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1. Introduction

It was proven in [1] that for any positive numbers p and q, such that (1/p) + (1/q) = 1, any
normally distributed random variable X, and any f and g complex-valued Borel measurable
functions, such that both random variables Γ(√pI)f(X) and Γ(√qI)(X) are square integrable,
the Wick product f(X) � g(X) is square integrable and the following inequality holds:

E
[∣∣f(X) � g(X)

∣∣2] ≤ E[∣∣Γ(√pI)f(X)
∣∣2]E

[∣∣Γ(
√
qI)g(X)

∣∣2]. (1.1)

Here Γ denotes the second quantization operator and I the identity operator of the one-
dimensional Hilbert space CX. The authors’ motivation was to find a Hausdorff-Young-type
inequality for the theory of Bosonian Fock spaces and they believed that (1.1) was indeed an
inequality of this type, based on their feeling that the Wick product is an analogue concept of
the convolution product from the theory of Fourier transform. After discussing with other
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mathematicians and thinking more about it, they have become convinced that the Wick
product is in fact a simpler product, playing for the theory of Bosonian Fock spaces a role
similar to the classic product of two series. Together this reconsideration and the condition
(1/p) + (1/q) = 1 strongly suggest that (1.1) is in fact a Hölder-type inequality for the theory
of Gaussian Hilbert spaces (Bosonian Fock spaces).

We will generalize inequality (1.1) to other types of random variables X, and in some
cases find the optimal constants p and q. Moreover, we will prove that no matter how we
choose a nonconstant random variable X, having finite moments of any order, the condition
(1/p)+(1/q) = 1 cannot be improved. In Section 2, we present a minimal background about the
Szegö-Jacobi parameters of a random variable having finite moments of any order. We define
a set of basic properties and prove some connections between these properties in Section 3.
Section 4 is dedicated completely to proving a fundamental necessary condition that we call
the universal minimal (unimprovable) condition. Themain inequalities of the paper are proven
in Section 5. Finally, in Section 6, we provide many examples in support of the results proven
in the previous section. Some of these examples demonstrate that the estimates from Section 5
are optimal.

2. Background

Let (Ω, F, P) be a probability space and X : Ω→R a random variable having finite moments of
all orders. That means, for all p > 0, E[|X|p] <∞, where E denotes the expectation with respect
to P . Since X has finite moments of all orders, all the terms of the sequence, 1, X,X2, . . . , are
square integrable, and thus we can apply the Gram-Schmidt orthogonalization procedure to
obtain a sequence of orthogonal polynomial random variables f0(X) = 1, f1(X), f2(X), . . . . The
inner product that we are using is 〈f(X), g(X)〉 := E[f(X)g(X)] for all f , g : R→C measurable,
such that E[|f(X)|2] < ∞ and E[|g(X)|2] < ∞. Also, f0, f1, f2, . . . are polynomial functions
chosen, such that for all n ≥ 0, if fn is not the null polynomial, then fn has the degree equal
to n and a leading coefficient of 1. In fact, if X is a discrete random variable taking on only
k different values a1, a2, . . . , ak with positive probabilities, then fn is the null polynomial for
all n ≥ k. If X is not a discrete random variable, or X is a discrete random variable taking on
a countable set of values with positive probabilities, then for all n ≥ 0, fn is a polynomial of
degree nwith a leading coefficient equal to 1.

It is well known that there exist two sequences of real numbers {αn}n≥0 and {ωn}n≥1, such
that for all n ≥ 0,

Xfn(X) = fn+1(X) + αnfn(X) +ωnfn−1(X). (2.1)

When n = 0, fn−1 = f−1 := 0 (the null polynomial) and we can choose ω0 := 0. Also, if X is a
discrete random variable taking on only k different values with positive probabilities, then for
n = k − 1, the equality (2.1) must be understood in the almost-sure sense, and we can choose
αn = 0 and ωn = 0 for all n ≥ k. The sequences {αn}n≥0 and {ωn}n≥1 are called the Szegö-Jacobi
parameters of X. Moreover, ω1, ω2, . . . are called the principal Szegö-Jacobi parameters of X. It is
well known that for all n ≥ 1, E[f2

n(X)] = ω1ω2 · · ·ωn (see, e.g., [2, 3]).
LetN = k ifX is discrete and takes on only k values with positive probabilities, andN =

∞ otherwise. We define the Hilbert space H := {∑n<Ncnfn(X) | {cn}n<N ⊂ C,
∑

n<Nωn!|cn|2 <
∞}, where ωn! := ω1ω2 . . . ωn for all 1 ≤ n < N and ω0! := 1. H is in fact the closure of the
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space F := {f(X) | f is polynomial} in L2(Ω, F, P). For many classic probability measures
H = L2(Ω, σ(X), P), where σ(X) denotes the smallest sub-sigma-algebra of F with respect to
which X is measurable. We denote by Fn the space of all random variables of the form f(X),
where f is a polynomial of degree at most n, and define Gn := Fn � Fn−1, that is, Gn is the
orthogonal complement of Fn−1 into Fn for all n ≥ 0. For convenience, we define F−1 and G−1 to
be the null space. For all n ≥ 0, Gn = Rfn and Gn is called the homogenous chaos space of order n
generated by X. We will also call H the chaos space generated by X.

For any m,n ≥ 0, we define the Wick product fm(X) � fn(X) of fm(X) and fn(X), as
fm(X) � fn(X) := fm+n(X). Observe that if N = k is finite, then fm(X) � fn(X) = 0 for all m
and n, such that m + n ≥ k. It is not hard to see that fm(X) � fn(X) is in fact the projection of
the point-wise product fm(X)fn(X) on the space Gm+n. We extend now the Wick product by
bilinearity, defining formally for all ϕ =

∑
n<Ncnfn ∈ H and ψ =

∑
n<Ndnfn ∈ H,

ϕ � ψ :=
∑

n<N

(
∑

p+q=n
cpdq

)

fn. (2.2)

Since it is not guaranteed that
∑

n<Nωn!|
∑

p+q=ncpdq|2 <∞, ϕ � ψ may not belong toH.

Definition 2.1. For any complex number c, define the second quantization operator of cI, where
I denotes the identity operator of the one-dimensional Hilbert space CX, spanned by X, as a
densely defined operator onH, defined by

Γ(cI)

(
∑

0≤n<N
dnfn(X)

)

:=
∑

0≤n<N
cndnfn(X), (2.3)

where dn ∈ C for all 0 ≤ n < N.

A random variable ϕ :=
∑

0≤n<Ndnfn(X) belongs to the domain of Γ(cI) if and only if∑
0≤n<N(1 + |c|2n)|dn|2ωn! <∞.

3. Wick-Hölder property

Definition 3.1. LetM and t be two fixed positive numbers. Let X be a random variable, having
finite moments of all orders, and let H denote the chaos space generated by X. X is said to be
(M, t)-Wick-Hölderian, if, for all positive numbers p and q, such that (1/p) + (1/q) = 1/t, and
for all ϕ(X) ∈ H and ψ(X) ∈ H, such that Γ(√pI)ϕ(X) ∈ H and Γ(√qI)ψ(X) ∈ H, there exists
ϕ(X) � ψ(X) ∈ H, and the following inequality holds:

E
[∣∣ϕ(X) � ψ(X)

∣∣2] ≤ME
[∣∣Γ(

√
pI)ϕ(X)

∣∣2]E
[∣∣Γ(

√
qI)ψ(X)

∣∣2]. (3.1)

Since for any fix ϕ(X) ∈ H the function u : [0, ∞)→[0, ∞], u(t) = E[|Γ(√tI)ϕ(X)|2] is
non-decreasing, if X is an (M, t)-Wick-Hölderian random variable, thenX is also (M, t′)-Wick-
Hölderian for all t′ > t. By taking ϕ = ψ = 1,we conclude from (3.1) thatM ≥ 1.
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Definition 3.2. Let t be a fixed positive number. Let X be a random variable, having finite
moments of all orders. X is said to be t-Wick-Hölderian if X is (1, t)-Wick-Hölderian.

Again, if X is a t-Wick-Hölderian random variable, then X is also t′-Wick-Hölderian for
all t′ > t.

Definition 3.3. Let X be a random variable, having finite moments of all orders. X is said to be
Wick-Hölderian if there exists a positive number t, such that X is t-Wick-Hölderian.

Proposition 3.4. If X is a random variable, having finite moments of all orders, then the following two
conditions are equivalent:

(1) X is Wick-Hölderian;

(2) there exist two positive numbersM and t, such that X is (M, t)-Wick-Hölderian.

Proof. (1) ⇒ (2) This implication is obvious.
(2) ⇒ (1) Let us assume that X is (M, t)-Wick-Hölderian for someM ≥ 1 and t > 0. Let

s := max(3, 3Mt).

Claim 1. X is s-Wick-Hölderian.

Indeed, let p > 0 and q > 0, such that (1/p) + (1/q) = 1/s. Let ϕ(X) =
∑

n<Ncnfn(X) ∈ H,
and ψ(X) =

∑
n<Ndnfn(X) ∈ H, such that Γ(√pI)ϕ(X) ∈ H and Γ(√qI)ψ(X) ∈ H, where

{cn}n≥0 ⊂ C, {dn}n≥0 ⊂ C, and {fn}n≥0 represents the sequence of orthogonal polynomials,
having a leading coefficient equal to 1, generated byX. Let ‖·‖ denote the L2-norm. Let g(X) :=
ϕ(X) − c01 and h(X) := ψ(X) − d01. We have ϕ(X) = c01 + g(X) and ψ(X) = d01 + h(X). Since
g(X) ⊥ 1, h(X) ⊥ 1, and g(X) � h(X) ⊥ 1, where ⊥ denotes the orthogonality relation, applying
the Pythagorean theorem, we obtain

‖ϕ(X) � ψ(X)‖2 = ∥∥[c01 + g(X)
] � [d01 + h(X)

]∥∥2

=
∥∥c0d01 + c0h(X) + d0g(X) + g(X) � h(X)

∥∥2

=
∣∣c0

∣∣2∣∣d0
∣∣2 +

∥∥c0h(X) + d0g(X) + g(X) � h(X)
∥∥2

≤ ∣∣c0
∣∣2∣∣d0

∣∣2 +
[∣∣c0

∣∣∥∥h(X)
∥∥ +

∣∣d0
∣∣∥∥g(X)

∥∥ +
∥∥g(X) � h(X)

∥∥]2

≤ ∣∣c0
∣∣2∣∣d0

∣∣2 +
[∣∣c0

∣∣∥∥h(X)
∥∥ +

∣∣d0
∣∣∥∥g(X)

∥∥+
∥∥g(X) � h(X)

∥∥]2+3
∥∥g(X) � h(X)

∥∥2
.

(3.2)

Because (1/p) + (1/q) = 1/s ≤ 1/3, we have 1/p < 1/3 and 1/q < 1/3. Thus, p > 3 and
q > 3. However, p > 3 implies 3‖g(X)‖2 ≤ p‖g(X)‖2 ≤ ‖Γ(√pI)g(X)‖2. Similarly, we have
3‖h(X)‖2 ≤ ‖Γ(√qI)h(X)‖2. Since 1/[p/(3M)] + 1/[q/(3M)] = 3M/s ≤ 1/t and X is an
(M, t)-Wick-Hölderian random variable, we have

∥∥g(X) � h(X)
∥∥ ≤M

∥∥∥∥Γ
(√

p/(3M)I
)
g(X)

∥∥∥∥

∥∥∥∥Γ
(√

q/(3M)I
)
h(X)

∥∥∥∥. (3.3)
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Thus, since 3 < 9 andM ≥ 1, we have

∥∥ϕ(X) � ψ(X)
∥∥2 ≤ ∣∣c0

∣∣2∣∣d0
∣∣2 + 3

∣∣c0
∣∣2∥∥h(X)

∥∥2 + 3
∣∣d0

∣∣2∥∥g(X)
∥∥2 + 9

∥∥g(X) � h(X)
∥∥2

≤ ∣∣c0
∣∣2∣∣d0

∣∣2 +
∣∣c0

∣∣2∥∥Γ(
√
qI)h(X)

∥∥2 +
∣∣d0

∣∣2∥∥Γ(
√
pI)g(X)

∥∥2

+ 9M2
∥∥∥∥Γ

(√
p/(3M)I

)
g(X)

∥∥∥∥

2∥∥∥∥Γ
(√

q/(3M)I
)
h(X)

∥∥∥∥

2

≤ |c0|2|d0|2 + |c0|2
∥∥Γ(

√
qI)h(X)

∥∥2 + |d0|2
∥∥Γ(

√
pI)g(X)

∥∥2

+
∥∥∥∥Γ

(√
3M·p/(3M)I

)
g(X)

∥∥∥∥

2∥∥∥∥Γ
(√

3M·q/(3M)I
)
h(X)

∥∥∥∥

2

=
[∣∣c0

∣∣21 +
∥∥Γ(

√
pI)g

∥∥2][∣∣d0
∣∣21 +

∥∥Γ(
√
qI)h

∥∥2]

=
∥∥Γ(

√
pI)ϕ

∥∥2∥∥Γ(
√
qI)ψ

∥∥2
.

(3.4)

Hence, X is s-Wick-Hölderian.

Definition 3.5. Let {Xi}i∈I be a family of random variables, having finite moments of all orders.
The family {Xi}i∈I is said to be uniformly Wick-Hölderian if there exists a positive number t0,
such that for all i ∈ I, Xi is t0-Wick-Hölderian.

It follows from the proof of the previous proposition that a family {Xi}i∈I is uniformly
Wick-Hölderian if and only if there exists a pair (M0, t0) of positive numbers, such that for all
i ∈ I, Xi is (M0, t0)-Wick-Hölderian.

From now on, to make the notation easier, we say that a random variable X is of class
(M, t)-W-H, class t-W-H, or class W-H if X is (M, t)-Wick-Hölderian, t-Wick-Hölderian, or
Wick-Hölderian, respectively. We also say that a uniformly Wick-Hölderian family {Xi}i∈I , of
random variables, is of class unif.-W-H.

4. A universal minimal condition

In this section we prove a very important condition about any two corresponding multipliers
involved in a Wick product inequality.

Lemma 4.1. LetX be a random variable, having finite moments of all orders, such that the support ofX
contains at least two distinct points (that means X is not almost surely constant). Let f0 = 1 and f1 be
the first two orthogonal polynomials, with a leading coefficient equal to 1, generated by X. If p and q are
two positive numbers, such that for all ϕ(X), ψ(X) ∈ Cf0(X) + Cf1(X) (i.e., ϕ and ψ are polynomial
functions of degree at most 1), the following inequality holds:

E
[∣∣ϕ(X) � ψ(X)

∣∣2] ≤ E[∣∣Γ(√pI)ϕ(X)
∣∣2]E

[∣∣Γ(
√
qI)ψ(X)

∣∣2], (4.1)

then one must have:

1
p
+
1
q
≤ 1. (4.2)
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Proof. The fact that the support of X contains at least two points guarantees that f1(X)/=0. Let
f2 be next orthogonal polynomial and let ω1 and ω2 be the first two principal Szegö-Jacobi
parameters of X. We have ω1 = ‖f1(X)‖2 > 0 and ‖f2(X)‖2 = ω2! = ω1ω2 ≥ 0 (it is possible that
f2(X) = 0, in which case ω2 = 0). As before, ‖·‖ denotes the L2-norm. Let us apply inequality
(4.1) to the random variables ϕ(X) = 1+cf1(X) and ψ = 1+cλf1(X), where c and λ are arbitrary
real numbers, such that c/=0. Since

ϕ(X) � ψ(X) =
[
1 + cf1(X)

] � [1 + cλf1(X)
]

= 1 + c(1 + λ)f1(X) + c2λf2(X),
(4.3)

the inequality,

E
[∣∣ϕ(X) � ψ(X)

∣∣2] ≤ E[∣∣Γ(√pI)ϕ(X)
∣∣2]E

[∣∣Γ(
√
qI)ψ(X)

∣∣2], (4.4)

means that

1 + c2(1 + λ)2ω1 + c4λ2ω1ω2 ≤
[
1 + pc2ω1

][
1 + qc2λ2ω1

]
(4.5)

for all c/=0 and all λ ∈ R. Subtracting first 1 from both sides of this inequality, and then dividing
both sides of the resulting inequality, by the strictly positive number c2ω1, we conclude that
the inequality,

(1 + λ)2 + c2λ2ω2 ≤ p + qλ2 + pqc2λ2ω1, (4.6)

holds for all c/=0 and λ ∈ R. Passing to the limit, as c→0, in the last inequality, we obtain

(1 + λ)2 ≤ p + qλ2 (4.7)

for all real numbers λ. Moving all terms to the right, we conclude that the quadratic trinomial

(q − 1)λ2 − 2λ + (p − 1), (4.8)

must be nonnegative for all real values of λ. Therefore, q must be greater than one, and the
discriminant Δ = 4 − 4(p − 1)(q − 1) must be less than or equal to zero. This is equivalent to
1 ≤ (p − 1)(q − 1), which in turn means p + q ≤ pq. Dividing both sides of this inequality by the
positive number pq, we conclude that

1
p
+
1
q
≤ 1. (4.9)

Corollary 4.2. If X is a nonconstant random variable of class t-W-H, then t is at least 1.

Wewill call the condition (1/p)+(1/q) ≤ 1 the universal minimal (unimprovable) condition.
We will also say that a nonconstant random variable X of class 1-W-S satisfies the best Wick-
Hölder inequality. We know from [1] that every Gaussian random variable satisfies the best
Wick-Hölder inequality. However, there are many other random variables of class 1-W-H, and
in the next section we will give some sufficient conditions that guarantee this property.
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Let X be a random variable, having finite moments of any order, and let {fn}n≥0 and H
be the sequence of orthogonal polynomials and chaos space generated by X, respectively. If
α := {αn}n≥0 is a sequence of complex numbers, then we denote by Mα the densely defined
linear operator on H that maps fn(X)→αnfn(X) for all n ≥ 0. We call the sequence α the
multiplier of the operator Mα. It is clear that for all n ≥ 0, MαGn ⊂ Gn. The converse is also
true, namely, if T is a linear operator defined on the space of all polynomial functions of X that
leaves all homogenous chaos spaces generated by X invariant, then there exists a sequence of
complex numbers α, such that T = Mα. If α0 = 1, then Mα1 = 1, and we say that the operator
Mα (or the multiplier α) respects the vacuum space G0. Doing the same proof as in Lemma 4.1,
we can prove the following result.

Lemma 4.3. Let X be a random variable, having finite moments of all orders, such that the support of
X contains at least n + 1 distinct points, where n ≥ 1 is fixed. Let f0 = 1, and fn be the orthogonal
polynomial of degree n, generated by X. If c = {cn}n≥0 and d = {dn}n≥0 are two sequences of complex
numbers, such that c0 = d0 = 1, and for all ϕ(X), ψ(X) ∈ Cf0(X) + Cfn(X), the following inequality
holds:

E
[∣∣ϕ(X) � ψ(X)

∣∣2] ≤ E[∣∣Mcϕ(X)
∣∣2]E

[∣∣Mdψ(X)
∣∣2], (4.10)

then one must have

1
∣∣cn

∣∣2
+

1
∣∣dn

∣∣2
≤ 1. (4.11)

We call inequality (4.11) the generalized universal minimal (unimprovable) condition. Even
though we will not be using this generalized condition in this paper, we would like to
reformulate it in words, so that some other mathematicians might use it in the future.

If the norm of the Wick product of ϕ(X) and ψ(X) is always bounded above by the product of the
norms of Mcϕ(X) and Mdψ(X), where c and d are two multipliers respecting the vacuum space, then
the sum of the reciprocals of the square of the modulus of any two corresponding terms of the sequences,
c and d, must be at most 1.

We extend now the universal minimal condition from the L2 case to the Lr case for r ≥ 2.
If we pay attention to the proof of the universal minimal condition, when dividing by c2 and
then passing to the limit as c→0, then we can observe that, in fact, we were differentiating an
inequality twice with respect to c. Therefore, we will attack the Lr case in the same manner,
based on two very simple observations.

Observation 1. If f and g are two functions from R to R that are twice differentiable, such that
f(x) ≤ g(x) for all x ∈ R, and there exists an x0 ∈ R, such that f(x0) = g(x0), then f ′(x0) =
g ′(x0), and f ′′(x0) ≤ g ′′(x0).

Proof. This can be seen intuitively by drawing a picture for the graphs of f and g, or of f − g,
and mathematically by using the formula

f ′′(x0
)
= lim

h→0

f
(
x0 + h

)
+ f

(
x0 − h

) − 2f
(
x0
)

h2
, (4.12)

and a similar relation for g ′′(x0).
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We can formulate this observation in the following way: we can differentiate twice an
inequality between two functions at the points where the functions are equal (touching each other),
and the inequality is preserved.

Observation 2. If r is a real number, then the function h(x) = |x|r is differentiable if and only if
r > 1, in which case h′(x) = rx|x|r−2.

We are generalizing now Lemma 4.1 to powers r > 2.

Lemma 4.4. Let X be a random variable, having finite moments of all orders, such that the support of
X contains at least two distinct points. Let f0 = 1 and f1 be the first two orthogonal polynomials, with
a leading coefficient equal to 1, generated by X. Let r ≥ 2 be fixed. If p and q are two positive numbers,
such that for all ϕ(X), ψ(X) ∈ Cf0(X) + Cf1(X), the following inequality holds:

E
[∣∣ϕ(X) � ψ(X)

∣∣r] ≤ E[∣∣Γ(√pI)ϕ(X)
∣∣r]E

[∣∣Γ(
√
qI)ψ(X)

∣∣r], (4.13)

then one must have

1
p
+
1
q
≤ 1. (4.14)

Proof. Let ϕc(X) := 1 + cf1(X) and ψc,λ(X) := 1 + cλf1(X), where c and λ are arbitrary real
numbers. Let us consider the functions gλ : R→R, gλ(c) := E[|ϕc(X) � ψc,λ(X)|r] and hλ : R→R,
hλ(c) := E[|Γ(√pI)ϕc(X)|r]E[|Γ(√qI)ψc,λ(X)|r]. Since gλ(c) ≤ hλ(c) for all c ∈ R, and gλ(0) =
hλ(0), according to Observation 1, we have

g ′′
λ(0) ≤ h′′λ(0). (4.15)

Because X has finite moments of all orders, and r ≥ 2, a simple application of dominated
convergence theorem shows that we can put the derivatives inside the expectations. Thus,
applying Observation 2 twice and the product rule of differentiation, we get that for all c ∈ R,

g ′′
λ(c) = r(r − 1)E

[∣∣1 + c(1 + λ)f1 + c2λf2
∣∣r−2((1 + λ)f1 + 2cλf2

)2]

+ 2rλE
[∣∣1 + c(1 + λ)f1 + c2λf2

∣∣r−2(1 + c(1 + λ)f1 + c2λf2
)
f2
]
,

h′′λ(c) = r(r − 1)pE
[∣∣1 + c

√
pf1

∣∣r−2f2
1

]
E
[∣∣1 + cλ

√
qf1

∣∣r]

+ 2r2λ
√
pqE

[∣∣1 + c
√
pf1

∣∣r−2(1 + c
√
pf1)f1

]

× E[∣∣1 + cλ√qf1
∣∣r−2(1 + cλ

√
qf1)f1

]

+ r(r − 1)qλ2E
[∣∣1 + cλ

√
qf1

∣∣r−2f2
1

]
E
[∣∣1 + c

√
pf1

∣∣r].

(4.16)

Setting c = 0, we get now

g ′′
λ(0) = r(r − 1)(1 + λ)2E

[
f2
1

]
+ 2rλE

[
f2
]
,

h′′λ(0) = r(r − 1)pE
[
f2
1

]
+ 2r2λ

√
pqE

[
f1
]
E
[
f1
]
+ r(r − 1)qλ2E

[
f2
1

]
.

(4.17)
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Since f2(X) ⊥ f0(X), f1(X) ⊥ f0(X), and f0(X) = 1, we have E[f2(X)] = 0 and E[f1(X)] = 0.
Thus, the g ′′

λ
(0) ≤ h′′

λ
(0) becomes, after dividing both sides by the positive number r(r−1)E[f2

1 ]

(1 + λ)2 ≤ p + qλ2 (4.18)

for all λ ∈ R. Nowmoving all terms to the right and writing the condition that the discriminant
of the quadratic function in λ be nonpositive, we obtain as before that

1
p
+
1
q
≤ 1. (4.19)

Our technique for proving the universal minimal condition for r ≥ 2 is similar to the
proof of Theorem 3 from [4].

Finally, we can also see that for multipliers, the inequality

E
[∣∣ϕ(X) � ψ(X)

∣∣r] ≤ E[∣∣Mcϕ(X)
∣∣r]E

[∣∣Mdψ(X)
∣∣r], (4.20)

for a fix r ≥ 2, also implies the condition that

1
∣∣cn

∣∣2
+

1
∣∣dn

∣∣2
≤ 1 (4.21)

for all n ≥ 1.

5. Random variables with (M,α)-subadditive omega parameters

We present first the following lemma.

Lemma 5.1. Let {ωn}n≥1 be a sequence of positive numbers, such that there exist a number t, greater
than or equal to 1, and a sequence {αn}n≥2, of nonnegative numbers, such that the series

∑∞
n=2αn is

convergent, and for all n and k natural numbers, with n > k, it holds that

ωn ≤ t(1 + αn
)(
ωk +ωn−k

)
. (5.1)

Then, for all nonnegative numbers k ≥ r ≥ 0, it holds that

(
ωk

ωr

)

≤Mtk
(
k
r

)

, (5.2)

whereM := max{1, (1/t)∏∞
n=2(1+αn)},

(
k
r

)
:= (1·2 · · · k)/[(1·2 · · · r)(1·2 · · · (k− r))], and ( ωk

ωr

)
:=

(ω1ω2 · · ·ωk)/[(ω1ω2 · · ·ωr)(ω1ω2 · · ·ωk−r)] for 0 < r < k. If r = 0 or r = k, then
(
k
r

)
:= 1 and( ωk

ωr

)
:= 1.

Proof. Since αn ≥ 0 for all n ≥ 2 and
∑∞

n=2αn < ∞, we conclude that the product
∏∞

n=2(1 + αn) is
convergent. For k = 0, the inequality (5.2) is obvious since

( ω0
ω0

)
=
(
0
0

)
= 1. We prove now by
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induction on k that for all k ≥ 1, we have

(
ωk

ωr

)

≤
[ k∏

i=2

(
1 + αi

)]
tk−1

(
k
r

)

, (5.3)

for all r ∈ {0, 1, . . . , k}. For k = 1, we have nothing to prove, since
( ωk
ωr

)
=

(
k
r

)
= 1, and

∏k
i=2(1 + αi) is defined to be 1 in this case.

Let us suppose now that (5.3) holds for k = n and all r ∈ {0, 1, . . . , n} and prove that it
continues to hold for k = n+1 and all r ∈ {0, 1, . . . , n+1}. Indeed, we may assume that 1 ≤ r ≤ n
since for r = 0 and r = n + 1, (5.3) is trivial because t ≥ 1. It follows from (5.2) that

(
ωn+1

ωr

)

=
ωn+1ωn!

ωrωr−1!ωn+1−rωn−r !

≤ t
(
1 + αn+1

)[
ωr +ωn+1−r

]
ωn!

ωrωr−1!ωn+1−rωn−r !

= t
(
1 + αn+1

)[ ωn!
ωr−1!ωn+1−r !

+
ωn!

ωr !ωn−r !

]

= t
(
1 + αn+1

)[
(

ωn

ωr−1

)

+

(
ωn

ωr

)]
.

(5.4)

Using now this inequality, the induction hypothesis, and the classic Pascal identity
( n
r−1

)
+(

n
r

)
=
(
n+1
r

)
, we get

(
ωn+1

ωr

)

≤
[ n+1∏

i=2

(
1 + αi

)]
tn
[(

n
r − 1

)

+

(
n
r

)]

=
[ n+1∏

i=2

(
1 + αi

)]
tn
(
n + 1
r

)

.

(5.5)

Hence, for all k ≥ 1, we have

(
ωk

ωr

)

≤
[ k∏

i=2

(
1 + αi

)]
tk−1

(
k
r

)

≤
[ ∞∏

i=2

(
1 + αi

)]
tk−1

(
k
r

)

=
1
t

[ ∞∏

i=2

(
1 + αi

)]
tk
(
k
r

)

.

(5.6)

In order to make this inequality also true, for k = 0, we have to replace (1/t)[
∏∞

i=2(1 + αi)] by
max{1, (1/t)[∏∞

i=2(1 + αi)]}.
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We introduce now three definitions.

Definition 5.2. Given a number t, greater than or equal to 1, and a sequence of nonnegative
numbers α = {αn}n≥2, such that the series

∑∞
n=2αn is convergent, then a sequence of nonnegative

numbers {ωn}n≥1 is said to be (t, α)-subadditive if the following inequality,

ωn ≤ t(1 + αn
)(
ωk +ωn−k

)
, (5.7)

holds for all natural numbers n and k, such that n > k.

Definition 5.3. Given a number t, greater than or equal to 1, then a sequence of nonnegative
numbers {ωn}n≥1 is said to be t-subadditive, if it is (t, 0)-subadditive, where 0 = {0, 0, . . .} denotes
the identical zero sequence, that is, if the following inequality,

ωm+n ≤ t(ωm +ωn

)
, (5.8)

holds for all natural numbers m and n. In particular, if t = 1, then a 1-subadditive sequence is
called simply subadditive.

Of course (t, α)-subadditivity implies t′-subadditivity for t′ := t(1 + sup{αn | n ≥ 2}).

Definition 5.4. If t is a number, greater than or equal to 1, and {ωn}n≥1 is a sequence of
nonnegative numbers, then the sequence {ωn}n≥1 is said to be exp-t-subadditive if

ω1/t
m+n ≤ ω1/t

m +ω1/t
n (5.9)

for allm and n positive integers.

Observation 3. An exp-t-subadditive sequence {ωn}n≥1 of nonnegative numbers is also exp-s-
subadditive for all s > t.

Proof. Applying the inequality (a + b)r ≤ ar + br for all a ≥ 0, b ≥ 0, and 0 < r ≤ 1, we get

ω1/s
m+n =

[
ω1/t
m+n

]t/s ≤ [
ω1/t
m +ω1/t

n

]t/s ≤ [
ω1/t
m

]t/s
+
[
ω1/t
n

]t/s = ω1/s
m +ω1/s

n (5.10)

for allm and n positive integers.

Observation 4. For all t ≥ 1, any exp-t-subadditive sequence {ωn}n≥1 of nonnegative numbers is
also 2t−1-subadditive.
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Proof. Since t ≥ 1, the function f : [0, ∞)→R, f(x) = xt is convex. Thus, for all m,n ≥ 1, we
have

ωm+n =
[
ω1/t
m+n

]t ≤ [ω1/t
m +ω1/t

n ]
t
= 2t

[
1
2
ω1/t
m +

1
2
ω1/t
n

]t

≤ 2t
[
1
2

(
ω1/t
m

)t

+
1
2

(
ω1/t
n

)t]
= 2t−1

(
ωm +ωn

)
.

(5.11)

We present now the main result of this paper.

Theorem 5.5. Let X be a random variable, having finite moments of any order, and let {ωn}n≥1 be the
principal Szegö-Jacobi parameters of X. LetM and t be two numbers that are greater than or equal to 1.
If the sequence {ωn}n≥1 satisfies the condition

(
ωk

ωr

)

≤Mtk
(
k
r

)

(5.12)

for all 0 ≤ r ≤ k < N, whereN denotes the dimension of the chaos space generated by X, then X is of
class (M, t)-W-H.

Proof. Let p > 0 and q > 0, such that (1/p) + (1/q) = (1/t). Let H be the chaos space generated
by X. Let ϕ ∈ H and ψ ∈ H, such that Γ(√pI)ϕ ∈ H and Γ(√qI)ψ ∈ H. Let {fn}n<N be
the orthogonal sequence of polynomials, with a leading coefficient of 1, generated by X. We
distinguish between two cases.

Case 1. If N = ∞, then there exist two unique sequences of complex numbers {cn}n≥0 and
{dn}n≥0, such that

ϕ =
∞∑

n=0

cnfn(X),

ψ =
∞∑

n=0

dnfn(X).

(5.13)

We have

ϕ � ψ =
∞∑

k=0

(
∑

u+v=k

cudv

)

fk(X). (5.14)

Using the triangle inequality, we obtain

E
[∣∣ϕ � ψ∣∣2] =

∞∑

k=0

∣∣∣∣∣

∑

u+v=k

cudv

∣∣∣∣∣

2

ωk!

≤
∞∑

k=0

[
∑

u+v=k

∣∣cudv
∣∣
]2

ωk!

=
∞∑

k=0

ωk!

[
∑

u+v=k

1
√
ωu!ωv!puqv

√
puωu!

∣∣cu
∣∣
√
qvωv!

∣∣dv
∣∣
]2

(5.15)
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From the Cauchy-Bunyakovsky-Schwarz inequality, inequality (5.2), and Newton’s binomial
formula, we obtain

E
[∣∣ϕ � ψ∣∣2] ≤

∞∑

k=0

ωk!

[
∑

u+v=k

1
ωu!ωv!puqv

]

×
[

∑

u+v=k

puωu!
∣∣cu

∣∣2qvωv!
∣∣dv

∣∣2
]

=
∞∑

k=0

[
∑

u+v=k

ωk!
ωu!ωv!

1
pu

1
qv

]

×
[

∑

u+v=k

puωu!
∣∣cu

∣∣2qvωv!
∣∣dv

∣∣2
]

=
∞∑

k=0

[
∑

u+v=k

(
ωk

ωu

)
1
pu

1
qv

]

×
[

∑

u+v=k

puωu!
∣∣cu

∣∣2qvωv!
∣∣dv

∣∣2
]

≤
∞∑

k=0

[
∑

u+v=k

Mtk
(
k
u

)
1
pu

1
qv

]

×
[

∑

u+v=k

puωu!
∣∣cu

∣∣2qvωv!
∣∣dv

∣∣2
]

=M
∞∑

k=0

tk
[

∑

u+v=k

(
k
u

)
1
pu

1
qv

]

×
[

∑

u+v=k

puωu!
∣∣cu

∣∣2qvωv!
∣∣dv

∣∣2
]

=M
∞∑

k=0

tk
[
1
p
+
1
q

]k
×
[

∑

u+v=k

puωu!
∣∣cu

∣∣2qvωv!
∣∣dv

∣∣2
]

=M
∞∑

k=0

tk
[
1
t

]k[ ∑

u+v=k

puωu!
∣∣cu

∣∣2qvωv!
∣∣dv

∣∣2
]

=M
∞∑

k=0

1

[
∑

u+v=k

puωu!
∣∣cu

∣∣2qvωv!
∣∣dv

∣∣2
]

=M
∞∑

u=0

puωu!
∣∣cu

∣∣2
∞∑

v=0

qvωv!
∣∣dv

∣∣2

=ME
[∣∣Γ(

√
pI)f

∣∣2]E
[∣∣Γ(

√
qI)g

∣∣2].

(5.16)

Case 2. If N < ∞, then all the inequalities used in Case 1, remain the same or become strict
inequalities, due to the fact that after a while, all ω’s become zero. Thus, for example, some
complete sums like

∑
u+v=k

(
k
u

)
(1/pu)(1/qv) from Case 1 will become incomplete (that means

some of the pais (u, v), with u + v = k, will be missing) in Case 2,and therefore instead of∑
u+v=k

(
k
u

)
(1/pu)(1/qv) = 1/tk, we will have

∑
u+v=k

(
k
u

)
(1/pu)(1/qv) < 1/tk. Therefore, all

the inequalities from Case 1 will also remain true in Case 2. Hence, X is of class (M, t)-W-H in
this case too.

Corollary 5.6. Let t be a number greater than or equal to 1, and α = {αn}n≥2 a sequence of nonnegative
numbers producing a convergent series

∑∞
n=2αn. Let X be a random variable, having finite moments of

any order, and let {ωn}n≥1 be the principal Szegö-Jacobi parameters of X. If the sequence {ωn}n≥1 is
(t, α)-subadditive, then X is of class (M, t)-W-H, whereM := max{1, (1/t)∏∞

n=2(1 + αn)}.
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Corollary 5.7. If X is a random variable, having finite moments of all orders, such that its principal
Szegö-Jacobi sequence {ωn}n≥1 is t-subadditive, then X is of class t-W-H.

Corollary 5.8. If X is a random variable, having finite moments of all orders, such that its principal
Szegö-Jacobi sequence {ωn}n≥1 is exp-t-subadditive, thenX is of class 2t−1-W-H. In particular, by taking
p = q = λ= 2t, it is concluded that ifH denotes the chaos space generated byX, and if ϕ(X), ψ(X) ∈ H,
such that Γ(2t/2I)ϕ(X) ∈ H and Γ(2t/2I)ψ(X) ∈ H, then ϕ(X) � ψ(X) ∈ H and the following
inequality holds:

E
[∣∣ϕ(X) � ψ(X)

∣∣2] ≤ E[∣∣Γ(2t/2I)ϕ(X)
∣∣2]E

[∣∣Γ(2t/2I)ψ(X)
∣∣2]. (5.17)

Observation 5. If p = q = 2t, then to prove that the inequality,

E
[∣∣ϕ(X) � ψ(X)

∣∣2] ≤ E[∣∣Γ(
√
2tI)ϕ(X)

∣∣2]E
[∣∣Γ(

√
2tI)ψ(X)

∣∣2], (5.18)

holds whenever both expectations from the right-hand side are finite, we do not need the
condition that eachω-binomial coefficient

( ωk
ωr

)
is less than or equal toMtk

(
k
r

)
, but it is enough

to assume that for each k ≥ 0, the sum of all binomial coefficients, having ωk on the top, is less
than or equal toMtk times the sum of all classic binomial coefficients having k on the top, that
means

k∑

r=0

(
ωk

ωr

)

≤Mtk·2k (5.19)

for all k ≥ 0.

Proof. The proof of this observation follows line by line the proof of Theorem 5.5, and it uses
the fact that for all pairs (u, v) such that u + v is equal to a fixed number k since p = q = 2t, the
product puqv is always the same (independent of the pair) and equal to (2t)k.

The following proposition will be useful in showing later that λ= 2t is optimal for some
particular random variables X.

Proposition 5.9. Let X be a random variable having finite moments of all orders. We assume that
the probability distribution of X has an infinite support. Let H be the chaos space generated by X
and {ωn}n≥1 the principal Szegö-Jacobi sequence of X. We define Sn :=

∑n
k=0

( ωn
ωk

)
for all n ≥ 0, and

λ0 := lim supn→∞S
1/n
n . Then,

(1) if there exists a positive number λ such that the inequality,

E
[∣∣ϕ(X) � ψ(X)

∣∣2] ≤ E[∣∣Γ(
√
λI)ϕ(X)

∣∣2]E
[∣∣Γ(

√
λI)ψ(X)

∣∣2], (5.20)

holds for all ϕ ∈ H and ψ ∈ H, such that Γ(
√
λI)ϕ ∈ H and Γ(

√
λI)ψ ∈ H, then λ ≥ λ0;

(2) if λ0 satisfies (5.20), then λ0 is optimal (i.e., the smallest among all positive λ’s satisfying this
inequality);

(3) if Sn ≤ λn0 for all n ≥ 0, then λ0 is optimal.
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Proof. (1) Let λ > 0 such that (5.20) holds whenever both expectations from its right-hand side
are finite. For every 0 ≤ r ≤ k, let us choose ϕ := fr(X) and ψ := fk−r(X). The inequality
E[|ϕ � ψ|2] ≤ E[|Γ(

√
λI)ϕ|2]E[|Γ(

√
λI)ψ|2] is equivalent to ωk! ≤ λrωr !λk−rωk−r !. This implies

that
( ωk
ωr

) ≤ λk. Summing up from r = 0 to r = k, we obtain Sk ≤ (k + 1)λk for all k ≥ 0. Taking
the kth root in both sides of this inequality and then passing to the superior limit as k→∞, we
get lim supk→∞

k
√
S ≤ λ. Thus, λ0 ≤ λ.

(2) It follows from 1.

(3) It follows from lettingM := 1 and t := λ0/2 in Observation 5.

6. Examples

Example 6.1. Let s ≥ 1 be a fixed real number and let X be a random variable, having finite
moments of all orders, and the principal Szegö-Jacobi parameters ωn = ns > 0 for all n ≥ 1. It is
clear that {ωn}n≥1 is an exp-s-subadditive (in fact exp-s-additive) sequence. Therefore, {ωn}n≥1
is also 2s−1-subadditive. Thus, X is of class 2s−1-W-H. Moreover, the following lemma holds.

Lemma 6.2. For all s ≥ 1, it holds that

[
n∑

k=0

(
n
k

)s]1/n

≤ 2s, (6.1)

lim
n→∞

[
n∑

k=0

(
n

k

)s]1/n

= 2s. (6.2)

Formula (6.2) holds even for 0 < s < 1.

Proof. If s ≥ 1, then we have

[
n∑

k=0

(
n

k

)s]1/n

≤
{[

n∑

k=0

(
n

k

)]s}1/n

=
[
2n
]s/n= 2s. (6.3)

Since s ≥ 1, the function h : (0, ∞)→R, h(x) = xs is convex, and thus

[
n∑

k=0

(
n
k

)s]1/n

= n1/n
[

n∑

k=0

1
n

(
n
k

)s]1/n

≥ n1/n
{[

n∑

k=0

1
n

(
n
k

)]s}1/n

= n1/n
[
2n

n

]s/n
=

1
(

n
√
n
)s−1 2

s.

(6.4)

Hence,

1
(

n
√
n
)s−1 2

s ≤
[

n∑

k=0

(
n

k

)s]1/n

≤ 2s. (6.5)

Since n
√
n→1, as n→∞, we conclude that limn→∞[

∑n
k=0

( n
k

)s]
1/n

exists and is equal to 2s.
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If 0 < s < 1, then in a similar way, we can show that

1
(

n
√
n
)s−1 2

s ≥
[

n∑

k=0

(
n

k

)s]1/n

≥ 2s, (6.6)

and it follows again that limn→∞[
∑n

k=0
( n
k

)s]
1/n

= 2s.

From formula (6.2), inequality (6.1), Corollary 5.8, and Proposition 5.9, we obtain the
following proposition.

Proposition 6.3. Let X be a random variable, having finite moments of any order whose principal
Szegö-Jacobi parameters are ωn = ns for all n ≥ 1, where s is a fixed real number, such that s ≥ 1. Let
H be the chaos space generated by X.

(1) If p and q are positive numbers, such that (1/p) + (1/q) ≤ (1/2s−1), then for all ϕ ∈ H and
ψ ∈ H, such that Γ(√pI)ϕ ∈ H and Γ(√qI)ψ ∈ H, there exists f(X) � g(X) ∈ H and the
following inequality holds:

E
[∣∣ϕ � ψ∣∣2] ≤ E[∣∣Γ(√pI)ϕ

∣∣2]E
[∣∣Γ(

√
qI)ψ

∣∣2]. (6.7)

(2) λ0 := 2s is the smallest among all positive numbers λ, for which the inequality,

E
[∣∣ϕ � ψ∣∣2] ≤ E[∣∣Γ(

√
λI)ϕ

∣∣2]E
[∣∣Γ(

√
λI)ψ

∣∣2], (6.8)

holds for all ϕ ∈ H and ψ ∈ H, such that Γ(
√
λI)ϕ ∈ H and Γ(

√
λI)ψ ∈ H.

Example 6.4. This is a modification of the previous example. Let s be a fixed real number, such
that s > 2. Let Xr be a random variable whose principal Szegö-Jacobi parameters are ωn =
ns + rn for all n ≥ 0, where r > −1. The condition r > −1 follows from the inequality ω1 > 0,
and ensures that ωn > 0 for all n ≥ 2. The reason why we have chosen s > 2 will become more
transparent later.

Claim 1. If r ≥ 0, then the sequence {ωn}n≥1 is 2s−1-subadditive.

Indeed, for allm and n natural numbers, we have

(m + n)s ≤ 2s−1
(
ms + ns

)
,

m + n < 2s−1(m + n).
(6.9)

Multiplying the second inequality by r and adding the resulting inequality to the first one, we
get

ωm+n ≤ 2s−1
(
ωm +ωn

)
. (6.10)

Claim 2. If −1 < r < 0, then the sequence {ωn}n≥1 is not 2s−1-subadditive.
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Indeed, if we define r ′ := −r > 0, then for all n ≥ 1, we have

ω2n = (2n)s − 2nr ′

= 2s−1
(
ns − r ′n + ns − r ′n) + 2n

(
2s−1 − 1

)
r ′

= 2s−1
(
ωn +ωn

)
+ 2n

(
2s−1 − 1

)
r ′

> 2s−1
(
ωn +ωn

)
.

(6.11)

Claim 3. If −1 < r < 0, then there exists a sequence α = {αn}n≥2 of positive numbers, such that∑∞
n=2αn is convergent, and the sequence {ωn}n≥1 is (2s−1, α)-subadditive.

As before, let r ′ = −r ∈ (0, 1). Let n ≥ 2 be a fixed natural number. Let us find a positive
number αn, such that

ωn ≤ (
1 + αn

)
2s−1

(
ωk +ωn−k

)
(6.12)

for all 1 ≤ k < n. This inequality is equivalent to

ns − r ′n ≤ (
1 + αn

)
2s−1

[
ks + (n − k)s] − (

1 + αn
)
2s−1r ′n (6.13)

for all 1 ≤ k < n. Since ns ≤ 2s−1[ks + (n − k)s], if we choose αn such that

ns − r ′n =
(
1 + αn

)
ns − (

1 + αn
)
2s−1r ′n, (6.14)

then the last inequality holds, for all 1 ≤ k < n. In fact, for n even, if we choose k = n − k
(that means k = n/2), then we can see that αn cannot be chosen smaller than the value of the
solution of (6.14). Solving (6.14) for αn, we get

αn =
r ′
(
2s−1 − 1

)

ns−1 − 2s−1r ′
. (6.15)

Since n ≥ 2 and 0 < r ′ < 1, we can see that αn > 0 for all n ≥ 2. Moreover, since we have chosen
s > 2, the series

∑∞
n=2αn has the same nature as the series

∑∞
n=21/n

s−1, which is convergent.
Therefore, according to Theorem 5.8 for r ≥ 0, Xr is of class 2t−1-W-H, while for −1 < r <

0,Xr is of class (M, 2t−1)-W-H for someM ≥ 1 (M depends on r). Moreover, the family {Xr}r>−1
is not uniformly Wick-Hölderian (that means we cannot find the sameM for all r > −1). This
follows from the observation that limr→(−1)+ω1 = 0, while limr→(−1)+ω2= 2s −2 > 0. If we assume
the existence of two positive numbers p and q, such that the inequality: E[|f1(Xr) � f1(Xr)|2] ≤
E[|Γ(√pI)f1(Xr)|2]E[|Γ(√qI)f1(Xr)|2] holds for all r > −1 since f1(Xr)�f1(Xr) = f2(Xr), where
f1 and f2, are the orthogonal polynomials of degree 1 and 2, respectively, generated byXr , then
we would conclude that

ω2! ≤ pω1!·qω1!. (6.16)

This inequality reduces to ω2 ≤ pqω1 for all r > −1, which is impossible since the left-hand side
converges to a positive number, while the right-hand side tends to zero as r goes to −1.
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Example 6.5. Let us take now s = 2, and consider the family of random variables Xr whose
principal Szegö-Jacobi parameters are ωn := n2 + rn for all n ≥ 1, where r > −1. If we take the
other Szegö-Jacobi parameters to be αn := αn for all n ≥ 0, where α is a fixed real number, then
we can see that {Xr}r>−1 are exactly the centered and rescaled Meixner random variables.

We can see exactly as in Example 6.5 that for r ≥ 0, {ωn}n≥1 is 22−1-subadditive, while for
−1 < r < 0, it is not 2-suadditive. If r ′ := −r, unfortunately, for αn = r ′(22−1 − 1)/(n2−1 − 22−1r ′) =
r ′/(n− 2r ′), the series

∑∞
n=2αn is not convergent. Moreover, as we saw in the previous example,

since (6.14) cannot be avoided for n even, we can see that the sequence {ωn}n≥1 is not (2, β)-
subadditive, for any nonnegative sequence β = {βn}n≥2, such that

∑∞
n=2βn <∞.

Claim 1. If −1/2 ≤ r < 0, then for all n ≥ k ≥ 0, we have
(
ωn

ωk

)

≤ 2n
(
n
k

)

. (6.17)

Since
( ωn
ωk

)
=
( ωn
ωn−k

)
and

( n
k

)
=
( n
n−k

)
, we may assume that k ≤ n/2.

We fix k ≥ 1, and prove by induction on n that for all n ≥ 2k,
( ωn
ωk

) ≤ 2n
( n
k

)
.

Let us prove first this inequality for n = 2k. Since ωm = m(m − r ′) for allm ≥ 1, we have
(
ω2k

ωk

)

=

(
2k
k

)[
2k − r ′
k − r ′ ·

2k − 1 − r ′
k − r ′

][
2k − 2 − r ′
k − 1 − r ′ ·

2k − 3 − r ′
k − 1 − r ′

]
· · ·

×
[
2 − r ′
1 − r ′ ·

1 − r ′
1 − r ′

]

=

(
2k
k

)[(
2 +

r ′

k − r ′
)(

2 − 1 − r ′
k − r ′

)]

×
[(

2 +
r ′

k − 1 − r ′
)(

2 − 1 − r ′
k − 1 − r ′

)]
· · ·

×
[(

2 +
r ′

1 − r ′
)(

2 − 1 − r ′
1 − r ′

)]

=

(
2k
k

)[
4 + 2

2r ′ − 1
k − r ′ − r ′(1 − r ′)

(k − r ′)2
]

×
[
4 + 2

2r ′ − 1
k − 1 − r ′ −

r ′(1 − r ′)
(k − 1 − r ′)2

]
· · ·

×
[
4 + 2

2r ′ − 1
1 − r ′ − r ′(1 − r ′)

(1 − r ′)2
]
.

(6.18)

If −1/2 ≤ r < 0, since r ′ = −r, we have 0 < r ′ ≤ 1/2, and thus 2r ′ − 1 ≤ 0. Hence,

4 + 2
2r ′ − 1
j − r ′ − r ′(1 − r ′)

(j − r ′)2
< 4, (6.19)
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for all j ∈ {1, 2, . . . , k}. Hence, we conclude that

(
ω2k

ωk

)

<

(
2k
k

)

4k= 22k
(
2k
k

)

. (6.20)

Thus, we have succeeded in proving the induction hypothesis.
Let us suppose now that the inequality

( ωn
ωk

) ≤ 2n
( n
k

)
holds for some n ≥ 2k, and

prove that the inequality
( ωn+1

ωk

) ≤ 2n+1
(
n+1
k

)
also holds. To prove this, it is enough to check

that
( ωn+1

ωk

)
/
( ωn
ωk

) ≤ 2
(
n+1
k

)
/
( n
k

)
. This is equivalent to ωn+1/ωn+1−k ≤ 2(n + 1)/(n + 1 − k).

This new inequality means that (n+1)(n+1−r ′)/[(n+1−k)(n+1−k−r ′)] ≤ 2(n+1)/(n+1−k),
which reduces to checking that (n+1−r ′) ≤ 2(n+1−k−r ′). Finally, this inequality is equivalent
to 2k ≤ n + 1 − r ′, which is true since n ≥ 2k and 1 − r ′ > 0.

It follows now from Theorem 5.5 that for all r ≥ 1/2, Xr is of class 2-W-S.

Claim 2. If r ∈ (−1, −1/2), then for all ε > 0, there exists anM, which depends on both r and ε,
such that for all n ≥ 2k, we have

(
ωn

ωk

)

≤M(2 + ε)n
(
n
k

)

. (6.21)

Indeed, we can see as before that for n = 2k, we have

(
ω2k

ωk

)

=

(
2k
k

)[
4 + 2

2r ′ − 1
k − r ′ − r ′(1 − r ′)

(k − r ′)2
]

×
[
4 + 2

2r ′ − 1
k − 1 − r ′ −

r ′(1 − r ′)
(k − 1 − r ′)2

]
· · ·

×
[
4 + 2

2r ′ − 1
1 − r ′ − r ′(1 − r ′)

(1 − r ′)2
]
.

(6.22)

Since 4+ 2(2r ′ − 1)/(j − 1− r ′)− r ′(1− r ′)/(j − 1− r ′)2→4, as j→∞, there exists a natural number
N, such that for all j ≥ N, 4 + 2(2r ′ − 1)/(j − 1 − r ′) − r ′(1 − r ′)/(j − 1 − r ′)2 ≤ (2 + ε)2 . Let
M := [1/(2 + ε)2|J |]

∏
j∈J[4 + 2(2r ′ − 1)/(j − 1 − r ′) − r ′(1 − r ′)/(j − 1 − r ′)2], where J := {j ∈

{1, 2, . . . ,N − 1}|4 + 2(2r ′ − 1)/(j − 1 − r ′) − r ′(1 − r ′)/(j − 1 − r ′)2 > (2 + ε)2}, and |J | denotes the
cardinality of J . Then, for all k ≥ 1, we have

(
ω2k

ωk

)

≤M(2 + ε)2k
(
2k
k

)

. (6.23)

Now, if we fix k ≥ 1, we can prove, as before by induction on n that for all n ≥ 2k, the inequality
(6.21) holds.

Therefore, for any r ∈ (−1, −1/2) and any ε > 0, there exists M > 0, such that Xr is of
class (M, 2 + ε)-W-H.
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Claim 3. For all r ∈ (−1, −1/2), Xr is of class 1/
√
r(1 − r)-W-H.

To see this, let us observe that since the roots of the trinomial q(x) = (2+r ′x)[2−(1−r ′)x]
are −2/r ′ and 2/(1−r ′), the maximum of this trinomial is attained at xv = 1/2[2/(1−r ′)−2/r ′] =
1/(1− r ′)− 1/r ′ and is equal to q(xv) = 1/[r ′(1− r ′)]. The closer the value of x to xv, the greater
the value of q(x). As we saw before for all k ≥ 1, we have

(
ω2k

ωk

)

=

(
2k
k

)[(
2 +

r ′

k − r ′
)(

2 − 1 − r ′
k − r ′

)]

×
[(

2 +
r ′

k − 1 − r ′
)(

2 − 1 − r ′
k − 1 − r ′

)]
· · ·

×
[(

2 +
r ′

1 − r ′
)(

2 − 1 − r ′
1 − r ′

)]

=

(
2k
k

)

q

(
1

k − r ′
)
q

(
1

k − 1 − r ′
)
· · · q

(
1

1 − r ′
)

≤
(
2k
k

)

[q(xv)]
k

=

(
2k
k

)[
1

√
r ′(1 − r ′)

]2k
.

(6.24)

Since 1/
√
r ′(1 − r ′) ≥ 2, we can prove now by induction on n that for all n ≥ 2k, we have

(
ωn

ωk

)

≤ tn
(
n
k

)

, (6.25)

where t := 1/
√
r ′(1 − r ′). It follows now from Corollary 5.6 that Xr is of class t-W-H.

One can improve a little bit this t, by observing that for all −1 < r < −1/2 (or,
equivalently, 1/2 < r ′ < 1), we have

1
1 − r ′ > xv >

1
2 − r ′ >

1
3 − r ′ > · · · . (6.26)

A simple computation shows that for 1/2 < r ′ < (7 −
√
17)/4, 1/(2 − r ′) is closer to xv than

1/(1 − r ′) is to xv. Therefore, in this case, we can choose a smaller t :=
√
q(1/(2 − r ′)). If (7 −√

17)/4 ≤ r ′ < 1, then we have that 1/(1 − r ′) − xv ≤ xv − 1/(2 − r ′), and thus we can take
t :=

√
q(1/(1 − r ′)) to conclude that Xr is of class t-W-H.
Since limr→(−1)+ω1 = 0 and limr→(−1)+ω2 = 2 > 0, we can conclude, as in Example 6.5,

that the family {Xr} is not unif.-W-H. On the other hand, since for any r ′0 > −1, the set
{1/

√
r ′(1 − r ′) | 1/2 < r ′ ≤ r ′0} is bounded above, we can see that for any B ⊂ (−1, ∞), the

family {Xr}r∈B is unif.-W-H if and only if infB > −1.

Claim 4. For any r > −1, ifM and t are positive numbers, such that Xr is of class (M, t)-W-H,
then t ≥ 2.
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To see this, let us observe first that by D’Alembert ratio theorem, we have

lim
n→∞

n

√√√
√

(
ω2n

ωn

)

= lim
n→∞

( ω2(n+1)
ωn+1

)

( ω2n
ωn

)

= lim
n→∞

(2n + 2)(2n + 1)(2n + 2 + r)(2n + 1 + r)

(n + 1)2(n + 1 + t)2

= 16.

(6.27)

On the other hand, since for p = q = 2t, E[|fn(Xr) � fn(Xr)|2] ≤ ME[|Γ(√2t)fn(Xr)|2]2 and
fn(Xr) � fn(Xr) = f2n(Xr), we conclude that for all n ≥ 1,

(
ω2n

ωn

)

≤M(2t)2n. (6.28)

Taking radical or order n from both sides of this inequality and passing to the limit as n→∞,
we obtain that 16 ≤ (2t)2. Thus, we get t ≥ 2.

This last claim proves that at least for r ≥ −1/2, we got the best possible t, which is 2, for
the Wick-Hölder class of Xr .

Let us consider now the family of nondegenerate centered Meixner random variables:
Xα,β,t whose Szegö-Jacobi parameters are αn = αn for all n ≥ 0, and ωn = βn2 + (t − β)n for
all n ≥ 1, where the parameters α, β, and t satisfy the conditions: α ∈ R, β ≥ 0, and t > 0. We
distinguish between two cases.

Case 1. If β = 0, (i.e., Xα,0,t is gaussian or poissonian), then ωn = tn for all n ≥ 1, and therefore,
{ωn}n≥1 is additive. In this case, Xα,0,t is of class 1-W-H.

Case 2. If β > 0, then, ωn = βω′
n, where ω′

n = n2 + [(t/β) − 1]n, we can see that
( ωn
ωk

)
=
( ω′

n

ω′
k

)
for

all n ≥ k ≥ 0. Therefore, Xα,β,t satisfies the same Wick-Hölder inequality as Xr , where r = t/β.

Defining t/β = ∞ for β = 0, we can apply all the claims from this example to the family
of Meixner distributions, and formulate the following theorem.

Theorem 6.6. Let {Xα,β,t}α∈R,β≥0,t>0 be the family of Meixner distributions. Then,

(1) for Xα,0,t is of class 1-W-H for all α ∈ R, and t > 0;

(2) if β > 0 and t/β ≥ 1/2, then Xα,β,t is of class 2-W-H, and 2 is optimal;

(3) if β > 0 and t/β < 1/2, then Xα,β,t is of class 1/
√
r ′(1 − r ′)-W-H, where r ′ = 1 − (t/β);

(4) a family {Xα,β,t}(α,β,t)∈I of Meixner distributions is uniformly Wick Hölderian if and only if
inf{t/β | ∃α ∈ R, (α, β, t) ∈ I} > 0.

Example 6.7. Let Xq be the q-Gaussian random variable with parameter q, where q ∈ [−1, 1].
It means that for any q ∈ (−1, 1), Xq is a symmetric random variable (so, αn = 0 for all n ≥ 0)
and ωn = (1 − qn)/(1 − q) for all n ≥ 1. For q = 1, X1 is the standard Gaussian since ωn =
limq→1−(1 − qn)/(1 − q) = n for all n ≥ 1. For q = −1, ω1 = 1 and ωn = 0 for all n ≥ 2. Thus, X−1 is
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the centered Bernoulli random variable (1/2)[δ{−1}+δ{1}]. Despite the fact that limq→−1+ω2n = 0
for all n ≥ 1, the family {Xq}−1≤q≤1 is uniformly Wick-Hölderian. In fact, every q-Gaussian
random variable satisfies the best Wick-Hölder inequality since {ωn}n≥1 is subadditive for all
−1 ≤ q ≤ 1. This statement is trivial for q = −1 and q = 1. For −1 < q < 1 and allm and n natural
numbers, we have

ωm+n −ωm −ωn =
1 − qm+n

1 − q − 1 − qm
1 − q − 1 − qn

1 − q =

(
1 − qm)(qn − 1

)

1 − q < 0. (6.29)
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