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1. Introduction

It is well known that a rescaled version of the classical Galton-Watson process (GWP)with off-
spring variance σ2 weakly converges to the unique solution of the following one-dimensional
stochastic differential equation (SDE):

dXt = σ
√∣∣Xt

∣∣dWt, (1.1)

whereW is a one-dimensional Brownian motion (cf. [1]). One might ask whether it is possible
to approximate more general SDEs, driven by a Brownian motion, by generalized GWPs. In
[2] it will be shown that this is actually possible. In fact, in [2] the solution of the SDE,

dXt = δ
(
t, Xt

)
dt + σ

(
t, Xt

)√∣∣Xt

∣∣dWt, (1.2)

is weakly approximated by two different types of population-size-dependent GWPs (in the
sense of [3–6])with immigration, where δ and σ are suitable nonnegative continuous functions
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on R+ × R. Here the methods of [1] do not apply anymore (cf. Section 3). In the present article,
we establish a general criterion for the weak approximation of SDEs by discrete-time processes,
which is the crux of the analysis of [2].

To be exact, we focus on the following one-dimensional SDE:

dXt = b
(
t, Xt

)
dt + a

(
t, Xt

)
dWt, X0 = x0, (1.3)

where x0 ∈ R and W is a one-dimensional Brownian motion. The coefficients a and b are
continuous functions on R+ × R satisfying

∣∣a(t, x)∣∣ + ∣∣b(t, x)∣∣ ≤ K
(
1 + |x|) ∀ t ∈ R+, x ∈ R, (1.4)

for some finite constant K > 0. We assume that SDE (1.3) has a weak solution. It means that
there exists a triplet {X;W ; (Ω,F, (Ft),P)} where (Ω,F, (Ft),P) is a filtered probability space
with (Ft) satisfying the usual conditions, W = (Wt : t ≥ 0) is an (Ft)-Brownian motion, and
X = (Xt : t ≥ 0) is a real-valued continuous (Ft)-adapted process such that P-almost surely,

Xt = x0 +
∫ t

0
b
(
r, Xr

)
dr +

∫ t

0
a
(
r, Xr

)
dWr ∀t ≥ 0. (1.5)

Here the latter is an Itô-integral. Moreover, we require the solution to be weakly unique, which
means that any two solutions coincide in law. For instance, the existence of a unique weak
solution is implied by Lipschitz continuity of b in x (uniformly in t) and

∣∣a(t, x) − a
(
t, x′)∣∣ ≤ h

(∣∣x − x′∣∣) ∀ t ∈ R+, x, x
′ ∈ R, (1.6)

for some strictly increasing h : R+ → R+ with
∫0+
0 h−2(u)du = ∞. Note that (1.6) and Lips-

chitz continuity of b even imply the existence of a strongly unique strong solution (Yamada-
Watanabe criterion [7]). But the notion of strong solutions and strong uniqueness is beyond
our interest.

Our starting point is the fact that any weak solution of (1.3) is a solution of the following
martingale problem and vice versa (cf. [8, Section 5.4.B], or [9, Theorem 1.27]).

Definition 1.1. A tuple {X; (Ω,F, (Ft),P)} is said to be a solution of the (a, b, x0)-martingale
problem if (Ω,F, (Ft),P) is a filtered probability spacewith (Ft) satisfying the usual conditions,
and X = (Xt : t ≥ 0) is a real-valued continuous (Ft)-adapted process such that

Mt = Xt − x0 −
∫ t

0
b
(
r, Xr

)
dr (1.7)

provides a (continuous, mean-zero) square-integrable (Ft)-martingale with compensator

〈M〉t =
∫ t

0
a2(r, Xr

)
dr. (1.8)

The solution is said to be unique if any two solutions coincide in law.
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In view of the weak equivalence of the SDE to the martingale problem, discrete-time
processes solving the discrete analogue (Definition 2.1) of the (a, b, x0)-martingale problem
should approximate weakly the unique solution of SDE (1.3). Theorem 2.2 below shows that
this is true under an additional assumption on themoments of the increments (condition (2.3)).

Note that the characterization of discrete or continuous population processes as solu-
tions of martingale problems of the form (1.7)-(1.8), (2.1)-(2.2), respectively, is fairly useful
and also common (see, e.g., [10–12]). Especially for real-valued discrete-time processes these
characterizations are often easy to see, so that, according to the criterion, the only thing to
check is condition (2.3). Also note that the conditions of the famous criterion of Stroock and
Varadhan for the weak convergence of Markov chains to SDEs [13, Theorem 11.2.3] are differ-
ent. In particular, in our framework we do not insist on the Markov property of the approxi-
mating processes (cf. the discussion at the end of Section 4). Another alternative approach to
the discrete-time approximation of SDEs can be found in the seminal paper [14], see also refer-
ences therein. In [14] general conditions are given, underwhich the convergence in distribution
(Yα,Zα) → (Y,Z) in the cádlàg space implies convergence in distribution

∫
YαdZα → ∫

YdZ
of the corresponding stochastic integrals in the cádlàg space.

In Section 3 we will demonstrate that the criterion of Theorem 2.2 yields an easy proof of
the convergence result discussed at the beginning of the Introduction. Moreover, in Section 4
we will apply our criterion to obtain a weak Euler scheme approximation of SDEs under fairly
weak assumptions on the driving force of the approximating processes.

2. Main result

We will regard discrete-time processes as continuous-time cádlàg processes. For this reason
we denote by D(R) the space of cádlàg functions from R+ to R. We equip D(R) with the
topology generated by the Skohorod convergence on compacts and consider it as a measurable
space with respect to its Borel σ-algebra. Moreover, we set tεn = nε for every n ∈ N0 and ε > 0.

For every α ∈ N we fix some εα > 0 such that εα → 0. For the sake of clarity, we also set
tαn = tεαn (= nεα) for all n ∈ N0. Now suppose that aα and bα are measurable functions on R+ × R

such that ‖a − aα‖∞ and ‖b − bα‖∞ converge to 0 as α → ∞, where ‖ · ‖∞ is the usual supre-
mum norm. Let (xα) ⊂ R satisfy xα → x0, and suppose that Xα is a solution of the following
(εα, aα, bα, xα)-martingale problem for every α ≥ 1. Here we write nα(t) for the largest n ∈ N0

with tαn ≤ t.

Definition 2.1. Suppose thatXα = (Xα
t : t ≥ 0) is a real-valued process on some probability space

(Ω,F,P) whose trajectories are constant on the intervals [tαn, t
α
n+1), n ∈ N0. Then Xα is called a

solution of the (εα, aα, bα, xα)-martingale problem if

Mα
t = Xα

t − xα −
nα(t)−1∑
i=0

bα
(
tαi , X

α
tαi

)
εα (2.1)

provides a (zero-mean) square-integrable martingale (with respect to the natural filtration)
with compensator

〈
Mα〉

t =
nα(t)−1∑
i=0

a2
α

(
tαi , X

α
tαi

)
εα. (2.2)
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The Xα could be defined on different probability spaces (Ωα,Fα,Pα). However, we as-
sume without loss of generality that Ωα = D(R), Fα = B(D(R)), and Xα is the coordinate
process of Pα (each cádlàg process induces a corresponding law on D(R)). We further assume
that there are some q > 2 and δ > 1 such that

Eα

[∣∣Xα
tαn
−Xα

tαn−1

∣∣q] ≤ CT

(
1 + Eα

[∣∣Xα
tαn−1

∣∣q])εδα (2.3)

for every α ≥ 1 and n ∈ N with tαn ≤ T , where CT > 0 is some finite constant that may depend
on T . (By an induction on n, (2.3) implies immediately that Eα[|Xα

tαn
|q] < ∞ for all α and n.

Lemma 5.1 will provide an even stronger statement.) The following theorem shows that Xα

converges in distribution to the unique solution of (1.3).

Theorem 2.2. Suppose SDE (1.3) subject to (1.4) has a unique weak solution, and denote by P the
corresponding law on D(R). Moreover, let Pα be the law (on D(R)) of Xα subject to (2.1)–(2.3). Then
Pα ⇒ P as α → ∞.

Here, ⇒ symbolizes weak convergence. The proof of Theorem 2.2 will be carried out in
Section 5. The finiteness of the qth moments for some q > 2 is not always necessary, it is true.
From time to time the finiteness of the second moments is sufficient. However, for a general
statement involving convenient moment conditions as (2.3), a weakening of q > 2 to q = 2 is
hardly possible. The assumption q > 2 is common in the theory of functional, time-discrete
approximations of SDEs, SDDEs, and SPDEs (see, e.g., [12, 15]).

3. Example 1: convergence of rescaled GWP to (1.1)

As a first application of Theorem 2.2, we show that a rescaled GWP weakly converges to
Feller’s branching diffusion [16], that is, to the solution of SDE (1.1). Lindvall [1] showed this
approximation via the convergence of the finite-dimensional distributions, for which the shape
of the Laplace transforms of the transition probabilities is essential. Here, we will exploit the
martingale property of the Galton-Watson process (with offspring variance σ2). The latter is an
N0-valuedMarkov processZ = (Zn : n ∈ N0) that can be defined recursively as follows. Choose
an initial state Z0 ∈ N and set Zn =

∑Zn−1
i=1 Nn−1,i for all n ≥ 1, where {Nn,i : n ≥ 0, i ≥ 1} is a fam-

ily of i.i.d. N0-valued random variables with mean 1 and variance σ2. In addition, we require
that the fourthmoment ofN1,1 is finite. TherebyZn has a finite fourthmoment for every n ∈ N0.
Actually, in [1] the finiteness of the fourth moments was not required. On the other hand, the
methods used there break down when considering a population-size-dependent branching in-
tensity or an additional general immigration into the system. In contrast, the procedure below
still works in those cases (cf. [2]).

Setting Zε
tεn

= εZn we obtain a rescaled version, Zε, of Z. Recall tεn = nε, hence Zε is a
process having εN0 = {0, ε, 2ε, . . .} as both its index set and its state space. Now pick (εα) ⊂ R+

such that εα → 0, and recall our convention tαn = tεαn and that �t�ε denotes the largest element
s of εN0 with s ≤ t. Regard the process Zεα as continuous-time process, Xα, by setting Xα

t =
Zεα

�t�εα
, and suppose that Xα

0 = �x0�εα . The latter requires that Z0 actually depends on α. The
domain of Xα is denoted by (Ωα,Fα,Pα). It is easy to see that Mα defined in (2.1) provides
a (zero-mean) square-integrable martingale. Moreover, the compensator of Mα is given by
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〈Mα〉t = σ2∑nα(t)−1
i=0 Xα

tαi
εα since, in this case,

Eα

[((
Mα

tαn

)2 − 〈
Mα〉

tαn

) − ((
Mα

tαn−1

)2 − 〈
Mα〉

tαn−1

) | FXα

tαn−1

]
= 0 (3.1)

can be checked easily with help of

Eα

[
Xα

tαn
| Xα

tαn−1

]
= Xα

tαn−1
, Varα

[
Xα

tαn
| Xα

tαn−1

]
= σ2Xα

tαn−1
εα. (3.2)

The formulae in (3.2) are immediate consequences of the well-known moment formulae for Z
(see [17, page 6]) and (FXα

tαn
) denotes the natural filtration induced by Xα. Hence, Xα solves the

(εα, a, b, xα)-martingale problem of Definition 2.1 with a(t, x) =
√
|x|, b ≡ 0 and xα = �x0�εα . It

remains to show (2.3). To this end we state the following lemma.

Lemma 3.1. Assume that ξ1, ξ2, . . . are independent random variables on some probability space
(Ω,F,P) with E[ξi] = 0 and sup i∈N

E[ξ4i ] < ∞. Let ν be a further random variable on (Ω,F,P) being
independent of (ξi), taking values in N and satisfying E[ν4] < ∞. Then there is some finite constant
C > 0, depending only on the second and the fourth moments of the ξi, such thatE[(

∑ν
i=1ξi)

4] ≤ CE[ν2].

Proof. By the finiteness of the fourth moments the law of total expectation yields

E

[(
ν∑
i=1

ξi

)4]
=
∑
n∈N

n∑
i1=1

n∑
i2=1

n∑
i3=1

n∑
i4=1

E
[
ξi1ξi2ξi3ξi4

]
P[ν = n]. (3.3)

Since the ξi are independent and centered, the summand on the right-hand side might differ
from 0 only if either i1 = i2 = i3 = i4, or i1 = i2 and i3 = i4 /= i1, or i1 = i3 and i2 = i4 /= i1, or i1 = i4
and i2 = i3 /= i1. Hence,

E

[(
ν∑
i=1

ξi

)4]
≤
∑
n∈N

{(
n + 3n(n − 1)

)
sup
i,j∈N

E
[
ξ2i ξ

2
j

]}
P[ν = n] ≤ 4 sup

i,j∈N

E
[
ξ2i ξ

2
j

]
E
[
ν2
]
. (3.4)

This yields the claim of the lemma with C = 4 supi,j∈N
E[ξ2i ξ

2
j ].

With help of Lemma 3.1 we obtain

Eα

[∣∣Xα
tαn
−Xα

tαn−1

∣∣4] = Eα

⎡
⎢⎢⎣

∣∣∣∣∣∣∣

ε−1α Xα
tα
n−1∑

i=1

(
εαNn−1,i − εα

)
∣∣∣∣∣∣∣

4⎤
⎥⎥⎦

= Eα

⎡
⎢⎢⎣

∣∣∣∣∣∣∣

ε−1α Xα
tα
n−1∑

i=1

(
Nn−1,i − 1

)
∣∣∣∣∣∣∣

4⎤
⎥⎥⎦ ε4α

≤ CEα

[(
ε−1α Xα

tαn−1

)2]
ε4α

≤ C
(
1 + Eα

[(
Xα

tαn−1

)4])
ε2α

(3.5)
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for some suitable constant C > 0. This shows that (2.3) holds too. Hence, the assumptions
of Theorem 2.2 are fulfilled, and the theorem implies that Xα converges in distribution to the
unique solution of (1.1).

4. Example 2: weak Euler scheme approximation of (1.3)

As a second application of Theorem 2.2, we establish a weak Euler scheme approximation of
SDE (1.3). Our assumptions are partially weaker than the assumptions of classical results on
weak functional Euler scheme approximations. A standard reference for Euler schemes is the
monograph [18]; see also references therein. As before we suppose that a and b are continuous
functions on R+ × R satisfying (1.4), and that SDE (1.3) possesses a unique weak solution.
Now let ε > 0, recall the notation introduced in Section 2, and consider the following stochastic
difference equation (weak Euler scheme):

Xε
tεn
−Xε

tεn−1
= b

(
tεn−1, X

ε
tεn−1

)
ε + a

(
tεn−1, X

ε
tεn−1

)
V ε
tεn
, Xε

tε0
= xε. (4.1)

Here, (xε) is a sequence in R satisfying xε → x0 as ε → 0, and V ε = {V ε
tεn
: n ∈ N} is a family

of independent centered random variables with variance ε and Eε[|V ε
tεn
|q] ≤ Cεq/2 for all n ∈ N,

ε ∈ (0, 1], some q > 2, and some finite constant C > 0, where (Ωε,Fε,Pε) denotes the domain of
V ε. For instance, one may set V ε

tεn
=
√
εξn where {ξn : n ∈ N} is a family of independent centered

randomvariables with variance 1 and the qthmoment being bounded uniformly in n. Note that
we do not require that the random variables {V ε

tεn
: n ∈ N} are identically distributed. Below we

will see that the independence is necessary neither.
By virtue of (1.4), Xε

tεn
has a finite qth moment if Xε

tεn−1
has. It follows by induction that the

solutionXε = (Xε
tεn
: n ∈ N0) of (4.1) is q-integrable, and hence square integrable. Equation (4.1)

is obviously equivalent to the stochastic sum equation

Xε
tεn
= xε +

n−1∑
i=0

b
(
tεi , X

ε
tεi

)
ε +

n−1∑
i=0

a
(
tεi , X

ε
tεi

)
V ε
tεi+1

. (4.2)

Suppose that (εα) is an arbitrary sequence with εα ∈ (0, 1] and εα → 0, set xα = xεα and recall
our convention Eα = Eεα , X

α ≡ Xεα , tαn = tεαn . Then it is easy to see that Mα defined in (2.1)
provides a (mean-zero) square-integrable (FXα

t )-martingale. Moreover,Mα
tαn
coincides with the

second sum on the right-hand side of (4.2). Therefore, we also obtain

〈
Mα〉

tαn
=

n∑
i=1

Eα

[(
a
(
tαi−1, X

α
tαi−1

)
V εα
tαi

)2 | FXα

tαn−1

]

=
n−1∑
i=0

a2(tαi , Xα
tαi

)
Eα

[(
V εα
tαi+1

)2]

=
n−1∑
i=0

a2(tαi , Xα
tαi

)
εα

(4.3)
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which shows that Xα solves the (εα, a, b, xα)-martingale problem of Definition 2.1. For an ap-
plication of Theorem 2.2 it thus remains to show (2.3). But (2.3) follows from

Eα

[∣∣Xα
tαn
−Xα

tαn−1

∣∣q]

≤ 2q−1
{
Eα

[∣∣b(tαn−1, Xα
tαn−1

)
εα
∣∣q] + Eα

[∣∣a(tαn−1, Xα
tαn−1

)∣∣q]Eα

[∣∣V εα
tαn

∣∣q]}

≤ 2q−1
{
K2q−1

(
1 + Eα

[∣∣Xα
tαn−1

∣∣q])εqα +K2q−1
(
1 + Eα

[∣∣Xα
tαn−1

∣∣q])Cεq/2α

}
(4.4)

for which we used (4.1), the independence of Xα
tαn−1

of V εα , (1.4), and Eα[|V εα
tαn
|q] ≤ Cε

q/2
α . Hence,

Theorem 2.2 ensures that Xα converges in distribution to the unique solution of SDE (1.3).
As mentioned above, the independence of the random variables {V ε

tεn
: n ∈ N} is not

necessary. The independence was used for (4.3), (4.4), and the martingale property ofMα. But
these relations may be valid even if the V ε

tεn
are not independent. For instance, let {ξn(i) : n, i ∈

N} be an array of independent centered random variables with variance 1 and qth moments
being bounded above by some C > 0 uniformly in n, i, for some q > 2. Then the martingale
property of Mα and the main statements of (4.3) and (4.4) remain true for V ε

tε1
=
√
εξ1(1) and

V ε
tεn
=
√
εξn(fn(V ε

tε1
, . . . , V ε

tεn−1
)), n ≥ 2, where fn is any measurable mapping from R

n−1 to N. This
follows from the following relations which can be shown easily with help of the functional
representation theorem for conditional expectations respectively by conditioning

Eα

[
V εα
tαn

| FXα

tαn−1

]
= 0, Eα

[(
V εα
tαi+1

)2 | FXα

tαn−1

]
= εα, 1 ≤ i ≤ n − 1,

Eα

[∣∣a(tαn−1, Xα
tαn−1

)
V εα
tαn

∣∣q] ≤ Cε
q/2
α .

(4.5)

If the ξn(i) are not identically distributed, then the V ε
tεn
are typically not independent. In partic-

ular, the approximating process Xε may be non-Markovian.

5. Proof of Theorem 2.2

Theorem 2.2 is an immediate consequence of Propositions 5.2, 5.5, and the weak equivalence
of the martingale problem to the SDE. For the proofs of the two propositions we note that there
exist K′ > 0 and α0 ≥ 1 such that for all α ≥ α0, t ≥ 0, and x ∈ R,

∣∣aα(t, x)
∣∣ + ∣∣bα(t, x)

∣∣ ≤ K′(1 + |x|). (5.1)

This is true since we assumed (1.4) and uniform convergence of aα and bα to the coefficients
a and b, respectively. Throughout this section we will frequently use the well-known inequal-
ity |∑m

i=1yi|p ≤ mp−1∑m
i=1|yi|p for all m ∈ N, p ≥ 1 and y1, . . . , ym ∈ R. As a first consequence

of (5.1) we obtain Lemma 5.1. For every x ∈ R+ we write �x�ε for the largest element of
εN0 = {0, ε, 2ε, . . .} which is smaller than or equal to x. Moreover, we assume without loss
of generality that εα ≤ 1.

Lemma 5.1. For q > 2 and δ > 1 satisfying (2.3) and every T > 0,

sup
α≥α0

Eα

[
sup
t≤T

∣∣Xα
t

∣∣q
]
< ∞. (5.2)
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Proof. First of all, note that for the proof it actually suffices to require q ≥ 2 and δ ≥ 1. Set
S = supα≥α0

|xα|q and Sα
t = Eα[max1≤i≤nα(t)|Mα

tαi
−Mα

tαi−1
|q]. Using Proposition A.1 in the appendix

and (5.1) we obtain, for all t > 0 and α ≥ α0,

Eα

[
sup
i≤nα(t)

∣∣Xα
ti

∣∣q
]

≤ 3q−1
{

Eα

[
sup
i≤nα(t)

∣∣Mα
ti

∣∣q
]
+ S + Eα

[(
nα(t)−1∑
i=0

∣∣bα
(
tαi , X

α
tαi

)∣∣εα
)q]}

≤ 3q−1Cq

{
Eα

[∣∣∣∣∣
nα(t)−1∑
i=0

a2
α

(
tαi , X

α
tαi

)
εα

∣∣∣∣∣
q/2]

+ Sα
t + S + Eα

[[
nα(t)−1∑
i=0

∣∣∣∣∣bα
(
tαi , X

α
tαi

)
∣∣∣∣∣εα

]q]}

≤ kq

{
Eα

[[
nα(t)−1∑
i=0

(
K′(1 + ∣∣Xα

tαi

∣∣))2εα
]q/2]

+ Sα
t + S + Eα

[[
nα(t)−1∑
i=0

K′(1 + ∣∣Xα
tαi

∣∣)εα
]q]}

,

(5.3)

where Cq is independent of t and α, and kq= 3q−1Cq. By Hölder’s inequality we get

Eα

[[
nα(t)−1∑
i=0

(
K′(1 + ∣∣Xα

tαi

∣∣))2εα
]q/2]

≤ Eα

[(
nα(t)−1∑
i=0

(
2K′2(1 + ∣∣Xα

tαi

∣∣2))q/2
)(

nα(t)−1∑
i=0

ε
(q/2)/(q/2−1)
α

)q/2−1]

≤ Eα

[(
nα(t)−1∑
i=0

2q/2−1
(
2K′2)q/2(1 + ∣∣Xα

tαi

∣∣q)
)
nα(t)

q/2−1εq/2α

]

≤ cqt
q/2 + cqt

q/2−1
nα(t)−1∑
i=0

Eα

[
sup
j≤i

∣∣Xα
tαj

∣∣q
]
εα,

(5.4)

where cq= 2q/2−1(2K′2)
q/2

. Analogously, with cq= 2q−1K′q,

Eα

[[
nα(t)−1∑
i=0

K′(1 + ∣∣Xα
tαi

∣∣)εα
]q]

≤ cqt
q + cqt

q−1
nα(t)−1∑
i=0

Eα

[
sup
j≤i

∣∣Xα
tαj

∣∣q
]
εα. (5.5)

Moreover, by (2.3) and (5.1) we obtain, for all t ≤ T and α ≥ α0,

Sα
t ≤

nα(t)∑
i=1

Eα

[∣∣Mα
tαi
−Mα

tαi−1

∣∣q]

≤ 2q−1
nα(t)∑
i=1

Eα

[∣∣Xα
tαi
−Xα

tαi−1

∣∣q + ∣∣bα
(
tαi−1, X

α
tαi−1

)∣∣qεqα
]

≤ 2q−1
nα(t)−1∑
i=0

{
CT

(
1 + Eα

[∣∣Xα
tαi

∣∣q])εδα + Eα

[
K′(1 + ∣∣Xα

tαi

∣∣q)]εqα
}

≤ cq,T t + cq,T

nα(t)−1∑
i=0

Eα

[
sup
j≤i

∣∣Xα
tαj

∣∣q
]
εα,

(5.6)
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where cq,T= 2q−1(CT +K′). By all account we have, for all t ≤ T and α ≥ α0,

Eα

[
sup
i≤nα(t)

∣∣Xα
ti

∣∣q
]
≤ kq

{
S +

(
cq + cq + cq,T

)(
tq−1 ∨ 1

)(
1 + εα

nα(t)−1∑
i=0

Eα

[
sup
j≤i

|Xα
tαj
|q
])}

≤ (
kqS + Cq,T

)
+ Cq,Tεα

nα(t)−1∑
i=0

Eα

[
sup
j≤i

|Xα
tαj
|q
]
,

(5.7)

where Cq,T = kq(cq + cq + cq,T)(Tq−1 ∨ 1). An application of Lemma A.2 yields

Eα

[
sup
s≤t

|Xα
s |q

]
= Eα

[
sup
i≤nα(t)

|Xα
ti
|q
]
≤ (

kqS + Cq,T

)(
1 + Cq,Tεα

)nα(t) +
(
Cq,Tεα

)nα(t)S, (5.8)

where we emphasize that the constants kq, S, and Cq,T are independent of t ≤ T and α ≥ α0.
This proves Lemma 5.1 since lim supα→∞(1 + Cq,Tεα)

nα(t) is bounded by exp(tCq,T) (note that
nα(t) = �t/εα�1 ≤ t/εα).

Proposition 5.2. If (Pα) is tight, then the coordinate process of any weak limit point, that has no mass
outside of C(R), is a solution of the (a, b, x0)-martingale problem of Definition 1.1.

Proof. We consider a weakly convergent subsequence whose limit, P, has no mass outside of
C(R). By an abuse of notation, we denote this subsequence by (Pα) either. We further write X
for the coordinate process of P. Since X is P-almost surely continuous, we know [19, Theorem
3.7.8] that

Pα ◦ π−1
t1,...,tk

=⇒ P ◦ π−1
t1,...,tk

(5.9)

for all t1, . . . , tk ∈ R+, where πt1,...,tk : D(R) → R
k is the usual coordinate projection. In the

remainder of the proof we will show in three steps thatM defined in (1.7) is square-integrable,

provides an (FX

t )-martingale and has 〈M〉 defined in (1.8) as compensator. Here, (FX

t ) denotes
the natural augmentation of the filtration (FX

t ) induced by X.
Step 1. With help of Fatou’s lemma as well as (5.9) and (5.2)we obtain, for every T > 0,

sup
t≤T

E
[∣∣Xt

∣∣q] ≤ sup
t≤T

lim inf
N→∞

lim
α→∞

Eα

[∣∣Xα
t

∣∣q ∧N
] ≤ sup

t≤T
sup
α≥α0

Eα

[∣∣Xα
t

∣∣q] < ∞. (5.10)

Taking (1.4) into account we conclude thatM defined in (1.7) is square-integrable.

Step 2. We next show that M is an (FX

t )-martingale. It suffices to show that M is an (FX
t )-

martingale; see [20, page 75]. The latter is true if and only if

E

[(
Xt+s −Xt −

∫ t+s

t

b
(
r, Xr

)
dr

) l∏
i=1

hi

(
Xti

)]
= 0 (5.11)

holds for all 0 ≤ t1 < · · · ≤ tl ≤ t, s ≥ 0, l ≥ 1 and bounded h1, . . . , hl ∈ C(R) (do not confuse ti
and tαi ). Since X

α solves the (εα, aα, bα, xα)-martingale problem, we have

Eα

[(
Xα

t+s −Xα
t −

nα(t+s)−1∑
i=nα(t)

bα
(
tαi , X

α
tαi

)
εα

)
l∏

i=1

hi

(
Xα

ti

)]
= 0. (5.12)
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We are going to verify (5.11) by showing that the left-hand side of (5.12) converges to the
left-hand side of (5.11) as α → ∞. We begin with proving

lim
α→∞

Eα

[
Xα

u

l∏
i=1

hi

(
Xα

ti

)]
= E

[
Xu

l∏
i=1

hi

(
Xti

)]
(5.13)

for every u ≥ 0, which together with (5.19) below implies the required convergence. To this
end we set x(N) = (−N ∨ x) ∧N for all x ∈ R andN > 0. The right-hand side of

∣∣∣∣Eα

[
X

α,(N)
u

l∏
i=1

hi

(
Xα

ti

)] − Eα

[
Xα

u

l∏
i=1

hi

(
Xα

ti

)]∣∣∣∣ ≤ Eα

[∣∣Xα,(N)
u −Xα

u

∣∣
l∏

i=1

∥∥hi

∥∥
∞

]
(5.14)

can be estimated, for every T ≥ u, by

sup
r≤T

sup
α′≥α0

Eα′
[∣∣Xα′

r

∣∣1|Xα′
r |>N

] l∏
i=1

∥∥hi

∥∥
∞ (5.15)

which tends to 0 as N → ∞ since {Xα′
r : r ≤ T, α′ ≥ 1} is uniformly integrable by (5.2).

Therefore, we have

lim
N→∞

Eα

[
X

α,(N)
u

l∏
i=1

hi

(
Xα

ti

)]
= Eα

[
Xα

u

l∏
i=1

hi

(
Xα

ti

)]
uniformly in α ≥ α0 (5.16)

(and uniformly in u ≤ T , for every T > 0). By (5.9)we further obtain for every N > 0,

lim
α→∞

Eα

[
X

α,(N)
u

l∏
i=1

hi

(
Xα

ti

)]
= E

[
X

(N)
u

l∏
i=1

hi

(
Xti

)]
(5.17)

since the mapping (x1, . . . , xl+1) �→ x
(N)
l+1

∏l
i=1hi(xi) from R

l+1 to R is bounded and continuous.
This is the reason why we introduced the truncation x(N). By virtue of (5.10), an application of
the dominated convergence theorem gives

lim
N→∞

E

[
X

(N)
u

l∏
i=1

hi

(
Xti

)]
= E

[
Xu

l∏
i=1

hi

(
Xti

)]
(5.18)

which along with (5.16) and (5.17) implies (5.13). It remains to show

lim
α→∞

Eα

[
nα(t+s)−1∑
i=nα(t)

bα
(
tαi , X

α
tαi

)
εα

l∏
i=1

hi

(
Xα

ti

)]
= E

[∫ t+s

t

b
(
r, Xr

)
dr

l∏
i=1

hi

(
Xti

)]
. (5.19)

Taking (5.1) and (nα(t+ s)− nα(t))εα ≤ s+ εα into account we obtain, analogously to (5.16) and
(5.18),

lim
N→∞

Eα

[
nα(t+s)−1∑
i=nα(t)

bα
(
tαi , X

α,(N)
tαi

)
εα

l∏
i=1

hi

(
Xα

ti

)]

= Eα

[
nα(t+s)−1∑
i=nα(t)

bα
(
tαi , X

α
tαi

)
εα

l∏
i=1

hi

(
Xα

ti

)]
uniformly in α ≥ α0,

(5.20)
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respectively,

lim
N→∞

E

[∫ t+s

t

b
(
r, X

(N)
r

)
dr

l∏
i=1

hi

(
Xti

)]
= E

[∫ t+s

t

b
(
r, Xr

)
dr

l∏
i=1

hi

(
Xti

)]
. (5.21)

By the uniform convergence of bα to b and (nα(t + s) − nα(t))εα ≤ s + εα, we also have

Eα

[
nα(t+s)−1∑
i=nα(t)

bα
(
tαi , X

α,(N)
tαi

)
εα

l∏
i=1

hi

(
Xα

ti

)]
= Eα

[
nα(t+s)−1∑
i=nα(t)

b
(
tαi , X

α,(N)
tαi

)
εα

l∏
i=1

hi

(
Xα

ti

)]
+ oα(1).

(5.22)

Moreover, we have

Eα

[
nα(t+s)−1∑
i=nα(t)

b
(
tαi , X

α,(N)
tαi

)
εα

l∏
i=1

hi

(
Xα

ti

)]
= Eα

[∫ t+s

t

b
(
r, X

α,(N)
r

)
dr

l∏
i=1

hi

(
Xα

ti

)]
+ oα(1) (5.23)

which is a consequence of the dominated convergence theorem and

∣∣∣∣∣
nα(t+s)−1∑
i=nα(t)

b
(
tαi , X

α,(N)
tαi

)
εα −

∫ t+s

t

b
(
r, X

α,(N)
r

)
dr

∣∣∣∣∣

≤
∫ �t+s�εα−εα

�t�εα

∣∣∣∣b
(�r�εα , X

α,(N)
r

) − b
(
r, X

α,(N)
r

)∣∣∣∣dr + oα(1)

(5.24)

together with the fact that b is bounded and uniformly continuous on [0, t + s] × [−N,N].
Finally, we get by (5.9) and the dominated convergence theorem and (5.2)

lim
α→∞

Eα

[∫ t+s

t

b
(
r, X

α,(N)
r

)
dr

l∏
i=1

hi

(
Xα

ti

)]
=
∫ t+s

t

lim
α→∞

Eα

[
b
(
r, X

α,(N)
r

) l∏
i=1

hi

(
Xα

ti

)]
dr

=
∫ t+s

t

E

[
b
(
r, X

(N)
r

) l∏
i=1

hi

(
Xti

)]
dr

= E

[∫ t+s

t

b
(
r, X

(N)
r

)
dr

l∏
i=1

hi

(
Xti

)]

(5.25)

which along with (5.22) and (5.23) implies

lim
α→∞

Eα

[
nα(t+s)−1∑
i=nα(t)

bα
(
tαi , X

α,(N)
tαi

)
εα

l∏
i=1

hi

(
Xα

ti

)]
= E

[∫ t+s

t

b
(
r, X

(N)
r

)
dr

l∏
i=1

hi

(
Xti

)]
. (5.26)

This, (5.20), and (5.21) ensure (5.19).
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Step 3. It remains to show (1.8). By the uniqueness of the Doob-Meyer decomposition, M has
the required compensator if and only if

E

[(
M2

t+s −M2
t −

∫ t+s

t

a2(r, Xr

)
dr

) l∏
i=1

hi

(
Xti

)]
= 0 (5.27)

holds for all 0 ≤ t1 < · · · ≤ tl ≤ t, s ≥ 0, l ≥ 1 and bounded h1, . . . , hl ∈ C(R). Now, the discrete
analogue of (5.27) for Eα, aα, and Xα holds. Proceeding similarly to the proof of (5.11) one can
show that the left-hand side of this equation converges to the left-hand side of (5.27) as α → ∞.
Therefore, we obtain (5.27). For the sake of brevity we omit the details. It should be mentioned,
however, that we now need uniform integrability of {(Xα

r )
2 : r ≤ t + s, α ≥ 1}. This is why we

established (5.2) for q being strictly larger than 2.

The assumptions of Proposition 5.2 can be checked with help of the following two lem-
mas, where Qα and Q refer to any laws on D(R), and Yα and Y are the respective coordinate
processes. By an abuse of notation, we denote the corresponding expectations by Qα and Q

either. The first lemma follows from [19, Theorem 3.8.8] and [19, Theorem 3.8.6(b)⇒(a)] along
with Prohorov’s theorem. Lemma 5.4 is more or less standard and can be proved with help of
the continuity criterion 3.10.3 in [19]; we omit the details.

Lemma 5.3. Assume that (Yα
t ) is tight in R for every rational t ≥ 0. Let m > 0, γ > 1, and assume for

every T > 0 that there is some finite constant CT > 0 such that for all α ≥ 1 and t, h ≥ 0 with 0 ≤ t − h
and t + h ≤ T ,

Qα

[∣∣Yα
t−h − Yα

t

∣∣m/2∣∣Yα
t − Yα

t+h

∣∣m/2] ≤ CTh
γ . (5.28)

Then (Qα) is tight.

Lemma 5.4. Let m > 0, γ > 1, and assume for every T > 0 that there is some finite constant CT > 0
such that for all α ≥ 1 and 0 ≤ t′ ≤ t′′ ≤ T ,

lim sup
α→∞

Qα

[∣∣Yα
t′ − Yα

t′′
∣∣m] ≤ CT

(
t′′ − t′

)γ
. (5.29)

Then if Qα ⇒ Q, the limit Q has no mass outside of C(R).

Proposition 5.5. (Pα) is tight and each limit point has no mass outside of C(R).

Proof. Let q > 2 and δ > 1 satisfy (2.3). Using techniques as in the proof of Lemma 5.1 we can
find a finite constant Cq > 0 such that for every 0 ≤ t′ ≤ t′′ and α ≥ α0,

Eα

[∣∣Xα
t′ −Xα

t′′
∣∣q] ≤ Cq

{
ε
q/2
α Eα

[(
nα(t′′)−1∑
i=nα(t′)

(
1 +

∣∣Xα
tαi

∣∣)2
)q/2]

+ ε
q
αEα

[(
nα(t′′)−1∑
i=nα(t′)

(
1 +

∣∣Xα
tαi

∣∣)
)q]

+
nα(t′′)−1∑
i=nα(t′)

(
1 + Eα

[∣∣Xα
tαi

∣∣q])εδ∧qα

}
.

(5.30)
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Applying Hölder’s inequality to each of the first two summands on the right-hand side, using
(5.2) and setting γ = (q/2) ∧ δ, we may continue with

≤ Cq

{
ε
q/2
α

(
nα(t′′)−1∑
i=nα(t′)

Eα

[(
1 +

∣∣Xα
tαi

∣∣)2q/2]
)(

nα(t′′)−1∑
i=nα(t′)

1q/(q−2)
)q/2−1

+εqα

(
nα(t′′)−1∑
i=nα(t′)

Eα

[(
1 +

∣∣Xα
tαi

∣∣)q]
)(

nα(t′′)−1∑
i=nα(t′)

1q/(q−1)
)q−1

+
nα(t′′)−1∑
i=nα(t′)

(
1 + Eα

[∣∣Xα
tαi

∣∣q])εδ∧qα

}

≤ Cq,T

{
ε
q/2
α

(
nα

(
t′′
) − nα

(
t′
))q/2 + ε

q
α

(
nα

(
t′′
) − nα

(
t′
))q + ε

δ∧q
α

(
nα

(
t′′
) − nα

(
t′
))}

≤ Cq,T

(
εα
(
nα

(
t′′
) − nα

(
t′
)))γ

≤ Cq,T

((
t′′ − t′

)
+ εα

)γ
,

(5.31)

where Cq,T , Cq,T > 0 are some finite constants being independent of t′, t′′ ≤ T , and α ≥ α0. Then
Lemma 5.4 ensures that anyweak limit point of (Pα) has nomass outside ofC(R). At this point,
it is essential that we required q and δ to be strictly larger than 2, 1, respectively.

Toward the verification of tightness of (Pα)we use Hölder’s inequality to get

Eα

[∣∣Xα
t−h −Xα

t

∣∣q/2∣∣Xα
t −Xα

t+h

∣∣q/2] ≤ Eα

[∣∣Xα
t−h −Xα

t

∣∣q]1/2Eα

[∣∣Xα
t −Xα

t+h

∣∣q]1/2. (5.32)

If h ≥ εα/2, then (5.31) implies that both factors on the right-hand side of (5.32) are bounded
by Cq,T(3h)

γ/2. If h < εα/2, then at least one of these factors vanishes since Xα is constant on
intervals of length εα. Hence,

Eα

[∣∣Xα
t−h −Xα

t

∣∣q/2∣∣Xα
t −Xα

t+h

∣∣q/2] ≤ (
C

2
q,T3

γ)hγ (5.33)

for all α ≥ α0 and t, h ≥ 0 with t + h ≤ T . That is, (5.28) holds withm = q. Therefore, Lemma 5.3
ensures tightness of (Pα).

Appendix

Auxiliary Results

Here we give two auxiliary results. We first recall a square function inequality for martingales.
Let M = (Mn : n ∈ N0) be an (Fn)-martingale on some probability space (Ω,F,P). The corre-
sponding compensator is given by 〈M〉n =

∑n
i=1E[(Mi −Mi−1)

2 | Fi−1].

Proposition A.1 (see [21, Theorem 2.11]). For every q > 0 there is some finite constant Cq > 0
depending only on q such that

E

[
max
1≤i≤n

∣∣Mi

∣∣q
]
≤ Cq

(
E
[〈
M

〉q/2
n

]
+ E

[
max
1≤i≤n

∣∣Mi −Mi−1
∣∣q
])

. (A.1)
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The second result is a Gronwall lemma for functions with discrete domain. It can be
proven by means of iterating (A.2) n-times. We omit the proof since it is more or less well
known.

Lemma A.2 . Suppose g is a mapping from N0 to R+ = [0,∞] with g(0) < ∞. If there are finite
constants c0, c1 ≥ 0 such that

g(n) ≤ c0 + c1
n−1∑
i=0

g(i) ∀n ≤ N, (A.2)

then

g(n) ≤ c0
(
1 + c1

)n + cn1g(0) < ∞ ∀n ≤ N. (A.3)
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