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The expected number of real zeros of the polynomial of the form a0 + a1x + a2x
2 + · · · + anx

n, where
a0, a1, a2, . . . , an is a sequence of standard Gaussian random variables, is known. For n large it is
shown that this expected number in (−∞,∞) is asymptotic to (2/π) logn. In this paper, we show
that this asymptotic value increases significantly to

√
n + 1 when we consider a polynomial in the

form a0
( n
0
)1/2

x/
√
1 + a1

( n
1
)1/2

x2/
√
2 + a2

( n
2
)1/2

x3/
√
3 + · · · + an

(
n
n

)1/2
xn+1/

√
n + 1 instead. We

give the motivation for our choice of polynomial and also obtain some other characteristics for the
polynomial, such as the expected number of level crossings or maxima. We note, and present, a
small modification to the definition of our polynomial which improves our result from the above
asymptotic relation to the equality.

Copyright q 2008 K. Farahmand et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

The classical random algebraic polynomial has previously been defined as

T(x) ≡ Tn(x,ω) =
n∑

j=0

aj(ω)xj, (1.1)

where, for (Ω,A,Pr) a fixed probability space, {aj(ω)}nj=0 is a sequence of independent random
variables defined on Ω. For n large, the expected number of real zeros of T(x), in the interval
(−∞,∞), defined by EN0,T(−∞,∞), is known to be asymptotic to (2/π) logn. For this case the
coefficients aj ≡ aj(ω) are assumed to be identical normal standard. This asymptotic value
was first obtained by the pioneer work of Kac [1] and was recently significantly improved by
Wilkins [2], who reduced the error term involved in this asymptotic formula to O(1). Since
then, many other mathematical properties of T(x) have been studied and they are listed in [3]
and more recently in [4].
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The other class of random polynomials is introduced in an interesting article of Edelman
and Kostlan [5] in which the jth coefficients of T(x) in (1.1) have nonidentical variance

( n
j

)
.

It is interesting to note that in this case the expected number of zeros significantly increased to√
n, showing that the curve representing this type of polynomial oscillates significantly more

than the classical polynomial (1.1) with identical coefficients. As it is the characteristic of
( n

j

)
,

j = 0, 1, 2, . . . , n maximized at the middle term of j = [n/2], it is natural to conjecture that for
other classes of distributions with this property the polynomial will also oscillate significantly
more. This conjecture is examined in [6, 7]. This interesting and unexpected property of the
latter polynomial has its close relation to physics reported by Ramponi [8], which together
with its mathematical interest motivated us to study the polynomial

P(x) ≡ Pn(x,ω) =
n∑

j=0

aj

(
n

j

)1/2
xj+1

√
j + 1

. (1.2)

As we will see, because of the presence of the binomial elements in (1.2), we can progress
further than the classical random polynomial defined in (1.1). However, even in this case
the calculation yields an asymptotic result rather than equality. With a small change to the
definition of the polynomial we show that the result improves. To this end we define

Q(x) ≡ Qn(x,ω) =
n∑

j=0

aj

(
n

j

)1/2
xj+1

√
j + 1

+
a∗

√
n + 1

, (1.3)

where a∗ is mutually independent of and has the same distribution as {aj}nj=0. We prove the
following.

Theorem 1.1. When the coefficients aj of P(x) are independent standard normal random variables,
then the expected number of real roots is asymptotic to

EN0,P (−∞,∞) ∼
√
n + 1. (1.4)

Corollary 1.2. With the same assumption as Theorem 1.1 for the coefficients aj and a∗ one has

EN0,Q(−∞,∞) =
√
n + 1. (1.5)

Also of interest is the expected number of times that a curve representing the polynomial
cuts a level K. We assume K is any constant such that

(i)K2 ≤ en

n2
,

(ii)
1
n2

= o
(
K2),

(iii)K2 = o

(
en

n2

)
.

(1.6)

For example, any absolute constant K/= 0 satisfies these conditions. Defining ENK,P as the
expected number of real roots of P(x) = K, we can generalize the above theorem to the
following one.
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Theorem 1.3. When the coefficients aj have the same distribution as in Theorem 1.1, and K obeys the
above conditions (i)–(iii), the asymptotic estimate for the expected number of K-level crossings is

ENK,Q(−∞,∞) ∼ ENK,P (−∞,∞) ∼
√
n + 1. (1.7)

The other characteristic which also gives a good indication of the oscillatory behavior of
a random polynomial is the expected number of maxima or minima. We denote this expected
number by ENM

P for polynomial P(x) given in (1.2) and, since the event of tangency at the x-
axis has probability zero, we note that this is asymptotically the same as the expected number
of real zeros of P ′(x) = dP(x)/dx. In the following theorem, we give the expected number of
maxima of the polynomial.

Theorem 1.4. With the above assumptions on the coefficients aj , then the asymptotic estimate for the
expected number of maxima of P(x) is

ENM
P (−∞,∞) ∼ √

n. (1.8)

Corollary 1.5. With the above assumptions for the coefficients aj and a∗ one has

ENM
Q (−∞,∞) ∼ √

n. (1.9)

2. Proof of Theorem 1.1

We use a well-known Kac-Rice formula, [1, 9], in which it is proved that

EN0,P (a, b) =
∫b

a

Δ
πA2

dx, (2.1)

where P ′(x) represents the derivative with respect to x of P(x). We denote

A2 = var
(
P(x)

)
, B2 = var

(
P ′(x)

)
, C = cov

(
P(x), P ′(x)

)
, Δ2 = A2B2 − C2. (2.2)

Now, with our assumptions on the distribution of the coefficients, it is easy to see that

A2 =
n∑

j=0

(
n

j

)
x2j+2

j + 1
=

(
1 + x2)n+1

n + 1
− 1
n + 1

, (2.3)

B2 =
n∑

j=0

⎛

⎝
n

j

⎞

⎠ (j + 1)x2j =
(
1 + x2)n−1(1 + x2 + nx2), (2.4)

C =
n∑

j=0

⎛

⎝
n

j

⎞

⎠ x2j+1 = x
(
1 + x2)n. (2.5)

We note that, for all sufficiently large n and x bounded away from zero, from (2.3)we have

A2 ∼
(
1 + x2)n+1

n + 1
. (2.6)
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This together with (2.1), (2.4), and (2.5) yields

EN0(−∞,∞) ∼ 2
π

∫ε

0

Δ
A2

dx +
2
π

∫∞

ε

√
n + 1

1 + x2
dx, (2.7)

where ε > 0, ε→ 0 as n→∞. The second integral can be expressed as

2
√
n + 1
π

{
π

2
− arctan ε

}
−→

√
n + 1 as n −→ ∞. (2.8)

In the first integral, the expression (Δ/A2) has a singularity at x = 0:

Δ
A2

=

√√
√
√(n + 1)

{(
1 + x2)2n − (1 + x2)n−1(1 + x2 + nx2)}

{(
1 + x2

)n+1 − 1
}2 . (2.9)

Notice that the expression in (2.9) is bounded from above:

Δ
A2

<

√
(n + 1)(1 −D)

1 + x2
, (2.10)

where

D =
1 + nx2(1 + x2)n−1 − (1 + x2)n

{(
1 + x2

)n − 1
}2

=
(n − 1)

(
1 + x2)n−2 + (n − 2)

(
1 + x2)n−3 + · · · + 3

(
1 + x2)2 + 2

(
1 + x2) + 1

{(
1 + x2

)n−1 +
(
1 + x2

)n−2 + · · · + (1 + x2
)
+ 1
}2 .

(2.11)

When x = 0, we have

D =
n2 − n

2n2
(2.12)

and therefore

Δ
A2

<
n + 1√
2n

∼
√

n + 1
2

, (2.13)

whichmeans that the integrand in the first integral of (2.7) is bounded for every n. When x > 0,
it can easily be seen that

1 > D >

∑n−2
j=0 (1 + j)

n2
(
1 + x2

)2n−2 > 0, (2.14)

and therefore

Δ
A2

<

√
n + 1

1 + x2
. (2.15)
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Hence, the first integral that appears in (2.7) is bounded from above as follows:

2
π

∫ε

0

Δ
A2

dx <
2
π

∫ε

0

√
n + 1

1 + x2
dx =

2(arctan ε)
√
n + 1

π
= o(

√
n + 1) (2.16)

by the choice of ε. Altogether, the value of the first integral in (2.7) is of a smaller order of
magnitude than the value of the second integral, and we have from (2.7)

EN0(−∞,∞) ∼
√
n + 1 (2.17)

which completes the proof of Theorem 1.1.
In order to obtain the proof of Corollary 1.2, we note that the above calculations remain

valid for B2 and C. However, for A2 we can obtain the exact value rather than the asymptotic
value. To this end, we can easily see that

A2
Q = var

(
Q(x)

)
=

n∑

j=0

(
n

j

)
x2j+2

j + 1
+

1
n + 1

=

(
1 + x2)n+1

n + 1
. (2.18)

Substituting this value instead of (2.3) together with (2.4) and (2.5) in the Kac-Rice formula
(2.1), we get a much more straight forward expression than that in the above proof:

EN0,Q(−∞,∞) =
1
π

∫∞

0

√
n + 1

1 + x2
dx =

√
n + 1. (2.19)

This gives the proof of Corollary 1.2.

3. Level crossings

To find the expected number of K-level crossings, we use the following extension to the Kac-
Rice formula as it was used in [10]. It is shown that in the case of normal standard distribution
of the coefficients

ENK(a, b) = I1(a, b) + I2(a, b) (3.1)

with

I1(a, b) =
∫b

a

Δ
πA2

exp
(
− B2K2

2Δ2

)
dx, (3.2)

I2(a, b) =
∫b

a

√
2KC

πA3
exp
(
− K2

2A2

)
erf
(
− KC√

2AΔ

)
dx, (3.3)

where, as usual, erf(x) =
∫x
0 exp(−t)dt ≤ √

π/2. Since changing x to −x leaves the distribution
of the coefficients unchanged, ENK(−∞, 0) = ENK(0,∞). Hence to what follows we are only
concerned with x ≥ 0. Using (2.3)–(2.5) and (3.2) we obtain

I1(−∞,∞) =
2
√
n + 1
π

∫∞

0

1
1 + x2

exp
(
− K2(n + 1)

(
1 + x2 + nx2)

2
(
1 + x2

)n+1

)
dx. (3.4)
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Using substitution x = tan θ in (3.4) we can see that

I1(−∞,∞) = J1

(
0,

π

2

)
=
2
√
n + 1
π

∫π/2

0
exp
(−K2(n + 1)

2
(
1 + n sin2 θ

)
cos2n θ

)
dθ, (3.5)

where the notation J1 emphasizes integration in θ. In order to progress with the calculation of
the integral appearing in (3.5), we first assume θ > δ, where δ = arccos(1 − 1/(nε)), where
ε = 1/{2 log(nK)}. This choice of ε is indeed possible by condition (i). Now since cos θ <
(1 − 1/(nε)), we can show that

cos2n θ <

(
1 − 1

nε

)2n

=
((

1 − 1
nε

)−nε)−2/ε
∼ exp

(
− 2
ε

)
−→ 0 (3.6)

as n→∞. Now we are in a position to evaluate the dominated term which appears in the
exponential term in (3.5). From (3.6), it is easy to see that for our choice of θ

K2n2cos2n−2 θ < K2n2 exp
(
− 2
ε

)
= K2n2 exp

( − 4 log(nK)
)
= (Kn)−2 −→ 0, (3.7)

by condition (ii). Therefore, for all sufficiently large n, the argument of the exponential function
in (3.5) is reduced to zero, and hence the integrand is not a function of θ and we can easily see
by the bounded convergence theorem and condition (iii) that

J1

(
δ,

π

2

)
∼
√
n + 1. (3.8)

Since the argument of the exponential function appearing in (3.5) is always negative, it is
straight forward for our choice of δ and ε to see that

J1(0, δ) <
2
√
n + 1
π

∫δ

0
dθ =

2
π

√
n + 1 arccos

(
1 − 2 log(nK)

n

)
= o(

√
n + 1), (3.9)

by condition (iii). As I1(−∞,∞) = J1(0, δ) + J1(δ, π/2), by (3.8) and (3.9)we see that

I1(−∞,∞) ∼
√
n + 1. (3.10)

Now we obtain an upper limit for I2 defined in (3.3). To this end, we let v = K/(
√
2A). Then

we have

I2(−∞,∞) ≤ |K|√
2π

∫∞

−∞

C

A3
exp
(
− K2

2A2

)
dx =

2√
π

∫∞

0
exp
( − v2)dv ≤ 2√

π
. (3.11)

This together with (3.10) proves that ENK,Q(−∞,∞)∼√
n + 1. The theorem is proved for

polynomial Q(x) given in (1.3).
Let us now prove the theorem for polynomial P(x) given in (1.2), that is

ENK,P (−∞,∞) ∼
√
n + 1. (3.12)
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The proof in this case repeats the proof for ENK,Q(−∞,∞) above, except that the equivalent of
(3.4) will be an asymptotic rather than an exact equality, and the derivation of the equivalent
of (3.9) is a little more involved, as shown below. Going back from the new variable θ to the
original variable x gives

J1(0, δ) =
2
π

∫ tan δ

0

Δ
A2

exp
(
− B2K2

2Δ2

)
dx <

2
π

∫ tan δ

0

Δ
A2

dx, (3.13)

where Δ/A2 is given by (2.9). Then by the same reasoning as in the proof of Theorem 1.1,

J1(0, δ) <
2
√
n + 1
π

arctan(tan δ) =
2
√
n + 1
π

δ

=
2
√
n + 1
π

arccos
(
1 − 2 log(nK)

n

)
= o(

√
n + 1),

(3.14)

by condition (iii). This completes the proof of Theorem 1.3.

4. Number of maxima

In finding the expected number of maxima of P(x), we can find the expected number of zeros
of its derivative P ′(x). To this end we first obtain the following characteristics needed in order
to apply them into the Kac-Rice formula (2.1),

A2
M = var

(
P ′(x)

)
=

n∑

j=0

(
n

j

)

(j + 1)x2j

=
(
1 + x2)n−1(1 + x2 + nx2),

(4.1)

B2
M = var

(
(P ′′(x)

)
=

n∑

j=0

(
n

j

)

j2(j + 1)x2j−2

= n
(
1 + x2)n−3(2 + 4nx2 + nx4 + n2x4),

(4.2)

CM = cov
(
P ′(x), P ′′(x)

)
=

n∑

j=0

(
n

j

)

j(j + 1)x2j−1

= nx
(
1 + x2)n−2(2 + x2 + nx2).

(4.3)

Hence from (4.1)–(4.3) we obtain

Δ2
M = A2

MB2
M − C2

M = n
(
1 + x2)2n−4[2 + nx4 + n2x4 + 2x2 + 2nx2]. (4.4)

Now from (4.1) and (4.5) we have

ΔM

A2
M

=

√
n
(
2 + nx4 + n2x4 + 2x2 + 4nx2

)

(
1 + x2

)(
1 + x2 + nx2

) . (4.5)
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As the value of x increases, the dominating terms in (4.5) change. For accuracy therefore,
the interval needs to be broken up. In this case, the interval (0,∞) was divided into two
subintervals. First, choose ε < x < ∞ such that ε = n−1/4, then

ΔM

A2
M

∼
√
n

1 + x2
. (4.6)

Substituting into the Kac-Rice formula (2.1) yields

ENM
P (ε,∞) ∼ 1

π

∫∞

ε

√
n

1 + x2
dx =

√
n

2
. (4.7)

Now we choose 0 < x < ε. Since for n sufficiently large the term n2x4 is significantly larger
than nx4 and also since for this range of x we can see 2x2 < 1,we can obtain an upper limit for
(4.5) as

ΔM

A2
M

<

√
n
(
3 + 2n2x4 + 4nx2

)

1 + nx2
<

√
n
(
3 + 6nx2 + 3n2x4

)

1 + nx2
=
√
3n. (4.8)

Substituting this upper limit into Kac-Rice formula, we can see

ENM
P (0, ε) =

∫ ε

0

ΔM

πA2
M

dx <
√
3nε = o

(
n1/4). (4.9)

This together with (4.7) completes the proof of Theorem 1.4. To prove Corollary 1.5, it suffices
to notice that since Q′(x) = P ′(x) and Q′′(x) = P ′′(x), all the arguments in the above proof
apply to polynomial Q(x), and we have therefore ENM

P (a, b) = ENM
Q (a, b).
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