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1. Introduction

In this paper, we study backward stochastic differential equations (BSDEs for short) of
the form

−dYt = f
(
t,Yt,Zt

)
dt−ZtdWt, Yτ = ξ, (1.1)

where τ is a bounded stopping time for the filtration F.
Since the first result about the solutions in L2 was obtained by Pardoux and Peng [1],

some related results have been generalized. Moreover, for mathematical interest, many
people have studied the results of existence and uniqueness in Lp. Let us mention that
when the generator is uniformly Lipschitz continuous, a result of El Karoui et al. [2]
provides the existence of a solution when the data ξ and { f (t,0,0)}t∈[0,T] are in Lp for
p ∈ (1,∞). But in many applications, Lipschitz condition is too restrictive to be assumed.
Consequently, we are interested in replacing the Lipschitz condition with a weaker one
and we always assume that τ is bounded. In this field, in [3], Briand and Carmona have
discussed the Lp solutions for BSDEs with polynomial growth generators and then in [4],
Briand et al. generalized the result.
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Now let us mention that the pricing problem of an American claim is equivalent to
solving the BSDE

dYt =
[
r(t)Yt + θ(t)Zt

]
dt+ZtdWt, Yτ = ξ, (1.2)

where r(t) is the interest rate and θ(t) is the risk premium vector. In general, both of them
may be unbounded, therefore the results mentioned above may be invalid.

In this paper, we try to get the existence and uniqueness result of Lp (p > 1) solu-
tions for BSDEs with stochastic Lipschitz condition, which was introduced by El Karoui
and Huang [5]. We have to mention that Bender and Kohlman have discussed BSDEs
with stochastic Lipschitz condition and by strengthening the integrability conditions on
the generator and the terminal value, they got a wellposedness result in L2 in [6]. We
also strengthen the integrability conditions both on the data (ξ, f ) and on the solu-
tions, but we do not use the contraction mapping theorem which plays a key role in
[6] any longer. Instead, just like the work in [4], we construct a sequence of special BS-
DEs which have unique solutions in L2, and then prove that the sequence of their solu-
tions converge in Lp. However, now it is not constants (| f (t, y,z)− f (t, y,z′)| ≤ μ|z− z′|
and 〈y− y′, f (t, y,z)− f (t, y′,z)〉 ≤ λ|y− y′|2), but processes (| f (t, y,z)− f (t, y′,z′)| ≤
μ(t)|y− y′|+ γ(t)|z− z′|) that control the generator. On the other hand, noting that the
maturity of an American claim is bounded in general, we assume the stopping time is
bounded in this paper.

The paper is organized as follows. In Section 2, we introduce the assumptions, some
notations including some spaces, which are different from the standard spaces used be-
fore. In Section 3, some useful a priori estimates are given. The main result of this paper,
an existence and uniqueness theorem in Lp, is obtained in Section 4.

2. Preliminaries

2.1. Definition and notations. First of all, W = {Wt}t≥0 is a standard Brownian motion
with values in Rd defined on some complete probability space (Ω,�,P). F = {�t}t≥0

augmented by all P-null-sets is the natural filtration of W , which satisfies the usual con-
ditions.

For convenience in writing and reading, we always consider the space L2p where p >
1/2 instead of the space Lp where p > 1.

The standard inner product of Rm is denoted by 〈·,·〉, the Euclidean norm by | · |. A
norm on Rm×d is defined by

√
tr(ZZ∗), we will denote this norm by | · | too.

We study the following BSDE:

−dYt = f
(
t,Yt,Zt

)
dt−ZtdWt, Yτ = ξ, (2.1)

where τ is a stopping time for filtration F.
Now we can introduce the appropriate spaces.
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Let a be a nonnegative F-adapted process, we define the increasing continuous process
A by

At =
∫ t

0
a2
s ds. (2.2)

For p > 1/2 and β > 3, we set

�2p(β,a,τ,Rn
)=

{
Y is progressively measurable; Yt ∈Rn;

‖Y‖2p
�2p = E

[(∫ τ

0
eβAs

∣
∣Ys

∣
∣2
ds
)p]

<∞
}

;

�2p(β,a,τ,Rn
)=

{
Y is progressively measurable; Yt ∈Rn;

‖Y‖2p
�2p = E

[
sup

0≤t≤τ
epβAt

∣
∣Yt

∣
∣2p
]
<∞

}
;

�2p,a(β,a,τ,Rn
)=

{
Y is progressively measurable; Yt ∈Rn;

‖Y‖2p
�2p,a = E

[∫ τ

0
a2
s e

pβAs
∣
∣Ys

∣
∣2p

ds
]
<∞

}
.

(2.3)

Consequently,

�2p(β,a,τ)= (�2p(β,a,τ,Rm
)∩�2p,a(β,a,τ,Rm

))×�2p(β,a,τ,Rm×d) (2.4)

is a Banach space with the norm

∥
∥(Y ,Z)

∥
∥2p

�2p = ‖Y‖2p
�2p +‖Y‖2p

�2p,a +‖Z‖2p
�2p . (2.5)

Now we illustrate what we mean by a solution of the BSDE (2.1) in this paper.

Definition 2.1. A solution of the BSDE (2.1) is a pair of progressively measurable processes
(Y ,Z) with values in Rm ×Rm×d such that on the set {t ≥ τ}, Yt = ξ and Zt = 0, P-a.s.,
t �→ Zt belongs to L2

loc(0,τ), t �→ f (t,Yt,Zt) belongs to L1
loc(0,τ), and for all t ∈ (0,τ), P-

a.s.,

Yt = ξ +
∫ τ

t∧τ
f
(
s,Ys,Zs

)
ds−

∫ τ

t∧τ
ZsdWs. (2.6)

Moreover, let β > 0 and let a be an F-adapted process, a solution (Y ,Z) is said to be
an (a,β)-solution of the BSDE (2.1) if P-a.s., t �→ e(1/2)βAt 1t≤τ f (t,Yt,Zt) and t �→
a2
t e

(1/2)βAt 1t≤τYt belong to L1
loc(0,∞), t �→ e(1/2)βAt 1t≤τZt belongs to L2

loc(0,∞).
For 2p > 1, a solution is said to be an L2p solution if we have, moreover, (Y ,Z) ∈

�2p(β,a,τ).
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2.2. Assumptions on data (ξ, f ). Now we make the following assumptions. For β > 0,
(A1) τ is a stopping time for the filtration F and P-a.s., τ ≤ T <∞, where T is a posi-

tive constant;
(A2) there are two nonnegative F-adapted processes μ(t) and γ(t) such that ∀(y,z,

y′,z′)∈Rm×Rm×d ×Rm×Rm×d,

∣
∣ f (t, y,z)− f (t, y′,z′)

∣
∣≤ μ(t)|y− y′|+ γ(t)|z− z′|; (2.7)

(A3) ∃ε > 0, a2
t = μ(t) + γ2(t)≥ ε;

(A4) f (t,0,0)/at ∈�2p(β,a,τ,Rm);
(A5) the Rk-valued �τ-measurable vector ξ satisfies

E
[
epβAτ |ξ|2p] <∞; (2.8)

(A6) let L <∞ be a positive constant such that

for p ≥ 1, Aτ <∞, P-a.s.; for p ∈
(

1
2

,1
)

, Aτ < L, P-a.s. (2.9)

We refer to (A2) as the stochastic Lipschitz condition.

Lemma 2.2. For 2p > 1, if (Y ,Z) ∈ �2p(β,a,τ) and (A2), (A3), (A4), (A6) hold, then
t �→ e(1/2)βAt 1t≤τ f (t,Yt,Zt) and t �→ a2

t e
(1/2)βAt 1t≤τYt belong to L1

loc(0,∞), t �→ e(1/2)βAt 1t≤τZt

belongs to L2
loc(0,∞).

Proof. It is obvious that t �→ e(1/2)βAt 1t≤τZt belongs to L2
loc(0,∞)

On the other hand, for p ∈ (1/2,1], we have

∫ τ

0
a2
s e

βAs
∣
∣Ys

∣
∣2
ds=

∫ τ

0

(
e(1−p)βAs

∣
∣Ys

∣
∣2−2p)(

a2
s e

pβAs
∣
∣Ys

∣
∣2p)

ds

≤
(

sup
0≤t≤τ

e(1−p)βAt
∣
∣Yt

∣
∣2−2p

)(∫ τ

0
a2
s e

pβAs
∣
∣Ys

∣
∣2p

ds
)
<∞.

(2.10)

For p > 1, we have

∫ τ

0
a2
s e

βAs
∣
∣Ys

∣
∣2
ds=

∫ τ

0

(
a

(2p−2)/p
s

)(
a

(2/p)
s eβAs

∣
∣Ys

∣
∣2)

ds

≤
(∫ τ

0
a2
s ds
)(p−1)/p(∫ τ

0
a2
s e

pβAs
∣
∣Ys

∣
∣2p

ds
)1/p

<∞.

(2.11)

Now we get that

∫ τ

0
a2
s e

βAs
∣
∣Ys

∣
∣2
ds <∞, (2.12)
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it follows that

∫ τ

0
a2
s e

(1/2)βAs
∣
∣Ys

∣
∣ds≤

(∫ τ

0
a2
s ds
)1/2(∫ τ

0
a2
s e

βAs
∣
∣Ys

∣
∣2
ds
)1/2

<∞. (2.13)

From the assumption on f , we obtain that

∫ τ

0
e(1/2)βAs

∣
∣ f
(
s,Ys,Zs

)∣∣ds

≤
∫ τ

0
e(1/2)βAs

(∣∣ f (s,0,0)
∣
∣+μ(s)

∣
∣Ys

∣
∣+ γ(s)

∣
∣Zs

∣
∣)ds

≤
(∫ τ

0
a2
s ds
)1/2(∫ τ

0
eβAs

∣
∣
∣
∣
f (s,0,0)

as

∣
∣
∣
∣

2

ds
)1/2

+
∫ τ

0
a2
s e

(1/2)βAs
∣
∣Ys

∣
∣ds

+
(∫ τ

0
a2
s ds
)1/2(∫ τ

0
eβAs

∣
∣Zs

∣
∣2
ds
)1/2

<∞,

(2.14)

the second inequality follows from the fact that a2
t = μ(t) + γ2(t). �

3. A priori estimates

The goal of this section is to study some estimates concerning solutions to the BSDE (2.1).
In what follows, we always assume that 2p > 1.

Firstly, we recall the result of Bender and Kohlmann [6, Theorem 3].

Theorem 3.1. For p = 1, let (A1), (A2), (A3), (A4), and (A5) hold for a sufficient large β.
There is a unique pair (Y ,Z) in �2(β,a,τ) satisfying (2.1).

Since Theorem 3.1 demands that β is large enough, we can always assume that

β >
(

2
2p− 1

∨ 3
)
. (3.1)

Moreover, letting (A6) holds, by Lemma 2.2, the unique pair (Y ,Z) in Theorem 3.1 is
an (a,β)-solution of BSDE (2.1). Now we give a basic estimate concerning the solution.

Lemma 3.2. For p > 1 and β > (2/(2p− 1)∨ 3), assume that (A1), (A2), (A3) hold, let
(Y ,Z)∈�2(β,a,τ) be a solution of BSDE (2.1) and assume that P-a.s.,

sup
0≤t≤τ

e(1/2)βAt

∣
∣
∣
∣
f (t,0,0)

at

∣
∣
∣
∣≤ n, e(1/2)βAτ |ξ| ≤ n, (3.2)

then

Y ∈�2p(β,a,τ,Rm
)∩�2p,a(β,a,τ,Rm

)
. (3.3)

For p ∈ (1/2,1), moreover, assuming that (A6) holds, then one can reach the same conclusion
as the case where p > 1.
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Proof. Applying Itô’s formula to eβAt∧τ |Yt|2, we obtain

eβAt∧τ
∣
∣Yt∧τ

∣
∣2

+
∫ τ

t∧τ
eβAs

(∣∣Zs

∣
∣2

+βa2
s

∣
∣Ys

∣
∣2)

ds

= eβAτ |ξ|2 + 2
∫ τ

t∧τ
eβAs

〈
Ys, f

(
s,Ys,Zs

)〉
ds− 2

∫ τ

t∧τ
eβAs

〈
Ys,ZsdWs

〉

≤ n2 +
∫ τ

t∧τ
eβAs

(
2
∣
∣Ys

∣
∣
∣
∣ f (s,0,0)

∣
∣+ 2μ(s)

∣
∣Ys

∣
∣2

+ 2γ(s)
∣
∣Ys

∣
∣
∣
∣Zs

∣
∣)ds

− 2
∫ τ

t∧τ
eβAs

〈
Ys,ZsdWs

〉

≤ n2 +
∫ τ

t∧τ
eβAs

(
a2
s

∣
∣Ys

∣
∣2

+
∣
∣
∣
∣
f (s,0,0)

as

∣
∣
∣
∣

2

+
(
2μ(s) + γ2(s)

)∣∣Ys

∣
∣2
)
ds

+
∫ τ

t∧τ
eβAs

∣
∣Zs

∣
∣2
ds− 2

∫ τ

t∧τ
eβAs

〈
Ys,ZsdWs

〉

≤ n2 +
∫ τ

t∧τ
eβAs

(
3a2

s

∣
∣Ys

∣
∣2

+
∣
∣
∣
∣
f (s,0,0)

as

∣
∣
∣
∣

2)
ds+

∫ τ

t∧τ
eβAs

∣
∣Zs

∣
∣2
ds

− 2
∫ τ

t∧τ
eβAs

〈
Ys,ZsdWs

〉
.

(3.4)

Thus, it follows that

eβAt∧τ
∣
∣Yt∧τ

∣
∣2

+
∫ τ

t∧τ
(β− 3)a2

s e
βAs
∣
∣Ys

∣
∣2
ds≤ n2 +n2T − 2

∫ τ

t∧τ
eβAs

〈
Ys,ZsdWs

〉
. (3.5)

Noting that {∫ t∧τ0 eβAs〈Ys,ZsdWs〉}t≥0 is a martingale and taking the conditional ex-
pectation with respect to �t∧τ , we have

eβAt∧τ
∣
∣Yt∧τ

∣
∣2

+E
[∫ τ

t∧τ
(β− 3)a2

s e
βAs
∣
∣Ys

∣
∣2
ds |�t∧τ

]
≤ n2 +n2T. (3.6)

Thus, we can conclude that

sup
0≤t≤τ

epβAt
∣
∣Yt

∣
∣2p ≤ (n2 +n2T

)p
. (3.7)

For p > 1, we have

E
[∫ τ

0
a2
s e

pβAs
∣
∣Ys

∣
∣2p

ds
]
= E

[∫ τ

0

(
e(p−1)βAs

∣
∣Ys

∣
∣2p−2)(

a2
s e

βAs
∣
∣Ys

∣
∣2)

ds
]

≤ E
[(

sup
0≤t≤τ

e(p−1)βAt
∣
∣Yt

∣
∣2p−2

)(∫ τ

0
a2
s e

βAs
∣
∣Ys

∣
∣2
ds
)]

<∞,

(3.8)

the last inequality follows from estimates (3.7). Now we have proved the first result.
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For p ∈ (1/2,1), by (A6), we have

E
[∫ τ

0
a2
s e

pβAs
∣
∣Ys

∣
∣2p

ds
]
= E

[∫ τ

0

(
a

2−2p
s

)(
a

2p
s epβAs

∣
∣Ys

∣
∣2p)

ds
]

≤ L1−p
(
E
[∫ τ

0
a2
s e

βAs
∣
∣Ys

∣
∣2
ds
])p

<∞,

(3.9)

the second result follows. �

Now we show how to control the process Z in terms of the data and Y .

Lemma 3.3. For 2p > 1 and β > (2/(2p− 1)∨ 3), let the assumption (A2), (A3), (A4),
(A6) hold and let (Y ,Z) be an (a,β)-solution of BSDE (2.1). Moreover, assume that Y ∈
�2p(β,a,τ,Rm)∩�2p,a(β,a,τ,Rm), then Z ∈�2p(β,a,τ,Rm×d) and there exists a constant
Cp depending only on p such that

‖Z‖2p
�2p ≤ Cp

(

‖Y‖2p
�2p +

∥
∥
∥
∥
f (t,0,0)

at

∥
∥
∥
∥

2p

�2p

)

. (3.10)

Proof. For each integer n≥ 1, let us introduce the stopping time

τn = inf
{
t ∈ [0,τ] |

∫ t

0
eβAs

∣
∣Zs

∣
∣2
ds≥ n

}
∧ τ. (3.11)

Applying Itô’s formula to eβAt∧τ |Yt∧τ|2, we obtain that

∣
∣Y0

∣
∣2

+
∫ τn

0
eβAs

∣
∣Zs

∣
∣2
ds+

∫ τn

0
βa2(s)eβAs

∣
∣Ys

∣
∣2
ds

= eβAτn
∣
∣Yτn

∣
∣2

+ 2
∫ τn

0
eβAs

〈
Ys, f

(
s,Ys,Zs

)〉
ds− 2

∫ τn

0
eβAs

〈
Ys,ZsdWs

〉
.

(3.12)

However, from the assumption on f , we get that

2
∣
∣〈y, f (t, y,z)

〉∣∣≤ 2|y|∣∣ f (t,0,0)
∣
∣+ 2μ(t)|y|2 + 2γ(t)|y||z|

≤
∣
∣
∣
∣
f (t,0,0)

at

∣
∣
∣
∣

2

+ a2
t |y|2 + 2μ(t)|y|2 + 2γ2(t)|y|2 +

1
2
|z|2

=
∣
∣
∣
∣
f (t,0,0)

at

∣
∣
∣
∣

2

+ 3a2
t |y|2 +

1
2
|z|2.

(3.13)

Thanks to the estimate (2.12) in last section, since τn ≤ τ and β > 3, it follows that

1
2

∫ τn

0
eβAs

∣
∣Zs

∣
∣2
ds

≤ sup
0≤t≤τ

eβAt
∣
∣Yt

∣
∣2

+
∫ τ

0
eβAs

∣
∣
∣
∣
f (s,0,0)

as

∣
∣
∣
∣

2

ds+ 2
∣
∣
∣
∣

∫ τn

0
eβAs

〈
Ys,ZsdWs

〉
∣
∣
∣
∣.

(3.14)
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Thus,

(∫ τn

0
eβAs

∣
∣Zs

∣
∣2
ds
)p

≤ cp

[
sup

0≤t≤τ
epβAt

∣
∣Yt

∣
∣2p

+
(∫ τ

0
eβAs

∣
∣
∣
∣
f (s,0,0)

as

∣
∣
∣
∣

2

ds
)p

+
∣
∣
∣
∣

∫ τn

0
eβAs

〈
Ys,ZsdWs

〉
∣
∣
∣
∣

p]
.

(3.15)

By the Burkholder-Davis-Gundy (BDG) inequality, we get

cpE

[∣
∣
∣
∣

∫ τn

0
eβAs

〈
Ys,ZsdWs

〉
∣
∣
∣
∣

p
]

≤ dpE

[(∫ τn

0
e2βAs

∣
∣Ys

∣
∣2∣∣Zs

∣
∣2
ds
)p/2

]

≤ dpE

[(
sup

0≤t≤τ
e(1/2)pβAt

∣
∣Yt

∣
∣p
)(∫ τn

0
eβAs

∣
∣Zs

∣
∣2
ds
)p/2

]

≤ dpE
[

sup
0≤t≤τ

epβAt
∣
∣Yt

∣
∣2p
]

+
1
2
E
[(∫ τn

0
eβAs

∣
∣Zs

∣
∣2
ds
)p]

,

(3.16)

where we use the notation dp for a constant depending on p and whose value could be
changing from line to line. Combining this with the estimate of (

∫ τn
0 eβAs|Zs|2ds)p, we get,

for each n > 1,

E
[(∫ τn

0
eβAs

∣
∣Zs

∣
∣2
ds
)p]

≤ Cp

(
E
[

sup
0≤t≤τ

epβAt
∣
∣Yt

∣
∣2p
]

+E
[(∫ τ

0
eβAs

∣
∣
∣
∣
f (s,0,0)

as

∣
∣
∣
∣

2

ds
)p])

= Cp

(

‖Y‖2p
�2p +

∥
∥
∥
∥
f (t,0,0)

at

∥
∥
∥
∥

2p

�2p

)

<∞.

(3.17)

Letting n→∞ and using Fatou’s lemma, we get that

E
[(∫ τ

0
eβAs

∣
∣Zs

∣
∣2
ds
)p]

≤ Cp

(

‖Y‖2p
�2p +

∥
∥
∥
∥
f (t,0,0)

at

∥
∥
∥
∥

2p

�2p

)

<∞. (3.18)

So we obtain the result and finish the proof. �

After estimating ‖Z‖2p
�2p , the next ones we want to estimate are ‖Y‖2p

�2p and ‖Y‖2p
�2p,a .

To this end, we recall [4, Corollary 2.3].
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Lemma 3.4. If (Y ,Z) is a solution of BSDE (2.1), 2p > 1, c(p) = p[(2p − 1)∧ 1], and
0≤ t ≤ u≤ T , then

∣
∣Yt

∣
∣2p

+ c(p)
∫ u

t

∣
∣Ys

∣
∣2p−2

1Ys �=0
∣
∣Zs

∣
∣2
ds

≤ ∣∣Yu

∣
∣2p

+ 2p
∫ u

t

∣
∣Ys

∣
∣2p−1〈

Ŷs, f
(
s,Ys,Zs

)〉
ds− 2p

∫ u

t

∣
∣Ys

∣
∣2p−1〈

Ŷs,ZsdWs
〉

,

(3.19)

where x̂ = (x/|x|)1x �=0.

An immediate consequence of Lemma 3.4 is the following result.

Corollary 3.5. If (Y ,Z) is an (a,β)-solution of the BSDE (2.1), 2p > 1, c(p) = p[(2p−
1)∧ 1], and 0≤ t ≤ u≤ T , then

epβAt∧τ
∣
∣Yt∧τ

∣
∣2p

+ c(p)
∫ τ

t∧τ
epβAs

∣
∣Ys

∣
∣2p−2

1Ys �=0
∣
∣Zs

∣
∣2
ds+

∫ τ

t∧τ
pβa2

s e
pβAs

∣
∣Ys

∣
∣2p

ds

≤ epβAτ |ξ|2p + 2p
∫ τ

t∧τ
epβAs

∣
∣Ys

∣
∣2p−1〈

Ŷs, f
(
s,Ys,Zs

)〉
ds

− 2p
∫ τ

t∧τ
epβAs

∣
∣Ys

∣
∣2p−1〈

Ŷs,ZsdWs
〉
.

(3.20)

Proof. Applying Itô’s formula to e(1/2)βAtYt and letting

Yt = e(1/2)βAtYt, Zt = e(1/2)βAtZt, (3.21)

we get

−dYt = f
(
t,Yt,Zt

)
dt−ZtdWt, Yτ = ξ, (3.22)

where

ξ = e(1/2)βAτ ξ, f (t, y,z)= e(1/2)βAt f
(
t,e−(1/2)βAt y,e−(1/2)βAt z

)− 1
2
βa2

t y. (3.23)

By Definition 2.1 and Lemma 3.4, we can get the result. �

Now we can give the estimates of ‖Y‖2p
�2p and ‖Y‖2p

�2p,a .

Proposition 3.6. For β > (2/(2p− 1)∨ 3), let the assumption (A2), (A3), (A4), (A5),
(A6) hold and let (Y ,Z) be an (a,β)-solution of BSDE (2.1). Moreover, assume that Y ∈
�2p(β,a,τ,Rm)∩�2p,a(β,a,τ,Rm). Then, for p > 1, there exists a constant Cp,β depending
only on p and β such that

‖Y‖2p
�2p +‖Y‖2p

�2p,a +‖Z‖2p
�2p ≤ Cp,β

(

E
[
epβAτ |ξ|2p]+

∥
∥
∥
∥
f (t,0,0)

at

∥
∥
∥
∥

2p

�2p

)

; (3.24)

for p ∈ (1/2,1), the estimate (3.24) still holds where the constant Cp,β is replaced by another
constant Cp,β,L depending only on p, β and L.
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Proof. Because of the result of Lemma 3.3, we only need to prove

‖Y‖2p
�2p +‖Y‖2p

�2p,a ≤ Cp,β

(

E
[
epβAτ |ξ|2p]+

∥
∥
∥
∥
f (t,0,0)

at

∥
∥
∥
∥

2p

�2p

)

. (3.25)

By Corollary 3.5, we get that

epβAt∧τ
∣
∣Yt∧τ

∣
∣2p

+ c(p)
∫ τ

t∧τ
epβAs

∣
∣Ys

∣
∣2p−2

1Ys �=0
∣
∣Zs

∣
∣2
ds+

∫ τ

t∧τ
pβa2

s e
pβAs

∣
∣Ys

∣
∣2p

ds

≤ epβAτ |ξ|2p + 2p
∫ τ

t∧τ
epβAs

∣
∣Ys

∣
∣2p−1〈

Ŷs, f
(
s,Ys,Zs

)〉
ds

− 2p
∫ τ

t∧τ
epβAs

∣
∣Ys

∣
∣2p−1〈

Ŷs,ZsdWs
〉

≤ epβAτ |ξ|2p + 2p
∫ τ

t∧τ
epβAs

(∣∣Ys

∣
∣2p−1∣∣ f (s,0,0)

∣
∣+μ(s)

∣
∣Ys

∣
∣2p)

ds

+ 2p
∫ τ

t∧τ
epβAsγ(s)

∣
∣Ys

∣
∣2p−1∣∣Zs

∣
∣ds− 2p

∫ τ

t∧τ
epβAs

∣
∣Ys

∣
∣2p−1〈

Ŷs,ZsdWs
〉

≤ epβAτ |ξ|2p + 2p
∫ τ

t∧τ
epβAs

(∣
∣Ys

∣
∣2p−1∣∣ f (s,0,0)

∣
∣+

1
(2p− 1)∧ 1

a2
s

∣
∣Ys

∣
∣2p
)
ds

+
c(p)

2

∫ τ

t∧τ
epβAs

∣
∣Ys

∣
∣2p−2

1Ys �=0
∣
∣Zs

∣
∣2
ds− 2p

∫ τ

t∧τ
epβAs

∣
∣Ys

∣
∣2p−1〈

Ŷs,ZsdWs
〉
.

(3.26)

The last inequality follows from the following one:

2pepβAsγ(s)
∣
∣Ys

∣
∣2p−1∣∣Zs

∣
∣= 2

(
pe(p/2)βAsγ(s)

∣
∣Ys

∣
∣p)(e(p/2)βAs

∣
∣Ys

∣
∣p−1

1Ys �=0
∣
∣Zs

∣
∣)

≤ 2p
(2p− 1)∧ 1

epβAsγ2(s)
∣
∣Ys

∣
∣2p

+
c(p)

2
epβAs

∣
∣Ys

∣
∣2p−2

1Ys �=0
∣
∣Zs

∣
∣2
.

(3.27)

Letting

X = epβAτ |ξ|2p + 2p
∫ τ

0
epβAs

∣
∣Ys

∣
∣2p−1∣∣ f (s,0,0)

∣
∣ds, (3.28)

since β > (2/(2p− 1)∨ 3)≥ 2/((2p− 1)∧ 1), we get the inequality

epβAt∧τ
∣
∣Yt∧τ

∣
∣2p

+
c(p)

2

∫ τ

t∧τ
epβAs

∣
∣Ys

∣
∣2p−2

1Ys �=0
∣
∣Zs

∣
∣2
ds

+
∫ τ

t∧τ
p
(
β− 2

(2p− 1)∧ 1

)
a2
s e

pβAs
∣
∣Ys

∣
∣2p

ds

≤ X − 2p
∫ τ

t∧τ
epβAs

∣
∣Ys

∣
∣2p−1〈

Ŷs,ZsdWs
〉
.

(3.29)
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The BDG inequality implies that {Mt =
∫ t∧τ

0 epβAs|Ys|2p−1〈Ŷs,ZsdWs〉}t≥0 is a uni-
formly integrable martingale. Indeed, we have by Young’s inequality

E
[〈
M,M

〉1/2
τ

]≤ E
[

sup
0≤t≤τ

e((2p−1)/2)βAt
∣
∣Yt

∣
∣2p−1

(∫ τ

0
eβAs

∣
∣Zs

∣
∣2
ds
)1/2]

≤ 2p− 1
2p

E
[

sup
0≤t≤τ

epβAt
∣
∣Yt

∣
∣2p
]

+
1

2p
E
[(∫ τ

0
eβAs

∣
∣Zs

∣
∣2
ds
)p]

<∞,

(3.30)

the last inequality follows from Lemma 3.3.
Thus, we have

c(p)
2

E
[∫ τ

t∧τ
epβAs

∣
∣Ys

∣
∣2p−2

1Ys �=0
∣
∣Zs

∣
∣2
ds
]
≤ E[X] (3.31)

and by BDG inequality, we get that

E
[

sup
0≤t≤τ

epβAt
∣
∣Yt

∣
∣2p

+
∫ τ

0
p
(
β− 2

(2p− 1)∧ 1

)
a2
s e

pβAs
∣
∣Ys

∣
∣2p

ds
]

≤ 2E[X] + kpE
[〈
M,M

〉1/2
τ

]
.

(3.32)

On the other hand, we have also

kpE
[〈
M,M

〉1/2
τ

]≤ kpE
[

sup
0≤t≤τ

e(p/2)βAt
∣
∣Yt

∣
∣p
(∫ τ

0
epβAs

∣
∣Ys

∣
∣2p−2

1Ys �=0
∣
∣Zs

∣
∣2
ds
)1/2]

≤ 1
2
E
[

sup
0≤t≤τ

epβAt
∣
∣Yt

∣
∣2p
]

+
k2
p

2
E
[∫ τ

0
epβAs

∣
∣Ys

∣
∣2p−2

1Ys �=0
∣
∣Zs

∣
∣2
ds
]
.

(3.33)

Thus, we obtain

E
[

sup
0≤t≤τ

epβAt
∣
∣Yt

∣
∣2p

+d(p,β)
∫ τ

0
a2
s e

pβAs
∣
∣Ys

∣
∣2p

ds
]
≤ kpE[X], (3.34)

where d(p,β)= p(β− (2/(2p− 1)∧ 1)).
For p > 1, let us estimate E[X], then d(p,β)= p(β− 2) and we have

kp[X]= kpe
pβAτ |ξ|2p +Kp

∫ τ

0
epβAs

∣
∣Ys

∣
∣2p−1∣∣ f (s,0,0)

∣
∣ds, (3.35)
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now we estimate the second term of the right-hand side,

Kp

∫ τ

0
epβAs

∣
∣Ys

∣
∣2p−1∣∣ f (s,0,0)

∣
∣ds

= Kp

∫ τ

0

(
ase

(p/2)βAs
∣
∣Ys

∣
∣p)(e((p−1)/2)βAs

∣
∣Ys

∣
∣p−1)

(
e(1/2)βAs

∣
∣
∣
∣
f (s,0,0)

as

∣
∣
∣
∣

)
ds

≤ p
∫ τ

0
a2
s e

pβAs
∣
∣Ys

∣
∣2p

ds+Kp

(
sup

0≤t≤τ
e(p−1)βAt

∣
∣Yt

∣
∣2p−2

)(∫ τ

0
eβAs

∣
∣
∣
∣
f (s,0,0)

as

∣
∣
∣
∣

2

ds
)

≤ p
∫ τ

0
a2
s e

pβAs
∣
∣Ys

∣
∣2p

ds+
1
2

sup
0≤t≤τ

epβAt
∣
∣Yt

∣
∣2p

+Kp

(∫ τ

0
eβAs

∣
∣
∣
∣
f (s,0,0)

as

∣
∣
∣
∣

2

ds
)p

,

(3.36)

where we use the notation Kp for a constant depending on p and whose value could be
changing from line to line.

Coming back to estimate (3.34), since β > 3, we get that

E
[

sup
0≤t≤τ

epβAt
∣
∣Yt

∣
∣2p

+ p(β− 3)
∫ τ

0
a2
s e

pβAs
∣
∣Ys

∣
∣2p

ds
]

≤ KpE
[
epβAτ |ξ|2p +

(∫ τ

0
eβAs

∣
∣
∣
∣
f (s,0,0)

as

∣
∣
∣
∣

2

ds
)p]

.

(3.37)

The first result follows easily.
Now we study the case that p ∈ (1/2,1). Noting that the estimate (3.34) also holds for

p ∈ (1/2,1), we have

E
[

sup
0≤t≤τ

epβAt
∣
∣Yt

∣
∣2p

+d(p,β)
∫ τ

0
a2
s e

pβAs
∣
∣Ys

∣
∣2p

ds
]
≤ kpE[X], (3.38)

where d(p,β)= p(β− 2/(2p− 1)) and X = epβAτ |ξ|2p + 2p
∫ τ

0 e
pβAs|Ys|2p−1| f (s,0,0)|ds.

Just like the proof of the first result, we estimate

Kp

∫ τ

0
epβAs

∣
∣Ys

∣
∣2p−1∣∣ f (s,0,0)

∣
∣ds. (3.39)

Since p ∈ (1/2,1), we have, P-a.s.,

Kp

∫ τ

0
epβAs

∣
∣Ys

∣
∣2p−1∣∣ f (s,0,0)

∣
∣ds

= Kp

∫ τ

0

(
a

(2p−1)/p
s e(2p−1)/2βAs

∣
∣Ys

∣
∣2p−1

)(
a

(1−p)/p
s

)(
e(1/2)βAs

∣
∣
∣
∣
f (s,0,0)

as

∣
∣
∣
∣

)
ds

≤ d(p,β)
2

∫ τ

0
a2
s e

pβAs
∣
∣Ys

∣
∣2p

ds+Kp,β

∫ τ

0

(
a

2(1−p)
s

)
(
epβAs

∣
∣
∣
∣
f (s,0,0)

as

∣
∣
∣
∣

2p)
ds

≤ d(p,β)
2

∫ τ

0
a2
s e

pβAs
∣
∣Ys

∣
∣2p

ds+Kp,β

(∫ τ

0
a2
s ds
)1−p(∫ τ

0
eβAs

∣
∣
∣
∣
f (s,0,0)

as

∣
∣
∣
∣

2

ds
)p

≤ d(p,β)
2

∫ τ

0
a2
s e

pβAs
∣
∣Ys

∣
∣2p

ds+Kp,β,L

(∫ τ

0
eβAs

∣
∣
∣
∣
f (s,0,0)

as

∣
∣
∣
∣

2

ds
)p

.

(3.40)
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Coming back to estimate (3.34), we get

E
[

sup
0≤t≤τ

epβAt
∣
∣Yt

∣
∣2p

+
d(p,β)

2

∫ τ

0
a2
s e

pβAs
∣
∣Ys

∣
∣2p

ds
]

≤ Kp,β,LE
[
epβAτ |ξ|2p +

(∫ τ

0
eβAs

∣
∣
∣
∣
f (s,0,0)

as

∣
∣
∣
∣

2

ds
)p]

.

(3.41)

The second result follows easily. �

4. Existence and uniqueness of a solution

With the help of the above a priori estimates, now we can prove our existence and unique-
ness result.

Theorem 4.1. For p > 1/2, let (A1), (A2), (A3), (A4), (A5), and (A6) hold for a sufficient
large β, the BSDE (2.1) has a unique solution in �2p(β,a,τ).

Proof. Let us start by studying the uniqueness part.
Assuming that (Y ,Z) and (Y ′,Z′) are two solutions of BSDE (2.1) in �2p(β,a,τ), we

denote by (Ỹ , Z̃) the process (Y −Y ′,Z − Z′). It is obvious that (Ỹ , Z̃) is a solution in
�2p(β,a,τ) to the following BSDE:

Ỹt∧τ =
∫ τ

t∧τ
h(s, Ỹs, Z̃s)ds−

∫ τ

t∧τ
Z̃sdWs, (4.1)

where h stands for the random function

h(t, y,z)= f
(
t, y +Y ′t ,z+Z′t

)− f
(
t,Y ′t ,Z′t

)
. (4.2)

It is easy to verify that BSDE (4.1) satisfies the assumption (A1), (A2), (A3), (A4), (A5),
and (A6). Noting that h(t,0,0)=0, by Proposition 3.6, we get immediately that (Ỹ , Z̃)=0.

Let us turn to the existence part.
For each n≥ 1, let us define ξn = e−(1/2)βAτ qn(e(1/2)βAτ ξ) and

fn(t, y,z)= f (t, y,z)− f (t,0,0) + ate
−(1/2)βAt qn

(
e(1/2)βAt

∣
∣
∣
∣
f (t,0,0)

at

∣
∣
∣
∣

)
, (4.3)

where qn(x)= x(n/|x|∨n).
It is easy to show that each pair (ξn, fn) satisfies the condition demanded by Theorem

3.1, then for each n≥ 1, the BSDE

Y (n)
t = ξn +

∫ τ

t∧τ
fn
(
s,Y (n)

s ,Z(n)
s

)
ds−

∫ τ

t∧τ
Z(n)
s dWs (4.4)

has a unique solution in �2(β,a,τ). Moreover, according to Lemma 3.2,

Y (n) ∈�2p(β,a,τ,Rm
)∩�2p,a(β,a,τ,Rm

)
. (4.5)
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By Proposition 3.6, for each (n,k)∈N×N,

∥
∥Y (n+k)−Y (n)

∥
∥2p

�2p +
∥
∥Y (n+k)−Y (n)

∥
∥2p

�2p,a +
∥
∥Z(n+k)−Z(n)

∥
∥2p

�2p

≤ Cp,β,LE
[∣
∣qn+k

(
e(1/2)βAτ ξ

)− qn
(
e(1/2)βAτ ξ

)∣∣2p

+
(∫ τ

0

∣
∣
∣
∣qn+k

(
e(1/2)βAt

∣
∣
∣
∣
f (t,0,0)

at

∣
∣
∣
∣

)
− qn

(
e(1/2)βAt

∣
∣
∣
∣
f (t,0,0)

at

∣
∣
∣
∣

)∣∣
∣
∣

2

ds
)p]

.

(4.6)

Since (A4) and (A5) hold, by dominated convergence theorem, we obtain that the
right-hand side of the last inequality clearly tends to 0, as n→∞, uniformly in k, so
(Y (n),Z(n)) is a Cauchy sequence in �2p(β,a,τ). It is easy to pass to the limit in the ap-
proximating equation, yielding a solution of the BSDE (2.1) in �2p(β,a,τ). �
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