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1. Introduction

In this paper, we study the exponential convergence of the solution of

dX(t) =
(
AX(t) +

∫ t

0
K(t − s)X(s)ds + f(t)

)
dt + Σ(t)dB(t), t > 0, (1.1a)

X(0) = X0, (1.1b)

to a nontrivial random variable. Here the solution X is an n-dimensional vector-valued
function on [0,∞), A is a real n × n-dimensional matrix, K is a continuous and integrable
n × n-dimensional matrix-valued function on [0,∞), f is a continuous n-dimensional vector-
valued function on [0,∞), Σ is a continuous n × d-dimensional matrix-valued function on
[0,∞) and B(t) = (B1(t), B2(t), . . . , Bd(t)), where each component of the Brownian motion is
independent. The initial condition X0 is a deterministic constant vector.

The solution of (1.1a)-(1.1b) can be written in terms of the solution of the resolvent
equation

R′(t) = AR(t) +
∫ t

0
K(t − s)R(s)ds, t > 0, (1.2a)

R(0) = I, (1.2b)

mailto:john.appleby@dcu.ie


2 Journal of Applied Mathematics and Stochastic Analysis

where the matrix-valued function R is known as the resolvent or fundamental solution.
In [1], the authors studied the asymptotic convergence of the solution R of (1.2a)-(1.2b)
to a nontrivial limit R∞. It was found that R − R∞ being integrable and the kernel being
exponentially integrable were necessary and sufficient for exponential convergence. This
built upon a result of Murakami [2] who considered the exponential convergence of the
solution to a trivial limit and a result of Krisztin and Terjéki [3] who obtained necessary and
sufficient conditions for the integrability of R − R∞. A deterministically perturbed version of
(1.2a)-(1.2b),

x′(t) = Ax(t) +
∫ t

0
K(t − s)x(s)ds + f(t), t > 0, (1.3a)

x(0) = x0, (1.3b)

was also studied in [1]. It was shown that the exponential decay of the tail of the perturbation
f combined with the integrability of R − R∞ and the exponential integrability of the kernel
were necessary and sufficient conditions for convergence to a nontrivial limit.

The case where (1.2a)-(1.2b) is stochastically perturbed

dX(t) =
(
AX(t) +

∫ t

0
K(t − s)X(s)ds

)
dt + Σ(t)dB(t), t > 0, (1.4a)

X(0) = X0, (1.4b)

has been considered. Various authors including Appleby and Freeman [4], Appleby and
Riedle [5], Mao [6], and Mao and Riedle [7] have studied convergence to equilibrium. In
particular the paper by Appleby and Freeman [4] considered the speed of convergence of
solutions of (1.4a)-(1.4b) to equilibrium. It was shown that under the condition that the
kernel does not change sign on [0,∞) then (i) the almost sure exponential convergence of
the solution to zero, (ii) the pth mean exponential convergence of the solution to zero, and
(iii) the exponential integrability of the kernel and the exponential square integrability of the
noise are equivalent.

Two papers by Appleby et al. [8, 9] considered the convergence of solutions of (1.4a)-
(1.4b) to a nonequilibrium limit in the mean square and almost sure senses, respectively.
Conditions on the resolvent, kernel, and noise for the convergence of solutions to an explicit
limiting random variable were found. A natural progression from this work is the analysis of
the speed of convergence.

This paper examines (1.1a)-(1.1b) and builds on the results in [1, 8, 9]. The analysis
of (1.1a)-(1.1b) is complicated, particularly in the almost sure case, due to presence of
both a deterministic and stochastic perturbation. Nonetheless, the set of conditions which
characterise the exponential convergence of the solution of (1.1a)-(1.1b) to a nontrivial
random variable is found. It can be shown that the integrability of R − R∞, the exponential
integrability of the kernel, the exponential square integrability of the noise combined with the
exponential decay of the tail of the deterministic perturbation, t �→ ∫∞

t f(s)ds, are necessary
and sufficient conditions for exponential convergence of the solution to a nontrivial random
limit.

2. Mathematical preliminaries

In this section, we introduce some standard notation as well as giving a precise definition of
(1.1a)-(1.1b) and its solution.
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Let R denote the set of real numbers and let R
n denote the set of n-dimensional vectors

with entries in R. Denote by ei the ith standard basis vector in R
n. Denote by ‖A‖ the standard

Euclidean norm for a vector A = (a1, . . . , an) given by

‖A‖2 =
n∑
i=1

a2
i = tr AAT, (2.1)

where tr denotes the trace of a square matrix.
Let R

n×n be the space of n × n matrices with real entries where I is the identity matrix.
Let diag(a1, a2, . . . , an) denote the n × n matrix with the scalar entries a1, a2, . . . , an on the
diagonal and 0 elsewhere. For A = (aij) ∈ R

n×d the norm denoted by ‖·‖ is defined by

‖A‖2 =
n∑
i=1

d∑
j=1

|aij |2. (2.2)

The set of complex numbers is denoted by C; the real part of z in C being denoted by
Re z. The Laplace transform of the function A : [0,∞)→R

n×d is defined as

Â(z) =
∫∞

0
A(t)e−ztdt. (2.3)

If ε ∈ R and
∫∞
0 ‖A(t)‖e−εtdt < ∞ then Â(z) exists for Re z ≥ ε and z �→ Â(z) is analytic for

Re z > ε.
If J is an interval in R and V a finite-dimensional normed space with norm ‖·‖ then

C(J, V ) denotes the family of continuous functions φ : J→V . The space of Lebesgue integrable
functions φ : [0,∞)→V will be denoted by L1([0,∞), V ) where

∫∞
0 ‖φ(t)‖dt < ∞. The space

of Lebesgue square-integrable functions φ : [0,∞)→V will be denoted by L2([0,∞), V ) where∫∞
0 ‖φ(t)‖2dt < ∞. When V is clear from the context, it is omitted it from the notation.

We now make our problem precise. We assume that the function K : [0,∞)→R
n×n

satisfies

K ∈ C([0,∞),Rn×n) ∩ L1([0,∞),Rn×n), (2.4)

the function f : [0,∞)→R
n satisfies

f ∈ C([0,∞),Rn) ∩ L1([0,∞),Rn), (2.5)

and the function Σ : [0,∞)→R
n×d satisfies

Σ ∈ C([0,∞),Rn×d). (2.6)

Due to (2.4) we may define K1 to be a function K1 ∈ C([0,∞),Rn×n)with

K1(t) =
∫∞

t

K(s)ds, t ≥ 0, (2.7)

where this function defines the tail of the kernel K. Similarly, due to (2.5), we may define f1
to be a function f1 ∈ C([0,∞),Rn) given by

f1(t) =
∫∞

t

f(s)ds, t ≥ 0. (2.8)
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We let {B(t)}t≥0 denote d-dimensional Brownian motion on a complete probability space
(Ω,F, {FB(t)}t≥0,P) where the filtration is the natural one FB(t) = σ{B(s) : 0 ≤ s ≤ t}.

Under the hypothesis (2.4), it is well known that (1.2a)-(1.2b) has a unique continuous
solutionR, which is continuously differentiable.We define the function t �→ X(t;X0, f,Σ) to be
the unique solution of the initial value problem (1.1a)-(1.1b). If Σ and f are continuous then
for any deterministic initial conditionX0 there exists an almost surely unique continuous and
FB-adapted solution to (1.1a)-(1.1b) given by

X(t;X0,Σ, f) = R(t)X0 +
∫ t

0
R(t − s)f(s)ds +

∫ t

0
R(t − s)Σ(s)dB(s), t ≥ 0. (2.9)

When X0, f , and Σ are clear from the context, we omit them from the notation.
The notion of convergence and integrability in pth mean and almost sure senses

are now defined: the R
n-valued stochastic process {X(t)}t≥0 converges in pth mean to X∞ if

limt→∞ E‖X(t) − X∞‖p = 0; the process is pth mean exponentially convergent to X∞ if there
exists a deterministic βp > 0 such that

lim sup
t→∞

1
t
log(E‖X(t) −X∞‖p) ≤ −βp; (2.10)

we say that the difference between the stochastic process {X(t)}t≥0 and X∞ is integrable in the
pth mean sense if

∫∞

0
E‖X(t) −X∞‖pdt < ∞. (2.11)

If there exists a P-null setΩ0 such that for everyω/∈Ω0, the following holds: limt→∞ X(t, ω) =
X∞(ω), then X converges almost surely to X∞; we say X is almost surely exponentially
convergent to X∞ if there exists a deterministic β0 > 0 such that

lim sup
t→∞

1
t
log ‖X(t, ω) −X∞(ω)‖ ≤ −β0, a.s. (2.12)

Finally, the difference between the stochastic process {X(t)}t≥0 and X∞ is square integrable in
the almost sure sense if ∫∞

0
‖X(t, ω) −X∞(ω)‖2dt < ∞. (2.13)

Henceforth, E[Xp] will be denoted by EXp except in cases where the meaning may be
ambiguous. A number of inequalities are used repeatedly in the sequel; they are stated here
for clarity. If, for p, q ∈ (0,∞), the finite-dimensional random variables X and Y satisfy
E‖X‖p < ∞ and E‖Y‖q < ∞, respectively, then the Lyapunov inequality is useful when
considering the pth mean behaviour of random variables as any exponent p > 0 may be
considered:

E[‖X‖p]1/p ≤ E[‖X‖q]1/q, 0 < p ≤ q. (2.14)

The following proves useful in manipulating norms:

(
n∑
i=1

|xi|
)k

≤ nk−1
n∑
i=1

|xi|k, n, k ∈ N. (2.15)
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3. Discussion of results

We begin by stating the main result of this paper. That is, we state the necessary and sufficient
conditions required on the resolvent, kernel, deterministic perturbation, and noise terms
for the solution of (1.1a)-(1.1b) to converge exponentially to a limiting random variable. In
this paper, we are particularly interested in the case when the limiting random variable is
nontrivial, although the result is still true for the case when the limiting value is zero.

Theorem 3.1. Let K satisfy (2.4) and
∫∞

0
t2‖K(t)‖dt < ∞, (3.1)

let Σ satisfy (2.6), and let f satisfy (2.5). If K satisfies

each entry of K does not change sign on [0,∞), (3.2)

then the following are equivalent.

(i) There exists a constant matrix R∞ such that the solution R of (1.2a)-(1.2b) satisfies

R − R∞ ∈ L2([0,∞),Rn×n), (3.3)

and there exist constants α > 0, γ > 0, ρ > 0 , and c1 > 0 such that K satisfies
∫∞

0
‖K(s)‖eαs ds < ∞, (3.4)

Σ satisfies
∫∞

0
‖Σ(s)‖2e2γs ds < ∞, (3.5)

and f1, the tail of f , defined by (2.8) satisfies

‖f1(t)‖ ≤ c1e
−γt, t ≥ 0. (3.6)

(ii) For all initial conditions X0 and constants p > 0 there exists an a.s. finite FB(∞)-
measurable random variable X∞(X0,Σ, f) with E‖X∞‖p < ∞ such that the unique
continuous adapted process X(·;X0,Σ, f) which obeys (1.1a)-(1.1b) satisfies

E[‖X(t) −X∞‖p] ≤ m∗
pe

−β∗pt, t ≥ 0, (3.7)

where β∗p and m∗
p = m∗

p(X0) are positive constants.

(iii) For all initial conditions X0 there exists an a.s. finite FB(∞)-measurable random variable
X∞(X0,Σ, f) such that the unique continuous adapted process X(·;X0,Σ, f) which obeys
(1.1a)-(1.1b) satisfies

lim sup
t→∞

1
t
log ‖X(t) −X∞‖ ≤ −β∗0 a.s., (3.8)

where β∗0 is a positive constant.
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The proof of Theorem 3.1 is complicated by the presence of two perturbations so as an
initial step the case when f := 0 is considered. That is we consider the conditions required for
exponential convergence of (1.4a)-(1.4b) to a limiting random variable.

Theorem 3.2. Let K satisfy (2.4) and (3.1) and let Σ satisfy (2.6). If K satisfies (3.2) then the
following are equivalent.

(i) There exists a constant matrix R∞ such that the solution R of (1.2a)-(1.2b) satisfies (3.3)
and there exist constants α > 0 and γ > 0 such that K and Σ satisfy (3.4) and (3.5),
respectively.

(ii) For all initial conditions X0 and constants p > 0 there exists an a.s. finite FB(∞)-
measurable random variable X∞(X0,Σ) with E‖X∞‖p < ∞ such that the unique
continuous adapted process X(·;X0,Σ) which obeys (1.4a)-(1.4b) satisfies

E[‖X(t) −X∞‖p] ≤ mpe
−βpt, t ≥ 0, (3.9)

where βp and mp = mp(X0) are positive constants.

(iii) For all initial conditions X0 there exists an a.s. finite FB(∞)-measurable random variable
X∞(X0,Σ) such that the unique continuous adapted process X(·;X0,Σ) which obeys
(1.4a)-(1.4b) satisfies

lim sup
t→∞

1
t
log ‖X(t) −X∞‖ ≤ −β0 a.s., (3.10)

where β0 is a positive constant.

This result is interesting in its own right as it generalises a result in [4]where necessary
and sufficient conditions for exponential convergence to zero are found. Theorem 3.2
collapses to this case if R∞ = 0.

It is interesting to note the relationship between the behaviour of the solutions of
(1.1a)-(1.1b), (1.2a)-(1.2b), (1.3a)-(1.3b), and (1.4a)-(1.4b) and the behaviour of the inputs
K, f , and Σ. It is seen in [1] thatK being exponentially integrable is the crucial condition for
exponential convergence when we consider the resolvent equation. Each perturbed equation
then builds on this resolvent case: for the deterministically perturbed equation we require
the exponential integrability of K and the exponential decay of the tail of the perturbation
f (see [1]); for the stochastically perturbed case we require the exponential integrability of
K and the exponential square integrability of Σ. In the stochastically and deterministically
perturbed case it is seen that the perturbations do not interact in a way that exacerbates or
diminishes the influence of the perturbations on the system: we can isolate the behaviours of
the perturbations and show that the same conditions on the perturbations are still necessary
and sufficient.

Theorem 3.1 has application in the analysis of initial history problems. In particular
this theoretical result could be used to interpret the equation as an epidemiological model.
Conditions under which a disease becomes endemic (which is the interpretation that is given
when solutions settle down to a nontrivial limit) were studied in [9]. The theoretical results
obtained in this paper could be exploited to highlight the speed at which this can occur within
a population.

The remainder of this paper deals with the proofs of Theorems 3.1 and 3.2. In Section 4
we prove the sufficiency of conditions on R, K, and Σ for the exponential convergence of



John A. D. Appleby et al. 7

the solution of (1.4a)-(1.4b) while in Section 5 we prove the necessity of these conditions.
In Section 6 we prove the sufficiency of conditions on R, K, Σ, and f for the exponential
convergence of the solution of (1.1a)-(1.1b), while Section 7 deals with the necessity of the
condition on Σ. In Section 8 we combine our results to prove the main theorems, namely,
Theorems 3.1 and 3.2.

4. Sufficient conditions for exponential convergence of solutions of (1.4a)-(1.4b)

In this section, sufficient conditions for exponential convergence of solutions of (1.4a)-(1.4b)
to a nontrivial limit are obtained. Proposition 4.1 concerns convergence in the pth mean sense
while Proposition 4.2 deals with the almost sure case.

Proposition 4.1. Let K satisfy (2.4) and (3.1), let Σ satisfy (2.6) and R∞ be a constant matrix such
that the solution R of (1.2a)-(1.2b) satisfies (3.3). If there exist constants α > 0 and γ > 0 such that
(3.4) and (3.5) hold, then there exist constants βp > 0, independent of X0, and mp = mp(X0) > 0,
such that statement (ii) of Theorem 3.2 holds.

Proposition 4.2. Let K satisfy (2.4) and (3.1), let Σ satisfy (2.6) and R∞ be a constant matrix such
that the solution R of (1.2a)-(1.2b) satisfies (3.3). If there exist constants α > 0 and γ > 0 such that
(3.4) and (3.5) hold, then there exists a constant β0 > 0, independent of X0 such that statement (iii)
of Theorem 3.2 holds.

In [8], the conditions which give mean square convergence to a nontrivial limit
were considered. So a natural progression in this paper is the examination of the speed of
convergence in the mean square case. Lemma 4.3 examines the case when p = 2 in order to
highlight this important case. This lemma may be then used when generalising the result to
all p > 0.

Lemma 4.3. Let K satisfy (2.4) and (3.1), let Σ satisfy (2.6), and let R∞ be a constant matrix such
that the solution R of (1.2a)-(1.2b) satisfies (3.3). If there exist constants α > 0 and γ > 0 such that
(3.4) and (3.5) hold, then there exist constants λ > 0, independent of X0, and m = m(X0) > 0, such
that

E‖X(t) −X∞‖2 ≤ m(X0)e−2λt, t ≥ 0. (4.1)

From [8, 9] it is evident that R − R∞ ∈ L2([0,∞),Rn×n) is a more natural condition
on the resolvent than R − R∞ ∈ L1([0,∞),Rn×n) when studying convergence of solutions of
(1.4a)-(1.4b). However, the deterministic results obtained in [1] are based on the assumption
that R − R∞ ∈ L1([0,∞),Rn×n). Lemma 4.4 is required in order to make use of these results in
this paper; this result isolates conditions that ensure the integrability of R − R∞ once R − R∞
is square integrable.

Lemma 4.4. Let K satisfy (2.4) and (3.1) and let R∞ be a constant matrix such that the solution R
of (1.2a)-(1.2b) satisfies (3.3). Then the solution R of (1.2a)-(1.2b) satisfies

R − R∞ ∈ L1([0,∞),Rn×n). (4.2)

We now state some supporting results. It is well known that the behaviour of
the resolvent Volterra equation influences the behaviour of the perturbed equation. It is
unsurprising therefore that an earlier result found in [1] concerning exponential convergence
of the resolvent R to a limit R∞ in needed in the proof of Theorems 3.1 and 3.2.
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Theorem 4.5. LetK satisfy (2.4) and (3.1). Suppose there exists a constant matrix R∞ such that the
solution R of (1.2a)-(1.2b) satisfies (4.2). If there exists a constant α > 0 such that K satisfies (3.4)
then there exist constants β > 0 and c > 0 such that

‖R(t) − R∞‖ ≤ ce−βt, t ≥ 0. (4.3)

In the proof of Propositions 4.1 and 4.2, an explicit representation of X∞ is required. In
[8, 9] the asymptotic convergence of the solution of (1.4a)-(1.4b) was considered. Sufficient
conditions for convergence were obtained and an explicit representation of X∞ was found:

Theorem 4.6. Let K satisfy (2.4) and
∫∞

0
t‖K(t)‖dt < ∞, (4.4)

and let Σ satisfy (2.6) and
∫∞

0
‖Σ(t)‖2dt < ∞. (4.5)

Suppose that the resolvent R of (1.2a)-(1.2b) satisfies (3.3). Then the solution X of (1.4a)-(1.4b)
satisfies limt→∞ X(t) = X∞ almost surely, where X∞ is an almost surely finite and FB(∞)-
measurable random variable given by

X∞ = R∞

(
X0 +

∫∞

0
Σ(t)dB(t)

)
a.s. (4.6)

Lemma 4.7 concerns the structure of X∞ in the almost sure case. It was proved in [9].

Lemma 4.7. LetK satisfy (2.4) and (4.4). Suppose that for all initial conditionsX0 there is an almost
surely finite random variable X∞(X0,Σ) such that the solution t �→ X(t;X0,Σ) of (1.4a)-(1.4b)
satisfies

lim
t→∞

X(t;X0,Σ) = X∞(X0,Σ) a.s., (4.7)

X(·;X0,Σ) −X∞(X0,Σ) ∈ L2([0,∞),Rn) a.s. (4.8)

Then (
A +

∫∞

0
K(s)ds

)
X∞ = 0 a.s. (4.9)

It is possible to apply this lemma using our a priori assumptions due to Theorem 4.8,
which was proved in [9].

Theorem 4.8. LetK satisfy (2.4) and (4.4) and let Σ satisfy (2.6). If Σ satisfies (4.5) and there exists
a constant matrix R∞ such that the solution R of (1.2a)-(1.2b) satisfies (3.3), then for all initial
conditions X0 there is an almost surely finite FB(∞)-measurable random variable X∞(X0,Σ), such
that the unique continuous adapted process X(·;X0,Σ) which obeys (1.4a)-(1.4b) satisfies (4.7).

Moreover, if the function Σ also satisfies
∫∞

0
t‖R∞Σ(t)‖2dt < ∞, (4.10)

then (4.8) holds.
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Lemma 4.9 below is required in the proof of Lemma 4.4. It is proved in [8]. Before
citing this result some notation is introduced. Let M = A +

∫∞
0 K(t)dt and T be an invertible

matrix such that J = T−1MT has Jordan canonical form. Let ei = 1 if all the elements of the ith
row of J are zero, and ei = 0 otherwise. Let Dp = diag(e1, e2, . . . , en) and put P = TDpT

−1 and
Q = I − P .

Lemma 4.9. LetK satisfy (2.4) and (4.4). If there exists a constant matrix R∞ such that the resolvent
R of (1.2a)-(1.2b) satisfies (3.3), then

det[I + F̂(z)]/= 0, Re z ≥ 0, (4.11)

where F is defined by

F(t) = −e−t(Q +QA) − (e ∗QK)(t) + P

∫∞

t

K(u)du, t ≥ 0. (4.12)

Lemma 4.10 concerns the moments of a normally distributed random variable. It can
be extracted from [4, Theorem 3.3] and it is used in Proposition 4.1.

Lemma 4.10. Suppose the function σ ∈ C([0,∞) × [0,∞),Rp×r) then

E

∥∥∥∥
∫b

a

σ(s, t)dB(s)
∥∥∥∥
2m

≤ dm(p, r)
(∫b

a

‖σ(s, t)‖2ds
)m

, (4.13)

where dm(p, r) = pm+1r2m+1(2m)!(m!2m)−1c2(p, r)
m.

The following lemma is used in Proposition 4.2. A similar result is proved in [4].

Lemma 4.11. Suppose that K̃ ∈ C([0,∞),Rn×n) ∩ L1([0,∞),Rn×n) and
∫∞

0
‖K̃(s)‖eα̃sds < ∞. (4.14)

If λ̃ > 0 and η̃ = 2λ̃ ∧ α̃ then

∫ t

0
e−2λ̃(t−s)e−α̃s‖K̃(s)‖ds ≤ ce−η̃t, (4.15)

where c is a positive constant.

The proofs of Propositions 4.1 and 4.2 and Lemmas 4.3 and 4.4 are now given.

Proof of Lemma 4.3. From Theorem 4.6 we see thatX(t)→X∞ almost surely whereX∞ is given
by (4.6), so we see that

E‖X∞‖2 = E[tr(X∞XT
∞)] = ‖R∞X0‖2 +

∫∞

0
‖R∞Σ(s)‖2ds < ∞. (4.16)

Since

E[‖X(t) −X∞‖2] = E[tr(X(t) −X∞)(X(t) −X∞)
T ], (4.17)
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we use (2.9) and (4.6) to expand the right hand side of (4.17) to obtain

E[‖X(t) −X∞‖2] = ‖(R(t) − R∞)X0‖2 +
∫ t

0
‖(R(t − s) − R∞)Σ(s)‖2ds +

∫∞

t

‖R∞Σ(s)‖2ds.
(4.18)

In order to obtain an exponential upper bound on (4.18) each term is considered individually.
We begin by considering the first term on the right-hand side of (4.18). Using (3.1) and
(3.3) we can apply Lemma 4.4 to obtain (4.2). Then using (3.1), (4.2), and (3.4) we see from
Theorem 4.5 that

‖(R(t) − R∞)X0‖2 ≤ c1‖X0‖2e−2βt. (4.19)

We provide an argument to show that the second term decays exponentially. Using (3.5) and
the fact that R decays exponentially quickly to R∞ we can choose 0 < λ < min(β, γ) such
that eλΣ and eλ(R − R∞) ∈ L2[0,∞) where the function eλ is defined by eλ(t) = eλt. Since the
convolution of an L2[0,∞) function with an L2[0,∞) function is itself an L2[0,∞) function
we get

e2λt
∫ t

0
‖(R(t − s) − R∞)Σ(s)‖2ds ≤

∫ t

0
e2λ(t−s)‖R(t − s) − R∞‖2e2λs‖Σ(s)‖2ds ≤ c2, (4.20)

and so the second term of (4.18) decays exponentially quickly.
We can show that the third term on the right hand side of (4.18) decays exponentially

using (3.5) and the following argument:

Σ :=
∫∞

0
‖Σ(s)‖2e2γsds ≥

∫∞

t

‖Σ(s)‖2e2γsds ≥ e2γt
∫∞

t

‖Σ(s)‖2ds. (4.21)

Combining these facts we see that

E[‖X(t) −X∞‖2] ≤ m(X0)e−2λt, (4.22)

where m(X0) = c1‖X0‖2 + c2 + Σ‖R∞‖2 and λ < min(β, γ).

Proof of Proposition 4.1. Consider the case where 0 < p ≤ 2 and p > 2 separately. We begin with
the case where 0 < p ≤ 2. The argument given by (4.16) shows that E[‖X∞‖2] < ∞. Now
applying Lyapunov’s inequality we see that

E‖X∞‖p ≤ E[‖X∞‖2]p/2 < ∞. (4.23)

We now show that (3.9) holds for 0 ≤ p ≤ 2. Lyapunov’s inequality and Lemma 4.3 can be
applied as follows:

E[‖X(t) −X∞‖p] ≤ E[‖X(t) −X∞‖2]p/2 ≤ mp(X0)e−βpt, t ≥ 0, (4.24)

where mp(X0) = m(X0)
p/2 and βp = λp.

Now consider the case where p > 2. In this case, there exists a constant m ∈ N such
that 2(m − 1) < p ≤ 2m. We now seek an upper bound on E‖X∞‖2m and E[‖X(t) − X∞‖2m],
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which will in turn give an upper bound on E‖X∞‖p and E[‖X(t)−X∞‖p] by using Lyapunov’s
inequality. By applying Lemma 4.10 we see that

E‖X∞‖2m ≤ c‖R∞X0‖2m + c

(∫∞

0
‖R∞Σ(s)‖2ds

)m

< ∞, (4.25)

where c is a positive constant, so E‖X∞‖p ≤ E[‖X∞‖2m]p/2m < ∞.
Now consider E[‖X(t) − X∞‖2m]. Using the variation of parameters representation

of the solution and the expression obtained for X∞, taking norms, raising both sides of the
equation to the 2mth power, then taking expectations across the inequality, we arrive at

E[‖X(t) −X∞‖2m]

≤ 32m−1
(
‖(R(t) − R∞)X0‖2m + E

[∥∥∥∥
∫ t

0
(R(t − s) − R∞)Σ(s)dB(s)

∥∥∥∥
2m]

+ E

[∥∥∥∥
∫∞

t

R∞Σ(s)dB(s)
∥∥∥∥
2m])

.

(4.26)

We consider each term on the right hand side of (4.26). By Theorem 4.5 we have

‖(R(t) − R∞)X0‖2m ≤ c1‖X0‖2me−2mβt. (4.27)

Now, consider the second term on the right-hand side of (4.26). By (4.20)we see that
∫ t
0‖(R(t−

s) − R∞)Σ(s)‖2ds ≤ c2e
−2λt where λ < min(β, γ). Using this and Lemma 4.10 we see that

E

[∥∥∥∥
∫ t

0
(R(t − s) − R∞)Σ(s)dB(s)

∥∥∥∥
2m]

≤ dm(n, d)
(∫ t

0
‖R(t − s) − R∞‖2‖Σ(s)‖2ds

)m

≤ dm(n, d)cm2 e
−2mλt.

(4.28)

Using (4.21) combined with Lemma 4.10 and Fatou’s lemma, we show that the third
term decays exponentially quickly:

E

[∥∥∥∥
∫∞

t

Σ(s)dB(s)
∥∥∥∥
2m]

≤ dm(n, d)
(∫∞

t

‖Σ(s)‖2ds
)m

≤ dm(n, d)Σ
m
e−2mγt.

(4.29)

Combining (4.27), (4.28), and (4.29) the inequality (4.26) becomes

E[‖X(t) −X∞‖2m]

≤ 32m−1(c1‖X0‖2me−2mβt + dm(n, d)cm2 e
−2mλt + dm(n, d)‖R∞‖2mΣ

m
e−2mγt).

(4.30)

Using Lyapunov’s inequality, the inequality (4.30) implies

E[‖X(t) −X∞‖p] ≤ mp(X0)e−βpt, (4.31)

where mp(X0) = 3p((2m−1)/2m)(c1‖X0‖2m + dm(n, d)cm2 + dm(n, d)‖R∞‖2mΣ
m
)
p/2m

and βp = λp.
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Proof of Proposition 4.2. In order to prove this proposition we show that

E

[
sup

n−1≤t≤n
‖X(t) −X∞‖2

]
≤ m̃(X0)e−2η(n−1), η > 0. (4.32)

For each t > 0 there exists n ∈ N such that n − 1 ≤ t < n. Define Δ(t) = X(t) −X∞. Integrating
(1.4a)-(1.4b) over [n − 1, t], then adding and subtracting X∞ on both sides we get

X(t) −X∞ = (X(n − 1) −X∞) +
∫ t

n−1
A(X(s) −X∞)ds

+
∫ t

n−1

∫s

0
K(s − u)(X(u) −X∞)duds +

∫ t

n−1
Σ(s)dB(s)

+
∫ t

n−1

(
A +

∫∞

0
K(u)du

)
X∞ ds −

∫ t

n−1

∫∞

s

K(v)X∞ dv ds.

(4.33)

By applying Theorem 4.8, we see that (4.7) and (4.8) hold so Lemma 4.7 may be applied to
obtain

Δ(t) = Δ(n − 1) +
∫ t

n−1
(AΔ(s) + (K∗Δ)(s))ds +

∫ t

n−1
Σ(s)dB(s) −

∫ t

n−1
K1(s)dsX∞. (4.34)

Taking norms on both sides of (4.34), squaring both sides, taking suprema, before finally
taking expectations yields:

E

[
sup

n−1≤t≤n
‖Δ(t)‖2

]
≤ 4

{
E‖Δ(n − 1)‖2 + E

[(∫n

n−1
‖A‖‖Δ(s)‖ + (‖K‖∗‖Δ‖)(s)ds

)2]

+ E

[
sup

n−1≤t≤n

∥∥∥∥
∫ t

n−1
Σ(s)dB(s)

∥∥∥∥
2]

+
(∫n

n−1
‖K1(s)‖ds

)2

E‖X∞‖2
}
.

(4.35)

We now consider each term on the right hand side of (4.35). From Lemma 4.3 we see that the
first term satisfies

E[‖Δ(n − 1)‖2] ≤ m(X0)e−2λ(n−1). (4.36)

In order to obtain an exponential bound on the second term on the right hand side of (4.26)
we make use of the Cauchy-Schwarz inequality as follows:
(∫n

n−1
‖A‖‖Δ(s)‖ + (‖K‖∗‖Δ‖)(s)ds

)2

≤ 2
∫n

n−1

(‖A‖2‖Δ(s)‖2 + (‖K‖∗‖Δ‖)2(s))ds

≤ 2
∫n

n−1

[
‖A‖2‖Δ(s)‖2 +

(∫s

0
eα(s−u)/2‖K(s − u)‖1/2e−α(s−u)/2‖K(s − u)‖1/2‖Δ(s)‖du

)2]
ds

≤ 2
∫n

n−1

[
‖A‖2‖Δ(s)‖2 +Kα

∫ s

0
e−α(s−u)‖K(s − u)‖‖Δ(s)‖2 du

]
ds,

(4.37)
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whereKα =
∫∞
0 e

αt‖K(t)‖dt. Take expectations and examine the two terms within the integral.
Using Lemma 4.3 we obtain

E

[∫n

n−1
‖A‖2‖Δ(s)‖2ds

]
≤ ‖A‖2m(X0)

∫n

n−1
e−2λsds ≤ c1(X0)e−2λ(n−1). (4.38)

In order to obtain an exponential upper bound for the second term within the integral we
apply Lemma 4.11 with K = K̃, α = α̃, λ = λ̃ and η = η̃:

E

[∫n

n−1
Kα

∫ s

0
e−α(s−u)‖K(s − u)‖‖Δ(s)‖2 duds

]
≤ m(X0)Kα

∫n

n−1

∫s

0
e−αu‖K(u)‖e−2λ(s−u) duds

≤ c2(X0)e−η(n−1).
(4.39)

Next, we obtain an exponential upper bound on the third term. Using (4.21) and the
Burkholder-Davis-Gundy inequality, there exists a constant c3 > 0 such that

E

[
sup

n−1≤t≤n

∥∥∥∥
∫ t

n−1
Σ(s)dB(s)

∥∥∥∥
2]

≤ c3Σe−2γ(n−1). (4.40)

Now consider the last term on the right hand side of (4.35). Using (3.4)we see that

Kα :=
∫∞

0
‖K(s)‖eαsds ≥ eαt

∫∞

t

‖K(s)‖ds ≥ eαt‖K1(t)‖. (4.41)

Using this and the fact that E‖X∞‖2 < ∞ (see (4.16))we obtain

(∫n

n−1
‖K1(s)‖ds

)2

E‖X∞‖2 ≤ E‖X∞‖2
(∫n

n−1
Kαe

−αsds
)2

≤ c4e
−2α(n−1). (4.42)

Combining (4.36), (4.38), (4.39), (4.40), and (4.42) we obtain

E

[
sup

n−1≤t≤n
‖X(t) −X∞‖2

]
≤ m̃(X0)e−2η(n−1), (4.43)

where m̃(X0) = 4(m(X0) + c1(X0) + c2(X0) + c3Σ + c4) and η < min(2λ, α).
We can now apply the line of reasoning used in [10, Theorem 4.4.2] to obtain (3.10).

Proof of Lemma 4.4. We use a reformulation of (1.2a)-(1.2b) in the proof of this result. It is
obtained as follows: multiply both sides of R′(s) = AR(s) + (K∗R)(s) across by the function
Φ(t−s), whereΦ(t) = P +e−tQ, integrate over [0, t], use integration by parts, add and subtract
R∞ from both sides to obtain

Y (t) + (F∗Y )(t) = G(t), t ≥ 0, (4.44)

where Y = R − R∞, F is defined by (4.12) and G is defined by

G(t) = e−tQ − e−t(QR∞ +QAR∞) +
∫∞

t

∫∞

s

PK(u)R∞ duds

−
∫∞

t

QK(u)R∞ du − (e ∗QKR∞)(t), t ≥ 0.

(4.45)
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Consider the reformulation of (1.2a)-(1.2b) given by (4.44). It is well known that Y can
be expressed as

Y (t) = G(t) −
∫ t

0
r(t − s)G(s)ds, (4.46)

where the function r satisfies r + F∗r = F and r + r∗F = F. We refer the reader to [11] for
details. Consider the first term on the right hand side of (4.46). As (3.1) holds it is clear that
the function G is integrable. Now consider the second term. Since (3.3) and (4.4) hold we
may apply Lemma 4.9 to obtain (4.11). Now we may apply a result of Paley and Wiener (see
[11]) to see that r is integrable. The convolution of an integrable function with an integrable
function is itself integrable. Now combining the arguments for the first and second terms we
see that (4.2)must hold.

5. On the necessity of (3.5) for exponential convergence of solutions of (1.4a)-(1.4b)

In this section, the necessity of condition (3.5) for exponential convergence in the almost sure
and pth mean senses is shown. Proposition 5.1 concerns the necessity of the condition in the
almost sure case while Proposition 5.2 deals with the pth mean case.

Proposition 5.1. Let K satisfy (2.4) and (4.4) and Σ satisfy (2.6). If there exists a constant α > 0
such that (3.4) holds, and if for all X0 there is a constant vector X∞(X0,Σ) such that the solution
t �→ X(t;X0,Σ) of (1.4a)-(1.4b) satisfies statement (iii) of Theorem 3.2, then there exists a constant
γ > 0, independent of X0, such that (3.5) holds.

Proposition 5.2. Let K satisfy (2.4) and (4.4) and Σ satisfy (2.6). If there exists a constant α > 0
such that (3.4) holds, and if for all X0 there is a constant vector X∞(X0,Σ) such that the solution
t �→ X(t;X0,Σ) of (1.4a)-(1.4b) satisfies statement (ii) of Theorem 3.2, then there exists a constant
γ > 0, independent of X0, such that (3.5) holds.

In order to prove these propositions the integral version of (1.4a)-(1.4b) is considered.
By reformulating this version of the equation an expression for a term related to the
exponential integrability of the perturbation is found. Using various arguments, including
the Martingale Convergence Theorem in the almost sure case, this term is used to show that
(3.5) holds.

Some supporting results are now stated. Lemma 5.3 is the analogue of Lemma 4.7 in
the mean square case. It was proved in [8].

Lemma 5.3. LetK satisfy (2.4) and (4.4). Suppose that for all initial conditionsX0 there is aFB(∞)-
measurable and almost surely finite random variable X∞(X0,Σ) with E‖X∞‖2 < ∞ such that the
solution t �→ X(t;X0,Σ) of (1.4a)-(1.4b) satisfies

lim
t→∞

E‖X(t;X0,Σ) −X∞(X0,Σ)‖2 = 0,

E‖X(·;X0,Σ) −X∞(X0,Σ)‖2 ∈ L1([0,∞),R).
(5.1)

Then X∞ obeys

(
A +

∫∞

0
K(s)ds

)
X∞ = 0 a.s. (5.2)
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Lemma 5.4 may be extracted from [4]; it is required in the proof of Proposition 5.2.

Lemma 5.4. LetN = (N1, . . . ,Nn) whereNi∼N(0, v2
i ) for i = 1, . . . , n. Then there exists a {vi}ni=1-

independent constant d1 > 0 such that

E[‖N‖2] ≤ d1E[‖N‖]2. (5.3)

Proof of Proposition 5.1. In order to prove this result we follow the argument used in [4,
Theorem 4.1]. Let 0 < γ < α ∧ β0. By defining the process Z(t) = eγtX(t) and the matrix
κ(t) = eγtK(t) we can rewrite (1.4a)-(1.4b) as

dZ(t) =
(
(γI +A)Z(t) +

∫ t

0
κ(t − s)Z(s)ds

)
dt + eγtΣ(t)dB(t), (5.4)

the integral form of which is

Z(t) − Z(0) = (γI +A)
∫ t

0
Z(s)ds +

∫ t

0

∫ s

0
κ(s − u)Z(u)duds +

∫ t

0
eγsΣ(s)dB(s). (5.5)

Using Z(t) = eγtX(t) and rearranging this becomes
∫ t

0
eγsΣ(s)dB(s) = eγtX(t) −X0 − (γI +A)

∫ t

0
eγsX(s)ds −

∫ t

0
eγs

∫s

0
K(s − u)X(u)duds.

(5.6)

Adding and subtracting X∞ from the right hand side and applying Lemma 4.7 we obtain:
∫ t

0
eγsΣ(s)dB(s) = eγt(X(t) −X∞) − (X0 −X∞) − (γI +A)

∫ t

0
eγs(X(s) −X∞)ds

−
∫ t

0
eγs

∫ s

0
K(s − u)(X(u) −X∞)duds +

∫ t

0
eγsK1(s)dsX∞.

(5.7)

Consider each term on the right hand side of (5.7). We see that the first term tends to zero as
(3.10) holds and γ < β0. The second term is finite by hypothesis. Again, using the fact that
γ < β0 and that assumption (3.10) holds we see that eγ(X −X∞) ∈ L1[0,∞), so the third term
tends to a limit as t→∞. Now consider the fourth term. Since 0 < γ < α ∧ β0, we can choose
γ1 > 0 such that γ < γ1 < α ∧ β0. So the functions t �→ eγ1tK(t) and t �→ eγ1t(X(t) −X∞) are both
integrable. The convolution of these two integrable functions is itself an integrable function,
so ∥∥∥∥

∫ s

0
K(s − u)(X(u) −X∞)du

∥∥∥∥ ≤ ce−γ1s. (5.8)

Thus, it is clear that the fourth term has a finite limit as t→∞. Finally, the fifth term on the
right hand side of (5.7) has a finite limit at infinity, using (4.41).

Each term on the right hand side of the inequality has a finite limit as t→∞, so
therefore

lim
t→∞

∫ t

0
eγsΣ(s)dB(s) exists and is almost surely finite. (5.9)

The Martingale Convergence Theorem [12, Proposition 5.1.8] may now be applied
component by component to obtain (3.5).
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Proof of Proposition 5.2. By Lemma 5.3, (5.7) still holds. Define γ < α ∧ β1, take norms and
expectations across (5.7) to obtain

E

[∥∥∥∥
∫ t

0
eγsΣ(s)dB(s)

∥∥∥∥
]
≤ E[eγt‖X(t) −X∞‖] + E[‖X0 −X∞‖]

+ ‖γI +A‖
∫ t

0
E[eγs‖X(s) −X∞‖]ds

+
∫ t

0
eγs

∫ s

0
‖K(u)‖E[‖X(s − u) −X∞‖]duds

+
∫ t

0
eγs‖K1(s)‖dsE‖X∞‖.

(5.10)

There exists m1 such that

E[eγt‖X(t) −X∞‖] ≤ m1e
−(β1−γ)t, (5.11)

thus the first, second and third terms on the right hand side of (5.10) are uniformly bounded
on [0,∞). Now consider the fourth term. Since 0 < γ < α ∧ β1, we can choose γ1 > 0 such that
γ < γ1 < α∧β1 so that the functions t �→ eγ1tK(t) and t �→ eγ1tE‖X(t)−X∞‖ are both integrable.
The convolution of two integrable functions is itself an integrable function, so

∫s

0
‖K(s − u)‖E‖X(u) −X∞‖du ≤ ce−γ1s, (5.12)

so it is clear that the fourth term is uniformly bounded on [0,∞). Finally, we consider the
final term on the right hand side of (5.10). Using (4.41)we obtain

∫ t

0
eγs‖K1(s)‖dsE‖X∞‖ ≤ KαE‖X∞‖

∫ t

0
e−(α−γ)s ds < ∞, (5.13)

since γ < α. Thus there is a constant c > 0 such that

E

[∥∥∥∥
∫ t

0
eγsΣ(s)dB(s)

∥∥∥∥
]
≤ c. (5.14)

The proof now follows the line of reasoning found in [4, Theorem 4.3]: observe that

∥∥∥∥
∫ t

0
eγsΣ(s)dB(s)

∥∥∥∥
2

=
n∑
i=1

Ni(t)
2, (5.15)

where

Ni(t) =
d∑
j=1

∫ t

0
eγsΣij(s)dBj(s). (5.16)
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It is clear that Ni(t) is normally distributed with zero mean and variance given by

vi(t)
2 =

d∑
j=1

∫ t

0
e2γsΣij(s)

2ds. (5.17)

Lemma 5.4 and (5.14)may now be applied to obtain:

∫ t

0
e2γs‖Σ(s)‖2 ds =

n∑
i=1

d∑
j=1

∫ t

0
e2γs|Σij(s)|2 ds

=
n∑
i=1

vi(t)
2

= E

[∥∥∥∥
∫ t

0
eγsΣ(s)dB(s)

∥∥∥∥
2]

≤ d1E

[∥∥∥∥
∫ t

0
eγsΣ(s)dB(s)

∥∥∥∥
]2

≤ d1c
2.

(5.18)

Allowing t→∞ on both sides of this inequality yields the desired result.

6. Sufficient conditions for exponential convergence of solutions of (1.1a)-(1.1b)

In this section, sufficient conditions for exponential convergence of solutions of (1.1a)-
(1.1b) to a nontrivial limit are found. Proposition 6.1 concerns the pth mean sense while
Proposition 6.2 deals with the almost sure case.

Proposition 6.1. LetK satisfy (2.4) and (3.1), let Σ satisfy (2.6), let f satisfy (2.5), and let R∞ be a
constant matrix such that the solution R of (1.2a)-(1.2b) satisfies (3.3). If there exist constants α > 0,
ρ > 0 and γ > 0such that (3.4), (3.6) and (3.5) hold, then there exist constants β∗p > 0, independent
of X0, and m∗

p = m∗
p(X0) > 0, such that statement (ii) of Theorem 3.1 holds.

Proposition 6.2. Let K satisfy (2.4) and (3.1), let Σ satisfy (2.6), let f satisfy (2.5), and let R∞
be a constant matrix such that the solution R of (1.2a)-(1.2b) satisfies (3.3). If there exist constants
α > 0, ρ > 0 and γ > 0such that (3.4), (3.6) and (3.5) hold, then there exists constant β∗0 > 0,
independent of X0 such that statement (iii) of Theorem 3.1 holds.

As in the case where f := 0 we require an explicit formulation forX∞. The proof of this
result follows the line of reasoning used in the proof of Theorem 4.6 and is therefore omitted.

Theorem 6.3. Let K satisfy (2.4) and (4.4), let Σ satisfy (2.6) and (4.5), and let f satisfy (2.5).
Suppose that the resolvent R of (1.2a)-(1.2b) satisfies (3.3), then the solution X of (1.1a)-(1.1b)
satisfies X→X∞(X0,Σ, f) almost surely, where

X∞(X0,Σ, f) = X∞(X0,Σ) + R∞

∫∞

0
f(t)dt, a.s. (6.1)

and X∞(X0,Σ, f) is almost surely finite.
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Proof of Proposition 6.1. We begin by showing that E‖X∞(X0,Σ, f)‖p is finite. Clearly, we see
that

E‖X∞(X0,Σ, f)‖p ≤ 2p−1
(

E‖X∞(X0,Σ)‖p +
∥∥∥∥
∫∞

0
R∞f(s)ds

∥∥∥∥
p)

< ∞. (6.2)

Now, consider the difference between the solution X(·;X0,Σ, f) of (1.1a)-(1.1b) and its limit
X∞(X0,Σ, f) given by (6.1):

X(t;X0,Σ, f) −X∞(X0,Σ, f)

= (X(t;X0,Σ) −X∞(X0,Σ)) +
∫ t

0
(R(t − s) − R∞)f(s)ds −

∫∞

t

R∞f(s)ds.
(6.3)

Using integration by parts this expression becomes

X(t;X0,Σ, f) −X∞(X0,Σ, f)

= (X(t;X0,Σ) −X∞(X0,Σ)) − f1(t) + (R(t) − R∞)f1(0) −
∫ t

0
R′(t − s)f1(s)ds.

(6.4)

Taking norms on both sides of equation (6.4), raising the power to p on both sides, and taking
expectations across we obtain

E‖X(t;X0,Σ, f) −X∞(X0,Σ, f)‖p

≤ 4p−1
(

E‖X(t;X0,Σ) −X∞(X0,Σ)‖p + ‖f1(t)‖p

+ ‖R(t) − R∞‖p‖f1(0)‖p +
(∫ t

0
‖R′(t − s)‖‖f1(s)‖ds

)p)
.

(6.5)

Now consider the right hand side of (6.5). The first term decays exponentially quickly due
to Theorem 3.2. The second term decays exponentially quickly due to assumption (3.6). By
applying Lemma 4.4 we see that (4.2) holds so we can apply Theorem 4.5 to show that the
third term must decay exponentially. In the sequel, an argument is provided to show that
R′ decays exponentially; thus the final term must decay exponentially. Combining these
arguments we see that (3.7) holds, where β∗p < min(βp, β, ρ).

It is now shown that R′ decays exponentially. It is clear from the resolvent equation
(1.2a)-(1.2b) that

R′(t) = A(R(t) − R∞) +
∫ t

0
K(t − s)(R(s) − R∞)ds −K1(t)R∞ +

(
A +

∫∞

0
K(s)ds

)
R∞. (6.6)

Consider each term on the right hand side of (6.6). We can apply Theorem 4.5 to obtain
that R decays exponentially quickly to R∞. In order to show that the second term decays
exponentially we proceed as follows: since R − R∞ decays exponentially and (3.4) holds it is
possible to choose μ such that the functions t �→ eμtK(t) and t �→ eμt(R(t) − R∞) are both in
L1([0,∞),Rn×n). The convolution of two integrable functions is itself an integrable function,
so

eμt
∥∥∥∥
∫ t

0
K(t − s)(R(s) − R∞)ds

∥∥∥∥ =
∥∥∥∥
∫ t

0
eμ(t−s)K(t − s)eμs(R(s) − R∞)ds

∥∥∥∥ ≤ c. (6.7)
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To see that the third term decays exponentially we use (4.41). Finally, we consider the fourth
term. By Lemma 4.4 and (3.3)we have that (4.2) holds. In [1, Theorem 6.1] it was shown that
(A +

∫∞
0 K(s)ds)R∞ = 0 under this hypothesis and (3.1). Combining the above we see that R′

decays exponentially quickly to 0.

Proof of Proposition 6.2. Take norms across (6.4) to obtain

‖X(t;X0,Σ, f) −X∞(X0,Σ, f)‖

≤ ‖X(t;X0,Σ) −X∞(X0,Σ)‖ + ‖f1(t)‖ + ‖R(t) − R∞‖‖f1(0)‖ +
∥∥∥∥
∫ t

0
R′(t − s)f1(s)ds

∥∥∥∥.
(6.8)

Using Theorem 3.2, we see that the first term on the right hand side of (6.8) decays
exponentially. The second term on the right hand side decays exponentially as (3.6) holds. We
can apply Theorem 4.5 to show that the third term must decay exponentially. An argument
was provided in Proposition 6.1 to show that R′ decays exponentially. Combining this
with (3.6) enables us to show that the fourth term decays exponentially. Using the above
arguments we obtain (3.8), where β∗ ≤ min(β0, β, ρ).

7. On the necessity of (3.6) and (3.5) for exponential convergence of
solutions of (1.1a)-(1.1b)

In this section, the necessity of (3.6) and (3.5) for exponential convergence of solutions of
(1.1a)-(1.1b) in the almost sure and pth mean senses is shown. Proposition 7.1 concerns the
necessity of the conditions in the pth mean case while Proposition 7.2 deals with the almost
sure case.

Proposition 7.1. Let K satisfy (2.4) and (4.4), let Σ satisfy (2.6), and let f satisfy (2.5). If there
exists constant α > 0 such that (3.4) holds, and if for all X0 there is constant vector X∞(X0,Σ, f)
such that the solution t �→ X(t;X0,Σ, f) of (1.1a)-(1.1b) satisfies statement (ii) of Theorem 3.1, then
there exist constants ρ > 0 and γ > 0, independent of X0, such that (3.6) and (3.5) hold.

Proposition 7.2. Let K satisfy (2.4) and (4.4), let Σ satisfy (2.6), and let f satisfy (2.5). If there
exists constant α > 0 such that (3.4) holds, and if for all X0 there is a constant vector X∞(X0,Σ, f)
such that the solution t �→ X(t;X0,Σ, f) of (1.1a)-(1.1b) satisfies statement (iii) of Theorem 3.1, then
there exist constants ρ > 0 and γ > 0, independent of X0, such that (3.6) and (3.5) hold.

The following lemma is used in the proof of Proposition 7.2. This lemma allows us to
separate the behavior of the deterministic perturbation from the stochastic perturbation in the
almost sure case. It is interesting to note that we can prove this lemma without any reference
to the integro-differential equation.

Lemma 7.3. Suppose c > 0 is an almost surely finite random variable and

‖f1(t) + μ1(t, ω)‖ ≤ c(ω)e−λt, (7.1)

where λ > 0, ω ∈ Ω∗, P[Ω∗] = 1 and the functions f1 and μ1 are defined by (2.8) and

μ1(t) =
∫∞

t

Σ(s)dB(s), t ≥ 0, (7.2)

respectively. Then (3.5) and (3.6) hold.
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In order to prove Lemma 7.3 we require Lemmas 7.4 and 7.5 below. Lemma 7.5 was
proved in [13]. The proof of Lemma 7.4 makes use of Kolmogorov’s Zero-One Law. It follows
the proof of Theorem 2 in [14, Chapter IV, Section 1] and so is omitted.

Lemma 7.4. Let {ξi}∞i=1 be a sequence of independent Gaussian random variables with E[ξi] = 0 and
E[ξ2i ] = v2

i ≥ 1. Then

lim sup
m→∞

m∑
i=1

ξi = ∞, lim inf
m→∞

m∑
i=1

ξi = −∞, a.s. (7.3)

Lemma 7.5. If there is a γ > 0 such that σ ∈ C([0,∞),R) and

∫∞

0
σ(s)2e2γs ds < ∞, (7.4)

then

lim sup
t→∞

1
t
log

∣∣∣∣
∫∞

t

σ(s)dB(s)
∣∣∣∣ ≤ −γ, a.s. (7.5)

where {B(t)}t≥0 is a one-dimensional standard Brownian motion.

Lemmas 7.6 and 7.7 are used in the proofs of Propositions 7.1 and 7.2, respectively and
are the analogues of Lemmas 5.3 and 4.7. Their proofs are identical in all important aspects
and so are omitted.

Lemma 7.6. Let K satisfy (2.4) and (4.4). Suppose that for all initial conditions X0 there is an
FB(∞)-measurable and almost surely finite random variableX∞(X0,Σ) with E‖X∞‖2 < ∞ such that
the solution t �→ X(t;X0,Σ) of (1.1a)-(1.1b) satisfies

lim
t→∞

E‖X(t;X0,Σ, f) −X∞(X0,Σ, f)‖2 = 0,

E‖X(·;X0,Σ, f) −X∞(X0,Σ, f)‖2 ∈ L1([0,∞),R).
(7.6)

Then X∞ obeys

(
A +

∫∞

0
K(s)ds

)
X∞ = 0 a.s. (7.7)

Lemma 7.7. Let K satisfy (2.4) and (4.4). Suppose that for all initial conditions X0 there is an
FB(∞)-measurable and almost surely finite random variable X∞(X0,Σ, f) such that the solution
t �→ X(t;X0,Σ, f) of (1.1a)-(1.1b) satisfies

lim
t→∞

X(t;X0,Σ, f) = X∞(X0,Σ, f) a.s.,

X(·;X0,Σ, f) −X∞(X0,Σ, f) ∈ L2([0,∞),Rn) a.s.
(7.8)

Then X∞ obeys (7.7).
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Proof of Proposition 7.1. Since (3.7) holds for every initial condition we can choose X0 = 0: this
simplifies calculations. Moreover using (3.7) in Lemma 7.6 it is clear that assumption (7.7)
holds. Consider the integral form of (1.1a)-(1.1b). Adding and subtracting X∞ from both
sides and applying Lemma 7.6 we obtain

Δ(t) = −X∞ +
∫ t

0
δ(s)ds +

∫ t

0
f(s)ds + μ(t) −

∫ t

0
K1(s)dsX∞, (7.9)

where Δ(t) = X(t) −X∞, the function δ is defined by

δ(t) = AΔ(t) + (K∗Δ)(t), (7.10)

and μ(t) =
∫ t
0Σ(s)dB(s). Taking expectations across (7.9) and allowing t→∞ we obtain

−E[X∞] = −
∫∞

0
E[δ(s)]ds −

∫∞

0
f(s)ds +

∫∞

0
K1(s)dsE[X∞], (7.11)

where E[δ(t)] = AE[Δ(t)] + (K∗E[Δ])(t). Using this expression for E[X∞]we obtain

f1(t) = −E[Δ(t)] −
∫∞

t

E[δ(s)]ds +
∫∞

t

K1(s)dsE[X∞], (7.12)

The first term on the right-hand side of (7.12) decays exponentially due to (3.7). Assumptions
(3.4) and (3.7) imply that E[δ(·)] decays exponentially so the second term decays
exponentially. The third term on the right-hand side of (7.12) decays exponentially due to
the argument given by (4.41). Hence, f1 decays exponentially.

Proving that (3.5) holds breaks into two steps. We begin by showing that
∥∥∥∥
∫∞

0
eγtf(t)dt

∥∥∥∥ < ∞, (7.13)

where γ > 0. By choosing γ < α∧β1 we can obtain the following reformulation of (1.1a)-(1.1b)
using methods applied in [15, Proposition 5.1]

eγtΔ(t) = Δ(0) + (γI +A)
∫ t

0
eγsΔ(s)ds

+
∫ t

0
eγs

∫s

0
K(s − u)Δ(u)duds −

∫ t

0
eγsK1(s)dudsX∞

+
∫ t

0
eγsf(s)ds +

∫ t

0
eγsΣ(s)dB(s).

(7.14)

Rearranging (7.14), taking expectations and then norms on both sides we can obtain
∥∥∥∥
∫ t

0
eγsf(s)ds

∥∥∥∥ ≤ E‖eγtΔ(t)‖ + E‖Δ(0)‖

+ ‖γI +A‖
∫ t

0
eγsE‖Δ(s)‖ds

+
∫ t

0
eγs

∫s

0
‖K(s − u)‖E‖Δ(u)‖duds +

∫ t

0
eγs‖K1(s)‖dsE‖X∞‖.

(7.15)
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Since (3.7) holds this implies that both the first and third terms on the right-hand side of
(7.15) are bounded. The second term is bounded due to our assumptions. Since 0 < γ < α∧β1,
we can choose γ1 > 0 such that γ < γ1 < α ∧ β1. It can easily be shown that

∫s

0
‖K(s − u)‖E[‖Δ(u)‖]du ≤ ce−γ1s. (7.16)

Finally, we see that the fifth term is bounded using (4.41). So, (7.13) holds.
We now return to (7.14). Again rearranging the equation and taking norms and then

expectations across both sides, we obtain

E

∥∥∥∥
∫ t

0
eγsΣ(s)dB(s)

∥∥∥∥ ≤ E‖eγtΔ(t)‖ + E‖Δ(0)‖

+ ‖γI +A‖
∫ t

0
eγsE‖Δ(s)‖ds +

∫ t

0
eγs

∫s

0
‖K(s − u)‖E‖Δ(u)‖duds

+
∫ t

0
eγs‖K1(u)‖dudsE‖X∞‖ +

∥∥∥∥
∫ t

0
eγsf(s)ds

∥∥∥∥.
(7.17)

We already provided an argument above to show that the first five terms on the right hand
side of this expression are bounded. Also, we know that (7.13) holds. Thus,

E

∥∥∥∥
∫ t

0
eγsΣ(s)dB(s)

∥∥∥∥ ≤ C. (7.18)

The proof is now identical to Proposition 5.2.

Proof of Proposition 7.2. Since Lemma 7.7 holds we can obtain (7.9). Thus, as t→∞, we obtain

−X∞ = −
∫∞

0
δ(s)ds −

∫∞

0
f(s)ds − μ(∞) +

∫∞

0
K1(s)dsX∞, (7.19)

where δ is defined by (7.10). Using this expression for X∞, (7.9) becomes

Δ(t) = −
∫∞

t

δ(s)ds − f1(t) − μ1(t) +
∫∞

t

K1(s)dsX∞, (7.20)

where μ1(t) =
∫∞
t Σ(s)dB(s). Rearranging the equation and taking norms yields

‖f1(t) + μ1(t)‖ ≤ ‖Δ(t)‖ +
∥∥∥∥
∫∞

t

δ(s)ds
∥∥∥∥ +

∥∥∥∥
∫∞

t

K1(s)dsX∞

∥∥∥∥. (7.21)

The first term on the right hand side of (7.21) decays exponentially due to (3.8). Using the
argument given in (4.41) we see that the third term on the right hand side of (7.21) decays
exponentially. Finally, we consider the second term. Clearly

∫∞
t AΔ(s)ds decays exponentially

due to (3.8). In order to show that
∫∞
t (K∗Δ)(s)ds decays exponentially we use an argument

similar to that applied in the proof of Proposition 7.1. So there is an almost surely finite
random variable c > 0 such that

‖f1(t) + μ1(t)‖ ≤ ce−λt ∀t ≥ 0, a.s., (7.22)

where λ < min(β∗0, α). We can now apply Lemma 7.3 to obtain (3.6) and (3.5).
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Proof of Lemma 7.3. We suppose that there exists a constant γ such that (3.5) holds. Using the
equivalence of norms we see that for all 1 ≤ i ≤ n and 1 ≤ j ≤ d assumption (3.5) implies that

∫∞

0
Σij(s)

2e2γs ds < ∞. (7.23)

Applying Lemma 7.5 we obtain

lim sup
t→∞

1
t
log

∣∣∣∣
∫∞

t

Σij(s)dBj(s)
∣∣∣∣ ≤ −γ, ω ∈ Ωij , P[Ωij] = 1. (7.24)

Choose any ε ∈ (0, γ). For each ω ∈ Ωij we can choose a constant cij(ω, ε) ≥ 1 such that

∣∣∣∣
∫∞

t

Σij(s)dBj(s)
∣∣∣∣ ≤ cij(ω, ε)e−(γ−ε)t. (7.25)

Now, summing over j we see that

|μi
1(t)| ≤ ci(ω, ε)e−(γ−ε)t, (7.26)

where ω ∈ Ωi = ∩d
j=1Ωij , ci =

∑d
j=1cij and μi

1(t) =
∑d

j=1

∫∞
t Σij(s)dBj(s).

Now, since

|fi
1(t) + μi

1(t)|
2 ≤

n∑
i=1

|fi
1(t) + μi

1(t)|
2
= ‖f1(t) + μ1(t)‖2 (7.27)

we see that

|fi
1(t) + μi

1(t)| ≤ c(ω)e−λt, ω ∈ Ω∗. (7.28)

So for ω ∈ Ωi ∩Ω∗ we see that |fi
1(t)| ≤ |fi

1(t) + μi
1(t)| + |μi

1(t)| ≤ c(ω)e−λt + ci(ω, ε)e−(γ−ε)t. This
gives

|fi
1(t)| ≤ ci(ω)e−ρt, ω ∈ Ω∗ ∩Ωi, (7.29)

where ci > 0 is finite and ρ ≤ max(λ, γ − ε). Now summing over i we obtain (3.6), by picking
out any ω ∈ ∩i(Ω∗ ∩Ωi). This concludes the case when (3.5) holds.

Now, consider the case where assumption (3.5) fails to hold. We choose a constant γ
such that 0 < γ < λ and define the function d as

d(t) =
∫ t

0

1
γ
(eγs − 1)f(s)ds, (7.30)

and the vector martingale M as

M(t) =
∫ t

0

1
γ
(eγs − 1)Σ(s)dB(s). (7.31)
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We let Mi denote the ith component of M and 〈Mi〉 denote the quadratic variation of Mi

given by

〈Mi〉(t) =
d∑
j=1

∫ t

0

1
γ2

(eγs − 1)2Σij(s)
2 ds. (7.32)

We show at the end of this proof that

‖d(t) +M(t)‖ < c∗(ω), ω ∈ Ω∗, P[Ω∗] = 1, (7.33)

and therefore assume it for the time being.
Since (3.5) fails to hold there exists an entry i, 1 ≤ i ≤ n, of the martingaleM such that

lim
t→∞

〈Mi〉(t) = ∞. (7.34)

It follows that lim inft→∞Mi(t) = −∞ and lim supt→∞Mi(t) = ∞ a.s. Consider the corre-
sponding ith entry of d, denoted di; it is either bounded or unbounded. If di is bounded then
Mi is bounded and so, by the Martingale Convergence Theorem, 〈Mi〉(t) is bounded: this
contradicts (7.34). So, we suppose the latter, that di is unbounded, and proceed to show this
is also contradictory. Since |di(t)+Mi(t)| < c∗(ω), forω ∈ Ω∗ it is clear that −c∗ −Mi(t) < di(t).
Taking the limit superior on both sides of the inequality yields

∞ = −c∗ − lim inf
t→∞

Mi(t) ≤ lim sup
t→∞

di(t). (7.35)

As d is deterministic, there exists an increasing sequence of deterministic times {tm}∞m=0 with
t0 = 0 such that di(tm)→∞ as m→∞. Consequently, Mi(tm)→ − ∞ as m→∞. We choose a
subsequence of these times {τm}∞m=0 with τ0 = t0 such that

v2
l :=

d∑
j=1

∫ τl

τl−1

1
γ2

(eγs − 1)2Σ2
ij(s)ds ≥ 1. (7.36)

Define Si(m) = Mi(τm). Obviously

Si(m) =
m∑
l=1

ξ
(i)
l (7.37)

where

ξ
(i)
l

=
d∑
j=1

∫ τl

τl−1

1
γ
(eγs − 1)Σij(s)dBj(s). (7.38)

It is clear that {ξ(i)l }∞l=1 is an indepenendent normally distributed sequence with the variance
of each ξ

(i)
l given by v2

l ≥ 1 so we may apply Lemma 7.4.
We now show that assumption (7.33) holds. By changing the order of integration we

can show that

d(t) =
∫ t

0
eγs(f1(s) − f1(t))ds, M(t) =

∫ t

0
eγs(μ1(s) − μ1(t))ds. (7.39)

Thus, as 0 < γ < λ,

‖d(t) +M(t)‖ ≤
∫ t

0
eγs(‖f1(t) + μ1(t)‖ + ‖f1(s) + μ1(s)‖)ds

≤ c(ω)
∫ t

0
eγs(e−λt + e−λs)ds < c1(ω), ω ∈ Ω∗.

(7.40)
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8. On the necessary and sufficient conditions for exponential convergence of
solutions of (1.1a)-(1.1b) and (1.4a)-(1.4b)

We now combine the results from Sections 4 and 5 to prove Theorem 3.2 and combine the
results from Sections 6 and 7 to prove Theorem 3.1.

We showed the necessity of (3.5) for the exponential convergence of the solution of
(1.4a)-(1.4b) in Section 5. In order to prove the necessity of the exponential integrability of
the kernel we require the following result which was extracted from [1].

Theorem 8.1. Let K satisfy (2.4) and (3.1). Suppose that there exists a constant matrix R∞ and
constants β > 0 and c > 0 such that the solution R of (1.2a)-(1.2b) satisfies (4.3). If the kernel K
satisfies (3.2) then there exists a constant α > 0 such that K satisfies (3.4).

Proof of Theorem 3.2. We begin by proving the equivalence between (i) and (ii). The
implication (i) implies (ii) is the subject of Proposition 4.1. We can demonstrate that (ii)
implies (i) as follows. We begin by proving that (3.9) implies (3.4). We consider the following
n solutions of (1.4a)-(1.4b); {Xj(t)}j=1,...,n, where Xj(0) = ej . Since (3.9) holds we obtain

m1(ej)e−β1t ≥ E‖Xj(t) −Xj(∞)‖ ≥ ‖E[Xj(t) −Xj(∞)]‖ = ‖(R(t) − R(∞))ej‖. (8.1)

for each j = 1, . . . , n. Thus, the resolvent R of (1.2a)-(1.2b) decays exponentially to R∞. We can
apply Theorem 8.1 to obtain (3.4) after which Proposition 5.2 can be applied to obtain (3.5).
As (8.1) holds it is clear that (3.3) holds.

We now prove the equivalence between (i) and (iii). The implication (i) implies (iii) is
the subject of Proposition 4.2. We now demonstrate that (iii) implies (i). We begin by proving
that (3.10) implies (3.4). As (3.10) holds for allX0 we can consider the following n+1 solutions
of (1.4a)-(1.4b); Xj(t)j=1,...,n+1 where

Xj(0) = ej for j = 1, . . . , n, Xn+1(0) = 0. (8.2)

We know that Xj(t) approaches Xj(∞) exponentially quickly in the almost sure sense.
Introduce

Sj(t) = Xj(t) −Xn+1(t), (8.3)

and notice Sj(0) = ej . Let S = [S1, . . . , Sn] ∈ R
n×n. Then

S′(t) = AS(t) + (K∗S)(t), t > 0,

S(0) = I.
(8.4)

If we define Sj(∞) = Xj(∞)−Xn+1(∞) then S(t)→S∞ exponentially quickly so we can apply
Theorem 8.1 to obtain (3.4). As (3.4) and (3.10) hold we can apply Proposition 5.1 to obtain
(3.5). Also evident from this argument is that (3.3) holds. This proves that (iii) implies (i).

Proof of Theorem 3.1. We begin by proving the equivalence between (i) and (ii). The
implication that (i) implies (ii) is the subject of Proposition 6.1. Now consider the implication
(ii) implies (i). Using (3.7)we see that

‖E[X(t) −X∞]‖ ≤ E‖X(t) −X∞‖ ≤ m∗e−β
∗
1t. (8.5)
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Consider the n+1 solutionsXj of (1.1a)-(1.1b)with initial conditionsXj(0) = ej for j = 1, . . . , n
and Xn+1(0) = 0. Since R(t)ej = Xj(t) −Xn+1(t)we see that

E[Xj(t) −Xj(∞)] + E[Xn+1(t) −Xn+1(∞)] = R(t)ej − E[cj], (8.6)

where cj = Xj(∞) − Xn+1(∞) is an almost surely finite constant. As both terms on the left
hand side of this expression are decaying exponentially to zero, t �→ R(t)ej must decay
exponentially to E[cj] as t→∞. Thus R must satisfy (4.3). Now, apply Theorem 8.1 to obtain
(3.4) and Proposition 7.1 to obtain (3.6) and (3.5).

We now prove the equivalence between (i) and (iii). The implication (i) implies (iii)
is the subject of Proposition 6.2. Once again, consider the n + 1 solutions Xj(t) with initial
conditions Xj(0) = ej for j = 1, . . . , n and Xn+1(0) = 0. Since R(t)ej = Xj(t) − Xn+1(t) for
j = 1, . . . , n, we can write

(Xj(t) −Xj(∞)) − (Xn+1(t) −Xn+1(∞)) = R(t)ej − cj , (8.7)

where cj = Xj(∞) −Xn+1(∞) is an almost surely finite random variable. From (3.8) we know
that Xj decays exponentially quickly to Xj(∞), similarly Xn+1 decays exponentially quickly
to Xn+1(∞). Thus, R decays exponentially to a limit. As a result (4.3) must hold. Now apply
Theorem 8.1 to obtain (3.4) and Proposition 7.2 to obtain (3.6) and (3.5).
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