular
approaches to hedging these risks. However, due to the fact that the market model considered
here is incomplete, perfect hedging cannot be achieved. Here we discuss the use of the Greeks
to hedge the risks inherent in the options, namely, the guaranteed benefit, the terminal bonus
option, and the default option, embedded in the policy. Note that hedging using the Greeks is
only an approximating hedging strategy and that it cannot provide a perfect hedging result
due to the market incompleteness. There are different approaches to compute the Greeks
based on the Monte Carlo simulation of the price paths. The basic method is the Monte Carlo
finite-difference approach. The key idea of this method is to compute the finite difference
approximation of the differentials using the Monte Carlo simulation. For illustration, we
consider the use of this method to compute the Delta. Suppose V̂ (A) and V̂ (A + ε) denote
Monte Carlo estimators of “true” prices V (A) and V (A + ε), respectively, where A represents
the initial value of the reference portfolio and ε is a (small) positive constant. Then, the Delta
Δ(A) of an option evaluated at the initial value A can be estimated by the finite-difference
estimator as follows:

Δ̂(A) =
V̂ (A + ε) − V̂ (A)

ε
. (2.31)

Glynn [34] shows that if the simulations of the two estimators V̂ (A) and V̂ (A + ε) are drawn
independently, the best possible convergence rate is n−1/4, where n is the number of simulation
runs. The convergence rate can be improved using the central difference (V̂ (A + ε) − V̂ (A −
ε))/2ε. In this case, the best possible convergence rate is n−1/3. The convergence rate can further
be improved using common random numbers for both Monte Carlo estimators. The optimal
convergence rate one can achieve in this case is n−1/2, which is the same as the best possible
convergence rate of a crude Monte Carlo method.

Other approaches that enhance the efficiency of the computation of the Greeks based on
the Monte Carlo simulation include the simple differentiation approach proposed by Broadie
and Glasserman [35] and the Malliavin calculus approach discussed by Fournié et al. [36, 37].
Chen and Glasserman [38] nvestigate the connection between the Malliavin calculus approach
and the traditional approach based on the pathwise method and likelihood method. Recently,
the Malliavin calculus approach for the Monte Carlo computation of the Greeks for jump-
diffusion models and Lévy processes has been developed by several authors, including León
et al. [39], El-Khatib and Privault [40], Davis and Johansson [41], and others. It is interesting to
explore how the Malliavin calculus approach for jump-diffusion processes and Lévy processes
can be extended to deal with the hedging of the risks inherent in the options embedded in the
participating policy under the Markovian regime-switching jump-diffusion model considered
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here. Besides using the Malliavin calculus approach, one may also consider the use of an
extended Clark-Haussman-Ocone formula using the white noise analysis in the work of Aase
et al. [42] to hedge the risks of the options embedded in the policy under the Markovian
regime-switching jump-diffusion model. This also represents an interesting topic for further
research.

3. Various parametric specifications to the jump component

In the previous section, we have defined a general jump-diffusion process with the jump
component specified by a kernel-biased Markov-modulated completely random measure.
Here, we consider some parametric cases of the general jump process by specifying some
particular forms of the kernel function and the Markovian regime-switching intensity measure.
These parametric cases include the MGG process, the scale-distorted and power-distorted
versions of the MGG process, and their special cases. We also derive the risk-neutral dynamics
for the logarithmic return process {Yt}t∈T under Q for various parametric specifications which
will be used for computing the fair values of the policies in Section 4. It is interesting to note
that the kernel-biased completely random measure has some connections to some important
Lévy processes in the literature including the VG process by Madan et al. [11] and the CGMY
model of Carr et al. [12]. We also discuss these connections in this section.

3.1. Markov-modulated generalized Gamma (MGG) process

The generalized Gamma (GG) process is a wide class of jump-type processes, which consists
of the weighted Gamma (WG) process and the inverse Gaussian (IG) process as special cases.
The GG process is a special case of the kernel-biased completely random measure and can be
obtained by setting the kernel function h(z) = z and choosing a particular parametric form of
the compensator measure. To provide more flexibility in describing the impact of the states of
an economy on the jump component, we consider a Markov-modulated GG process, called the
MGG process, whose compensator switches over time according to the states of the economy.
We first describe the MGG process in the sequel.

Let α ≥ 0 denote a constant shape parameter of the MGG process. We suppose that the
scale parameter of the MGG process b(t) := b(t, Xt) switches over time according to the states
of the Markov chain X and is given by

b(t) :=
〈
b, Xt

〉
=

N∑
i=1

bi
〈
Xt, ei

〉
, (3.1)

where b := (b1, b2, . . . , bN) ∈ RN and bi ≥ 0, for each i = 1, 2, . . . ,N.
Then, the Markov-switching intensity process of the MGG process is

ρXt
(dz|t)η′(t)dt = 1

Γ(1 − α)e
−〈b,Xt〉zz−α−1dzη′(t)dt =

N∑
i=1

1
Γ(1 − α)e

−bizz−α−1〈Xt, ei
〉
dzη′(t)dt.

(3.2)

In this case, the martingale condition becomes

μt − rt − θtσ2
t +

∫
R+

[
e−θtz

(
ez − 1

)
− z

]
ρXt

(dz|t)η′(t) = 0, (3.3)

where ρXt
(dz | t)η′(t) is given by (3.2).
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Write ρQXt
(dz|t) := e−θtzρXt

(dz|t), where θt satisfies (3.3). Let NQ
Xt
(dt, dz) denote a Poisson

random measure with Markov-switching compensator ρQXt
(dz|t)η′(t)dt under Q. Then, under

Q, the dynamic of Y is

dYt =
(
rt −

1
2
σ2
t

)
dt +

∫
R+

(
1 − eh(z)

)
ρQXt

(dz|t)η′(t)dt + σtdW̃t +
∫
R+
h(z)NQ

Xt
(dt, dz). (3.4)

When α = 0, the MGG process reduces to a Markov-modulated WG (MWG) process. That is,
the Markov-switching intensity of the MWG process is

ρXt
(dz|t)η′(t)dt = e−〈b,Xt〉z

z
dzη′(t)dt =

N∑
i=1

e−biz

z

〈
Xt, ei

〉
dzη′(t)dt. (3.5)

In this case, the martingale condition becomes

μt − rt − θtσ2
t +

∫
R+

[
e−θtz

(
ez − 1

)
− z

](e−〈b,Xt〉z

z

)
dzη′(t) = 0. (3.6)

Under Q,

dYt =
(
rt −

1
2
σ2
t

)
dt +

∫
R+

(
1 − eh(z)

)(e−(θt+〈b,Xt〉)z

z

)
dzη′(t)dt + σtdW̃t +

∫
R+
h(z)NQ

Xt
(dt, dz),

(3.7)

where NQ
Xt
(dt, dz) is a Poisson random measure with Markov-switching compensator,

ρQXt
(dz|t)η′(t)dt =

(
e−(θt+〈b,Xt〉)z

z

)
dzη′(t)dt, (3.8)

and θt satisfies (3.6).
When α = 1/2, the MGG becomes a Markov-modulated IG (MIG) process. In this case,

the martingale condition becomes

μt − rt − θtσ2
t +

∫
R+

[
e−θtz

(
ez − 1

)
− z

]( 1
Γ(1/2)

√
z
e−〈b,Xt〉zdz

)
dzη′(t) = 0. (3.9)

Under Q, the dynamic of Y is

dYt =
(
rt −

1
2
σ2
t

)
dt +

∫
R+

(
1 − eh(z)

)( 1
Γ(1/2)

√
z
e−(θt+〈b,Xt〉)z

)
dzη′(t)dt

+ σtdW̃t +
∫
R+
h(z)NQ

Xt
(dt, dz),

(3.10)

where the intensity process for NQ
Xt
(dt, dz) is

ρQXt
(dz|t)η′(t)dt =

(
1

Γ(1/2)
√
z
e−(θt+〈b,Xt〉)z

)
dzη′(t)dt, (3.11)

and θt satisfies (3.9).



Tak Kuen Siu et al. 13

3.2. The scale and power distortions of the MGG process

In this section, we consider the scale-distorted and power-distorted versions of the MGG
process. The scale-distorted and power-distorted versions of the MGG process provide
additional flexibility for describing various jump-type behaviors. They can describe the
overstate and understate of jump amplitudes due to overreaction and underreaction of market
participants to extraordinary events, respectively. For the scale-distorted version of the MGG
process, the kernel function h(z) = cz, where c is a positive constant. When c > 1, jump sizes
are overstated. When 0 < c < 1, jump sizes are understated. For the power-distorted version
of the MGG process, the kernel function h(z) = zq, where q > 0. When q > 1, small jump
sizes (i.e., 0 < z < 1) are understated and large jump sizes (i.e., z > 1) are overstated. When
0 < q < 1, small jump sizes are overstated and large jump sizes are understated. The scale-
distorted and power-distorted versions of the MGG process with different scale and power-
distorted parameters can generate different types of behaviors of market participants when
they react to extraordinary events. They can shed lights on understanding the impact of these
market participants’ behaviors on the price dynamic of the reference asset from a behavioral
finance perspective. In general, one can also assume that the scale c for the scale-distorted
version of the MGG process and the power q for the power-distorted version of the MGG
process also switch over time according to the state of the Markov chain. In this case, the
overstate and understate of the jump amplitudes also depend on the state of the economy.
Here, we consider the case that both c and q are constants for illustration.

For both the scale-distorted and power-distorted versions of the MGG process, the
Markov-switching intensity processes are the same as that of the MGG process. For the scale-
distorted version of the MGG process, the martingale condition is given by

μt − rt − θtσ2
t +

∫
R+

[
e−θtcz

(
ecz − 1

)
− cz

]
ρXt

(dz|t)η′(t) = 0, (3.12)

where ρXt
(dz|t)η′(t) is given by (3.2).

Under Q, the dynamic of Y is

dYt =
(
rt −

1
2
σ2
t

)
dt +

∫
R+

(
1 − ecz

)
ρQXt

(dz|t)η′(t)dt + σtdW̃t +
∫
R+
czNQ

Xt
(dt, dz), (3.13)

where ρQXt
(dz|t) = e−θtzρXt

(dz|t)η(dt) and ρXt
(dz|t)η′(t)dt is given by (3.2).

For the power-distorted version of the MGG process, the martingale condition is

μt − rt − θtσ2
t +

∫
R+

[
e−θtz

q(
ez

q − 1
)
− zq

]
ρXt

(dz|t)η′(t) = 0, (3.14)

where ρXt
(dz|t)η′(t) is specified by (3.2).

Under Q, the dynamic of Y is

dYt =
(
rt −

1
2
σ2
t

)
dt +

∫
R+

(
1 − ezq

)
ρQXt

(dz|t)η′(t)dt + σtdW̃t +
∫
R+
zqNQ

Xt
(dt, dz), (3.15)

where ρQXt
(dz|t) = e−θtzρXt

(dz|t) and ρXt
(dz|t)η′(t) is given by (3.2).



14 Journal of Applied Mathematics and Stochastic Analysis

When α = 0, the scale-distorted version of the MGG process becomes the scale-distorted
version of the MWG process and the power-distorted version of the MGG process reduces
to the power-distorted version of the MWG process. When α = 1/2, the scale-distorted and
power-distorted versions of the MGG process become the scale-distorted and power-distorted
versions of the MIG process, respectively.

3.3. Connections to the VG and CGMY processes

Now, we outline some connections of a modified version of the Markov-modulated kernel-
biased completely random measure to the VG and CGMY processes. We first provide some
discussions on the VG model. The VG process can be represented in a number of equivalent
ways, namely, the representation based on the time-changed Brownian motion, the difference
between two gamma processes, the Lévy measure representation, the predictable compensator
representation, where the predictable compensator representation is closely related to the Lévy
measure representation in a fundamental way. Madan et al. [11] and Elliott and Royal [43]
provide detailed discussion for different representations of the VG process. It has been shown
by Elliott and Royal [43] that the predictable compensator of the VG process is the same as the
Lévy measure. The Lévy measure of the VG process is given by (see [11])

νVG(dz, dt) = kVG(z)dzdt =
(
C exp(−Mz)

z
I{z>0} −

C exp(Gz)
z

I{z<0}

)
dzdt, (3.16)

where C,M,G ∈ R+ are parameters of the VG process.
We consider a Markov-modulated version of the VG process with the following Markov-

switching compensator:

νVG
Xt

(dz, dt) = kVG
Xt

(z)dzdt

=
(
C exp

(
−
〈
M, Xt

〉
z
)

z
I{z>0} −

C exp
(〈
G, Xt

〉
z
)

z
I{z<0}

)
dzdt,

(3.17)

where M := (M1,M2, . . . ,MN) ∈ RN and G := (G1, G2, . . . , GN) ∈ RN with Mi > 0 and Gi > 0,
for each i = 1, 2, . . . ,N.

The Markov-modulated VG process can be related to a modified version of the Markov-
switching kernel-biased completely random measure by suitable matching of the model
parameters. Consider two Markov-switching Poisson random measures Nk

Xt
(dz, dt), k = 1, 2,

with the following intensity processes:

ρkXt
(dz|t)η′(t)dt = e(−1)k〈bk,Xt〉z

z
dzη′(t)dt, (3.18)

where bk := (bk1 , b
k
2 , . . . , b

k
N) ∈ Rwith bki > 0, for each i = 1, 2, . . . ,N.

Write NXt
(dz, dt) := N1

Xt
(dz, dt)I{z>0} +N2

Xt
(dz, dt)I{z<0}. Then, the intensity process of

NXt
(dz, dt) is

ρXt
(dz|t)η′(t)dt =

(
e−〈b

1,Xt〉z

z
I{z>0} −

e〈b
2,Xt〉z

z
I{z<0}

)
dzη′(t)dt. (3.19)
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Suppose, for each k = 1, 2, that hk(·) : R+→R+ satisfies the following condition:

N∑
i=1

∫
B

∫
R+

min
(
hk(z), 1

)
ρki (dz|t)η(dt) <∞. (3.20)

Let h(·) : R→R be a real-valued function defined as follows:

h(z) = h1(z)I{z>0} − h2(−z)I{z<0}. (3.21)

Then, define a process μ(t) as follows:

μ(t) :=
∫ t

0

∫
R
h(z)NXu

(dz, du). (3.22)

Let η(dt) = dt (i.e., η(·) is a uniform density). In this case, η′(t) = 1. We further assume that
b1
i = Mi; b2

i = Gi; C = 1. Then, the Markov-modulated VG process with Markov-switching
compensator νVG

Xt
(dz, dt) coincides with the process μ(t), which is a modified version of the

Markov-switching kernel-biased completely random measure.
In the sequel, we consider the CGMY process. From Carr et al. [12], the Lévy measure of

the CGMY process is

νCGMY(dz, dt) = kCGMY(z)dzdt

=
(
C

exp
(
−G|z|

)
|z|1+Y

I{z<0} + C
exp

(
−M|z|

)
|z|1+Y

I{z>0}

)
dzdt,

(3.23)

where C > 0, G ≥ 0, M ≥ 0, and Y < 2.
We consider a Markov-modulated version of the CGMY process with the following

Markov-switching compensator:

νCGMY
Xt

(dz, dt) = kCGMY
Xt

(z)dzdt

=
(
C

exp
(
−
〈
G, Xt

〉
|z|

)
|z|1+Y

I{z<0} + C
exp

(
−
〈
M, Xt

〉
|z|

)
|z|1+Y

I{z>0}

)
dzdt,

(3.24)

where M := (M1,M2, . . . ,MN) ∈ RN and G := (G1, G2, . . . , GN) ∈ RN with Mi > 0 and Gi > 0,
for each i = 1, 2, . . . ,N.

For each k = 1, 2, let N
k

Xt
(dz, dt) denote a Markov-switching Poisson random measure

with the following intensity process:

ρkXt
(dz|t)η′(t)dt = 1

Γ(1 − α)e
−〈bk,Xt〉zz−α−1dzη′(t)dt

=
1

Γ(1 − α)
e−〈b

k,Xt〉|z|

|z|1+α
dzη′(t)dt.

(3.25)

Let NXt
(dz, dt) := N

1
Xt
(dz, dt)I{z>0} +N

2
Xt
(dz, dt)I{z<0}. Then, the Markov-switching intensity

process for NXt
(dz, dt) is

ρXt
(dz|t)η′(t)dt =

(
1

Γ(1 − α)
e−〈b

1,Xt〉|z|

|z|1+α
I{z>0} +

1
Γ(1 − α)

e−〈b
2,Xt〉|z|

|z|1+α
I{z<0}

)
dzη′(t)dt. (3.26)
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In this case, the kernel function h is given by (3.21). Define a process μ(t) as below:

μ(t) :=
∫ t

0

∫
R
h(z)NXu

(dz, du). (3.27)

Let η(dt) = dt; b1
i = Mi; b2

i = Gi; α = Y ; C = 1/Γ(1 − α). Then, the Markov-modulated CGMY
process coincides with the process μ(t), which is a modified version of the Markov-switching
kernel-biased completely random measure.

4. Simulation experiments and comparisons

In this section, we conduct simulation experiments to compare the fair values of the guaranteed
benefit, the terminal bonus option, and the default option embedded in the participating policy
implied by various parametric specifications of our generalized jump-type model described
in Section 3 with those obtained from other existing models in the literature, such as the
Merton jump-diffusion model, the VG process, and the geometric Brownian motion (GBM).
We also document the impact of the regime-switching effect in the price dynamic of the
reference portfolio on the fair values of the embedded options. We highlight some features
of the qualitative behavior of the fair values of the embedded options that can be obtained
from different parametric specifications of our model. Besides investigating the implications
for the fair values of the embedded options, we also compare the default probabilities of the
embedded options implied by various specifications of our jump-diffusion process with those
implied by other models.

For simulating various parametric cases of our generalized jump-type process, we adopt
the Poisson weighted algorithm by Lee and Kim [44] to simulate completely random measures
with Markov-switching compensator. The Poisson weighted algorithm is applicable for a
wide class of completely random measures, which are very difficult, if not impossible, to
simulate directly in practice. The main idea of the Poisson weighted algorithm is that instead
of generating jump sizes of a completely random measure directly from a nonstandard density
function, one can first generate jump sizes from a proposed density function, which is a
standard density function, like a gamma density, and then adjust the simulated jump sizes
by the corresponding Poisson weights. The Poisson weights are simulated from a Poisson
distribution with intensity parameter given by the odd ratio of the compensator of the
completely random measure and the compensator corresponding to the proposed density.

In the sequel, we describe the modified Poisson weighted algorithm. For generality, we
consider the full jump-diffusion model in Section 2, which is a Markov-modulated kernel-
biased completely random measure. Suppose we wish to sample from the following process
under the risk-neutral probability measure Q:

μQ(t) =
∫ t

0

∫
R+
h(z)NQ

Xu
(dz, du), (4.1)

where the Markov-switching compensator for the Poisson random measure NQ
Xt
(dz, dt) under

Q is

νQXt
(dz, dt) = ρQXt

(dz|t)η′(t)dt =
N∑
i=1

(
ρQi (dz|t)

〈
Xt, ei

〉)
η′(t)dt. (4.2)
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Suppose we divide the time horizon [0, T] of T years into nT subintervals with equal length of
Δ := 1/n, where T is a positive integer. That is, one year is divided into n subintervals. If n =
252, each subinterval represents one trading day. Write [tj , tj+1] for the (j + 1)st subinterval, for
each j = 0, 1, . . . , n − 1. Let M denote the number of jumps of the completely random measure
over a one-year time horizon. Here, M controls the degree of accuracy of the approximation
by the Poisson weighted algorithm and can be set as different values according to the desirable
degree of accuracy. The larger M is, the more accurate the approximation is. Here, we set
M = 100 and n = 252. In general, they can be set as any positive numbers. We take η′(t) to
be a proper density (i.e., η(T) :=

∫T
0η
′(t)dt < ∞). For illustration, we assume here that η′(t) is

an unnormalized density function of a uniform density on [0, T]. Then, the Poisson weighted
algorithm is described as follows.

(1) Simulate the Markov chain process {Xj | j = 1, 2, . . . , nT}.

(2) Generate i.i.d. positive random variables T1, . . . , TMT , which represent jump times,
from the normalized density function η′(t)/η(T), where η(T) :=

∫T
0η
′(t)dt.

(3) Generate the jump sizeWi from the proposed density function gTi , where gTi is defined
as a conditional density function knowledge of Ti, for each i = 1, 2 . . . ,MT . Here, gTi
is assumed to be a gamma density function.

(4) For each fixed i = 1, 2, . . . ,MT , if Ti ∈ [tj , tj+1), calculate λi = η(T)ρQXj
(Wi|Ti)/

MTgTi(Wi), for each i = 1, . . . ,M.

(5) Generate the Poisson weights Zi from a Poisson distribution with intensity parameter
λi.

(6) μ(t) =
∑MT

i=1 h(ZiWi)I(Ti≤t), where h(·) is the kernel function of the kernel-biased
completely random measure.

The process generated by the Poisson weighting algorithm converges in distribution to the
completely random measure μ(t) on the space D[0, T] of real-valued functions defined on the
compact domain [0, T] with the Skorohod topology asM→∞. For the proof of the convergence,
interested readers may refer to Lee and Kim [44].

In our simulation experiments, we compute the fair values for the embedded options,
including the guaranteed benefit G(0), the terminal bonus option P1(0), and the default option
P2(0), all with maturity T equal to 20 years. Each fair value is computed by using 10 000
simulation paths over 20 years. All computations here were done by C++ codes. Note that
n = 252 (i.e., Δ = 1/252). In other words, we simulate daily observations for the dynamic
of the reference asset A. We consider a two-state Markov chain model X with N = 2, where
“Xt = 1” represents “Good” economy while “Xt = 2” represents “Bad” economy. We take the
transition probability matrix for X as follows:

[
0.6 0.4
0.4 0.6

]
. (4.3)

We generate 10 000 simulation paths for X over 20 years (i.e., {Xj}j=1,2,...,5040) and suppose that
X0 = 1. For each simulation path of X, we generate the log return series {Yj}j=1,2,...,5040 for the
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full model in Section 2 from the following discretized version of the risk-neutral log return
process based on the forward Euler discretization scheme:

Yj+1=Yj +
(
rXj
− 1

2
σ2
Xj

)
Δ +

∫
R+

(
1 − eh(z) + h(z)

)
ρQXj

(dz|tj)Δ + σXj
× ε×

√
Δ + μ̃QXj

(
tj+1

)
− μ̃QXj

(
tj
)
,

(4.4)

where ε∼N(0, 1) and

μ̃QXj
(t) = μQXj

(t) −
∫ t

0

∫
R+
ρQXj

(dz|u)du. (4.5)

We take the initial value Y0 to be zero.
The forward Euler discretization scheme is a popular method to approximate the paths

of a continuous-time process when performing Monte Carlo simulation and/or estimation of
the process. It provides a natural, intuitive, and convenient way to discretize a continuous-
time process. It has widely been adopted in approximating the paths of continuous-time
asset price dynamics when performing Monte Carlo simulations in financial engineering (see,
e.g., [45]). Under some conditions, it can be shown that the Euler approximation converges
weakly to the target continuous-time process when the number of discretization intervals
tends to infinity. Kloeden and Platen [46] provided an excellent discussion for the convergence
of the forward Euler discretization scheme. They also presented numerous higher-order
discretization schemes, which are more efficient than the Euler scheme, and discussed their
convergence. These higher-order schemes include the Milstein scheme and the Platen-Wagner
scheme. To illustrate the practical implementation of our model, we decide to use the forward
Euler discretization scheme for being computationally convenient.

Let ΔYj+1 := Yj+1 − Yj , for each j = 0, 1, . . . , 5039; then,

ΔYj+1 :=
(
rXj
− 1

2
σ2
Xj

)
Δ +

∫
R+

(
1 − eh(z) + h(z)

)
ρQXj

(
dz

∣∣tj)Δ+σXj
×ε ×

√
Δ + μ̃QXj

(
tj+1

)
− μ̃QXj

(
tj
)
.

(4.6)

Given each simulated path of {ΔYj}j=1,2,...,5039, {Aj}j=1,2,...,5040 is calculated as

Aj = A0e
∑j

k=1ΔYk , (4.7)

where it is assumed that A0 = 100.
We calculate the value of the policy reserve {Rt}t=1,2,...,20 annually over 20 years by

applying the following forward Euler discretization scheme iteratively:

Rt+1 = Rt exp

[
252∑
j=1

max
(
rg, ln

(
A252t+j

Rt

)
− β

)
Δ

]
, (4.8)

where t represents the tth year and the initial value R0 = αpA0.
We assume some specimen values for the parameters for the participating policy:

rg = 0.04; β = 0.5; γ = 0.7; αp = 0.6; A0 = 100; T = 20 years. (4.9)
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We consider some specimen values for the model parameters:

μ1 = 0.10; μ2 = 0.05; r1 = 0.035; r2 = 0.015; σ1 = 0.2; σ2 = 0.4;

b1 = 200.0, b2 = 500.0.
(4.10)

We choose these specimen values to illustrate the practical implementation of our model.
These values are in the reasonable ranges of magnitudes from a practical perspective and are
consistent with the magnitudes of model parameters estimated in some empirical literature
on jump-diffusion models. The estimation issue of our model, in particular, the Bayesian
nonparametric estimation, is an interesting topic for future research. We plan to pursue this
direction in our future research.

4.1. The MGG processes

In this subsection, we consider the MGG process, the GG process, the Merton jump-diffusion
model, the VG process, and the GBM. We suppose that the shape parameter α for the (M)GG
processes from 0.0 to 0.9, with an increment of 0.1. When α = 0.0, the (M)GG process becomes
the (M)WG process. When α = 0.5, the (M)GG process becomes the (M)IG process. Other
values of α generate different parametric forms of the (M)GG processes. We assume that the
parameter values of the no-regime-switching versions of these processes match with those
in the corresponding regime-switching processes when the economy is in “State 1.” For the
Merton jump diffusion model, we consider the following parameter values:

μ = 0.1; r = 0.035; σ = 0.2; μX = −0.05; σX = 0.07; λ = 0.6, (4.11)

where the jump size X of the compound Poisson process follows a normal distribution with
mean μX and variance σ2

X; λ is the intensity parameter of the Poisson process.
We consider a VG process for the log return process {Yt}t∈T with the following time-

changed or subordinated Brownian motion representation:

Yt = ZL(t,v), t ∈ T, (4.12)

where Zt = θt + σVGWt; Wt is a standard Brownian motion; the subordinated process L(t, v) is
a Gamma process with unit mean rate and variance v.

We assume the following specimen values for the parameters of the VG process:

θ = 0.0; v = 0.01; σVG = 0.2. (4.13)

The values of the parameters μ, r, and σ in this case are the same as those in the case of the
Merton jump-diffusion model.

The fair values for the guaranteed benefit, the terminal bonus option, and the default
option under the Merton jump-diffusion model and the VG model are evaluated under the
Esscher transform. These fair values are computed using Monte Carlo simulations. In all
figures, “with Markov switching” refers to the models with both the jump component and
the model parameters being modulated by the two-state Markov chain; “without Markov
switching” refers to the models with the jump component and constant model parameters; “no
jump with Markov switching” refers to the Markovian regime-switching geometric Brownian
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Figure 1: Probabilities that the terminal asset valueA(T) is less than the terminal policy reserve R(T) under
P.
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Figure 2: Fair value of the guaranteed benefit.

motion; “no jump without Markov switching” refers to the geometric Brownian motion;
“Merton jump” and “Variance Gamma” refer to the Merton jump-diffusion model and the
variance Gamma process with constant model parameters, respectively.

Figures 1–4 display the numerical results for the probabilities that AT < RT under P (i.e.,
the ruin probabilities) and the fair values for each of the embedded options. The numerical
results for various parametric cases, namely, the MGG and GG processes with different values
of the shape parameter α, the Merton jump-diffusion model, the VG process, and the GBM, are
displayed here.

From Figure 1, we see that the probabilities that A(T) < R(T) increase significantly
as α does in both the regime-switching and no-regime-switching cases. When α < 0.5, the
probabilities that A(T) < R(T) in the regime-switching case are significantly larger than their
corresponding values in the no-regime-switching case. From Figures 2 to 4, the impact of α
on the fair values of three embedded options is significant. We can also see that the effect of
switching regimes on the fair values is also significant.
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4.2. The Scale-distorted version of the MGG and GG processes

We consider the scale-distorted version of the MGG and GG processes, the Merton jump-
diffusion model, the VG process, and the GBM. We focus on investigating the impact of
different values of the scale distortion parameter c on the underlying price behaviors, the
payoff structures, and the fair values of the participating policy. In particular, we suppose that
c takes values 0.5, 1.0 (i.e., no scale distortion), 2.0, and 3.0. Throughout this subsection, we
suppose that the shape parameter α = 0.5 for the scale-distorted version of the MGG and GG
processes. The parameter values for the Merton jump-diffusion model and the VG model are
given by those in Section 4.1.

Figures 5–8 display the numerical results for the ruin probabilities and the fair values of
the three embedded options for various parametric cases, namely, the scale-distorted version
of the MGG and GG processes with different values of the scale distortion parameter c, the
Merton jump-diffusion model, the VG process, and the GBM.
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Figure 9: Probabilities that the terminal asset valueA(T) is less than the terminal policy reserve R(T) under
P.

From Figures 5–8, the impact of the scale distortion parameter c on the the ruin
probabilities and fair values of the embedded options is much less significant compared with
that of the shape parameter α. From Figures 6–8, the effect of switching regimes on the fair
values of the embedded options is still significant.

4.3. The power-distorted version of the MGG and GG processes

Now, we consider the power-distorted version of the MGG and GG processes, the Merton
jump-diffusion model, the VG process, and the GBM. We suppose that the power distortion
parameter q takes values 0.6, 0.8, 1.0 (i.e., no scale distortion), 1.2, and 1.4. Throughout this
subsection, we suppose that the shape parameter α = 0.5 for the power-distorted version of
the MGG and GG processes. The Merton jump diffusion model and the VG process for fair
valuation are the same as before.

Figures 9–12 display the numerical results for the ruin probabilities and the fair values
of the three embedded options for various parametric cases, namely, the power-distorted
version of the MGG and GG processes with different values of the power distortion parameter
q, the Merton jump-diffusion model, the VG process, and the GBM.
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From Figures 9–12, the impact of the power distortion parameter q on the ruin
probabilities and fair values of the embedded options is less significant than that of the shape
parameter α, but more significant than that of the scale distortion parameter c. The effect of
switching regimes on the fair values of the embedded options is still significant in this case
(see Figures 10–12).

The market consistent valuation and the risk management of modern insurance products
are important issues as highlighted by Solvency II and the International Accounting Standards
Board (IASB). Solvency II refers to an amended set of regulatory requirements for insurance
companies operating in the European Union region. Like the well-known regulatory require-
ments for banks and financial institutions, namely, Basel II, Solvency II operates as a three-pillar
system, which consists of the quantitative evaluation of risk capitals, the review of the models
by supervisors, and the disclosure of the risk information. So, Solvency II is also referred to as
Basel II for insurance companies. Under Solvency II, insurance companies need to build their
internal models for market consistent valuation and risk management and these models are
then sent to supervisors for assessment and review. So, an important question for the insurance
companies, perhaps the supervisors as well, is how to develop or build appropriate models for
fair valuation and risk management of the insurance policies. An appropriate stochastic model
for modeling the asset price dynamics plays a key role to answer this important question.

The numerical results have some implications for the market consistent valuation and
the risk management practice of participating life insurance policies. They shed some lights
on the importance of the correct specification of stochastic models for the long-term price
movements of the reference portfolio. In particular, our study reveals that the specification of
the parametric distribution of the jump component (i.e., the specification of the parameter α)
and the incorporation of the regime-switching effect in the stochastic models for the long-term
movements of the reference portfolio play a significant role in the market consistent valuation
and the risk management via hedging of participating policies.

Besides providing some implications for the stochastic modeling of the asset price
dynamics, the results of our studies also have some implications for the design of the
products, for example, the choices of the target ratio β and the guaranteed rate rg . From
Figure 1, we see that the ruin probabilities increase substantially as α increases. Also, the ruin
probabilities implied by the model without switching regimes are substantially lower than
the corresponding values arising from the model with switching regimes. In other words,
the mis-specification of the parametric distribution of the jump component in the stochastic
model of the reference portfolio and/or neglecting the regime-switching effect may lead to
underestimation of the ruin probabilities. So, the model risk is quite substantially here. One
possible remedy for the model risk is to set the target ratio β and the guaranteed rate rg in
a more prudent way. For example, β can be set higher and rg can be set lower, so that the
interest rate credited in the scheme becomes lower and a lower terminal policy reserve may
result. However, these two rates cannot be set as lower (higher) as we wish. It is important to
consider the marketing/sale issue and the competition of other insurance companies which
offer similar products when setting these rates.

5. Summary

We considered the pricing of participating life insurance policies when the market value of the
reference asset is governed by a generalized jump-diffusion model with a Markov-switching
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compensator, where the jump component is specified by a Markov-modulated kernel-
biased completely random measure. The Esscher transform was adopted to determine an
equivalent martingale measure under the incomplete market setting. Various parametric cases
of the Markov-modulated kernel-biased completely random measure were considered. We
conducted simulation experiments using the Poisson weighted algorithm to compare the fair
values of participating products implied by our model with those obtained from other existing
models in the literature and to highlight some features that can be obtained from our model.
The simulation results reveal that the impacts of various specifications of jump component and
the switching regimes on the fair values of the embedded options in participating products
are significant. The results of our studies highlight the importance of the specification of the
parametric distribution of the jump component and the incorporation of the regime-switching
effect in the stochastic model for the reference portfolio underlying a participating policy. They
also shed some lights on the design of the contractual structure of the policy.

Appendix

Proofs

Proof of Lemma 2.1. First, for any t, s ∈ Twith t ≥ s,

E

[
Λt

Λs

∣∣∣∣Gs
]
= E

{
exp

[
−
∫ t

s

θuσudWu −
1
2

∫ t

0
θ2
uσ

2
udu −

∫ t

s

∫
R+
θuh(z)ÑXu
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Note that
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, (A.2)

and, by James [18, 19],
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θuh(z)ÑXu(du, dz)

)∣∣∣∣Gs
]
=exp

[∫ t

s

∫
R+

(
e−θuh(z) − 1 + θuh(z)

)
ρXu

(dz|u)η(du)
]
.

(A.3)

Hence,
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]
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Proof of Proposition 2.2. First, by Bayes’ rule,
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Then, by setting s = 0, the martingale condition implies that

1 = EQ
[
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. (A.6)

This implies that
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for each t ∈ T. Hence (2.28) is proved. Given (2.28), the martingale condition is satisfied.

Proof of Proposition 2.3. Let Zu ∈ BM(T). Then, by Bayes’ rule,
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From the martingale condition,
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Then, under Q,
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Since X is independent with W and N, the probability law of X remains unchanged under the
change of measures from P to Q.
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