
ATTRACTIVITY OF NONLINEAR IMPULSIVE DELAY
DIFFERENTIAL EQUATIONS

ZHICHUN YANG AND DAOYI XU

Received 12 October 2005; Revised 16 January 2006; Accepted 17 January 2006

The attractivity of nonlinear differential equations with time delays and impulsive effects
is discussed. We obtain some criteria to determine the attracting set and attracting basin
of the impulsive delay system by developing an impulsive delay differential inequality and
introducing the concept of nonlinear measure. Examples and their simulations illustrate
the effectiveness of the results and different asymptotical behaviors between the impulsive
system and the corresponding continuous system.
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1. Introduction

The stability and attractivity of impulsive differential equations have been deeply inves-
tigated in the monographs of Baı̆nov and Simeonov [1], Lakshmikantham et al. [6],
Samoı̆lenko and Perestyuk [16], Borisenko et al. [3]. The recent work has provided a
full discussion of this subject for impulsive delay differential equations (see, e.g., Yan and
Shen [19], Liu and Ballinger [10], Liu et al. [12], Yu [20], Zhang and Sun [21], etc.).
Most of these results on asymptotic behavior are valid locally in the neighborhood of the
equilibrium state, but do not estimate the range of the stable region and domain of at-
traction (referring to the definition given by Lakshmikantham and Leela [7], Šiljak [17],
Kolmanovskii and Nosov [5]). That is, we do not know how far initial conditions can
be allowed to vary without disrupting the asymptotic properties of the equilibrium state.
Furthermore, it may be difficult to know whether the equilibrium state exists in nonlinear
impulsive delay systems. In this case, it should be important and interesting to estimate
the region attracting solutions of the impulsive systems. Therefore, a general problem of
the attractivity is to discuss the attracting set and attracting basin for the impulsive sys-
tems. Some significant progress has been made in the techniques and methods of deter-
mining the attracting set and attracting basin (domain of attraction) for the continuous
systems described by ordinary differential equations [7, 17] and functional differential
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equations [5, 9, 13, 15, 18]. However, so far the corresponding problems for impulsive
delay differential equations have not been considered.

In this paper, by developing an impulsive delay differential inequality and introducing
the concept of nonlinear measure, we study the attractivity for a class of nonlinear im-
pulsive delay differential equations. The criteria present a feasible and effective approach
to estimate the attracting set, attracting basin, and asymptotically stable region of the
impulsive systems by solving an algebraic equation. Examples and their simulations are
given to demonstrate the effectiveness of our results.

2. Preliminaries

LetN be the set of all positive integers, let Rn be the real n-dimensional vector space with
a norm ‖ · ‖, and let Rm×n be the set of m×n real matrices. R+ = [0,+∞) and I denotes
the n×n unit matrix.

Let τ > 0 be the upper bound of time delays and let t1 < ··· < tk < tk+1 < ··· (k ∈N)
be the fixed points with limk→∞ tk =∞ (called impulsive moments).

For a function x = (x1, . . . ,xn)T :R→Rn, we define

D+x(t)= limsup
s→0+

x(t+ s)− x(t)
s

, x
(
t−
)= lim

s→0−
x(t+ s), x

(
t+
)= lim

s→0+
x(t+ s),

[
x(t)

]
τ =

([
x1(t)

]
τ , . . . ,

[
xn(t)

]
τ

)T
,

[
xi(t)

]
τ = sup

−τ≤s≤0

{
xi(t+ s)

}
.

(2.1)

C[X ,Y] denotes the space of continuous mappings from the topological space X to
the topological space Y . Especially, let C � C[[−τ,0],Rn].

PC[J ,Rn] � {ψ : J → Rn | ψ(t) is continuous at t �= tk, ψ(t+k ) and ψ(t−k ) exist, ψ(tk) =
ψ(t+k ), for tk ∈ J}, where J ⊂R is an interval.

PC � {φ : [−τ,0] → Rn | φ(t+) = φ(t) for t ∈ [−τ,0), φ(t−) exists for t ∈ (−τ,0],
φ(t−) = φ(t) for all but at most a finite number of points t ∈ (−τ,0]}. PC is a space of
piecewise right-hand continuous functions with the norm ‖φ‖τ = sup−τ≤s≤0{‖φ(s)‖},
for φ ∈ PC.

In this paper, we will consider the following nonlinear impulsive delay differential
equations:

ẋ(t)= f
(
x(t)

)
+ g
(
t,xt

)
, t �= tk,

Δx
(
tk
)

:= x(tk
)− x(t−k

)= Ik
(
x
(
t−k
))

, k ∈N,
(2.2)

where f ∈ C[Rn,Rn], g ∈ C[[tk−1, tk) × PC,Rn] and the limit lim(t,φ)→(t−k ,ϕ) g(t,φ) =
g(t−k ,ϕ) exists, Ik ∈ C[Rn,Rn], xt ∈ PC is defined by xt(s)= x(t + s), s∈ [−τ,0], ẋ(t) de-
notes the right-hand derivative of x(t).

Definition 2.1. A function x : [t0− τ,∞)→Rn is called a solution of (2.2) through (t0,φ)
if x ∈ PC[[t0,∞),Rn] as t ≥ t0, and satisfies (2.2) with the initial condition

x
(
t0 + s

)= φ(s), φ ∈ PC, s∈ [−τ,0]. (2.3)
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Throughout the paper, we always assume that for any φ ∈ PC, system (2.2) has at least
one solution through (t0,φ), denoted by x(t, t0,φ) or xt(t0,φ), where xt(t0,φ)(s) = x(t +
s, t0,φ), s∈ [−τ,0]. Clearly, xt(t0,φ)∈ PC for t ≥ t0. For more details on the existence of
solutions of impulsive delay differential equations, one refers to Liu and Ballinger [11],
Baı̆nov and Stamova [2].

Definition 2.2. A set S ⊂ PC is called an attracting set of (2.2) and D ⊂ PC is called an
attracting basin of S if for any initial value φ ∈D, the solution xt(t0,φ) converges to S as
t→ +∞. That is,

dist
(
xt
(
t0,φ

)
,S
)−→ 0, as t −→ +∞, (2.4)

where dist(ϕ,S)= infψ∈S dist(ϕ,ψ), dist(ϕ,ψ)= sups∈[−τ,0]‖ϕ(s)−ψ(s)‖, for ϕ∈ PC.

Especially, the set S is called a global attracting set of (2.2) ifD = PC. The setD is called
a domain of attraction if x = 0 is a solution of (2.2) and the zero solution (i.e., S= {0})
attracts solutions x(t, t0,φ) for all φ ∈ D. Moreover, if the zero solution is stable, we call
D an asymptotically stable region of (2.2).

In order to introduce the concept of the nonlinear measure, we recall the matrix norms
‖A‖ and the matrix measure μ(A) introduced by the vector norm ‖ · ‖ as follows:

‖A‖ = sup
x �=0,x∈Rn

‖Ax‖
‖x‖ , μ(A)= lim

s→0+

‖I + sA‖− 1
s

, A∈Rn×n. (2.5)

Now, based on (2.5), we define the nonlinear measure as follows.

Definition 2.3. For a function F :Rn→Rn, call

μ(F)= sup
x �=0,x∈Rn

limsup
s→0+

∥
∥x+ sF(x)

∥
∥−‖x‖

s‖x‖ (2.6)

the nonlinear measure of F.

Obviously, −∞ < μ(F) ≤ +∞. Especially, if F(x) = Ax, A ∈ Rn×n, then μ(F) = μ(A),
where μ(A) is the matrix measure. Therefore, the concept of the nonlinear measure actu-
ally is an extension of the matrix measure (see also, Kolmanovskii and Myshkis [4], Qiao
et al. [14]). According to the definition, we easily verify the following.

Lemma 2.4. Let μ(F),μ(G) < +∞. Then,
(i) μ(λF)= λμ(F), where λ≥ 0;

(ii) μ(F +G)≤ μ(F) +μ(G);
(iii) −L(F)≤ μ(F)≤ L(F), where the constant L(F)= supx �=0,x∈Rn(‖F(x)‖/‖x‖).

The following result on the impulsive delay differential inequality is an extension of
the continuous case of Lakshmikantham and Leela [8, Theorem 6.9.1], and will play
an important role in the qualitative analysis of impulsive delay differential equations in
Section 3.



4 Attractivity of impulsive differential equations

Lemma 2.5. Let F : [t0− τ,∞)×R×R→R be such that F(t,x,·) is nondecreasing for each
(t,x) and let Ik :R→R be nondecreasing. Suppose u,v ∈ PC[[t0− τ,∞),R] satisfy

D+u(t)≤ F(t,u(t),
[
u(t)

]
τ

)
, t ≥ t0,

u
(
tk
)≤ Ik

(
u
(
t−k
))

, k ∈N,

D+v(t) > F
(
t,v(t),

[
v(t)

]
τ

)
, t ≥ t0,

v
(
tk
)≥ Ik

(
v
(
t−k
))

, k ∈N.

(2.7)

Then u(t)≤ v(t), for t0− τ ≤ t ≤ t0 implies that u(t)≤ v(t), for t ≥ t0.

Proof. We will first prove that

u(t)≤ v(t), t ∈ [t0, t1
)
. (2.8)

If the assertion (2.8) is false, by using the continuity of u(t), v(t) for t ∈ [t0, t1) and u(t)≤
v(t) for t ∈ [t0− τ, t0], then there must exist a number t∗ ∈ [t0, t1) such that

u
(
t∗
)= v(t∗), u(t)≤ v(t), t ≤ t∗, (2.9)

D+u
(
t∗
)≥D+v

(
t∗
)
. (2.10)

In view of (2.9) and the monotonic character of F, we have

D+u
(
t∗
)≤ F(t∗,u

(
t∗
)
,
[
u
(
t∗
)]

τ

)

≤ F(t∗,u
(
t∗
)
,
[
v
(
t∗
)]

τ

)

= F(t∗,v
(
t∗
)
,
[
v
(
t∗
)]

τ

)
< D+v

(
t∗
)
.

(2.11)

This contradicts the inequality (2.10), and so (2.8) holds. Suppose that for k = 1,2, . . . ,m

u(t)≤ v(t), t ∈ [tk−1, tk
)
. (2.12)

Then

u(t)≤ v(t), tm− τ ≤ t < tm, u
(
t−m
)≤ v(t−m

)
. (2.13)

It is clear from the monotonicity of Im that

u
(
tm
)≤ Im

(
u
(
t−m
))≤ Im

(
v
(
t−m
))≤ v(tm

)
. (2.14)

Thus, u(t)≤ v(t) for tm− τ ≤ t ≤ tm. Employing the similar process of the proof of (2.8),
we have u(t) ≤ v(t), for t ∈ [tm, tm+1). By the induction, the conclusion holds and the
proof is complete. �
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3. Main results

In this paper, we always suppose the following.
(A1) μ( f ) < +∞ and ‖g(t,ϕ)‖ ≤ p(‖ϕ‖τ) for any ϕ∈ PC, t ≥ t0, where p :R+ →R+ is

continuous and monotonically nondecreasing.
(A2) ‖x+ Ik(x)‖ ≤ α‖x‖ for any k ∈N and x ∈Rn, where the constant α > 0.

Theorem 3.1. Let tk − tk−1 ≤ ρ for k ∈N. Assume that (A1) and (A2) with 0 < α < 1 hold.
If there exist two nonnegative constants z1 < z2 such that for any z ∈ [z1,z2]

Ψ1(z) := p(z)
α

+
[
μ( f ) +

lnα
ρ

]
z < 0, (3.1)

then S1 = {φ ∈ PC | ‖φ‖τ ≤ z1} is an attracting set of (2.2) and D1 = {φ ∈ PC | ‖φ‖τ <
αz2} is an attracting basin of S1.

Proof. For any φ ∈D1 ⊂ PC, let x(t)= (t, t0,φ) be the solution of (2.2) through (t0,φ). By
(A1), we calculate the right upper derivative along the solution (2.2):

D+
∥
∥x(t)

∥
∥= limsup

s→0+

∥
∥x(t+ s)

∥
∥−∥∥x(t)

∥
∥

s

≤ limsup
s→0+

∥
∥x(t) + s f

(
x(t)

)∥∥−∥∥x(t)
∥
∥

s

+ limsup
s→0+

∥
∥x(t+ s)

∥
∥−∥∥x(t) + s f

(
x(t)

)∥∥

s

≤ μ( f )
∥
∥x(t)

∥
∥+ limsup

s→0+

∥
∥
∥
∥
x(t+ s)− x(t)

s
− f

(
x(t)

)
∥
∥
∥
∥

≤ μ( f )
∥
∥x(t)

∥
∥+

∥
∥g
(
t,xt

)∥∥

≤ μ( f )
∥
∥x(t)

∥
∥+ p

([∥∥x(t)
∥
∥]

τ

)
, t ≥ t0.

(3.2)

On the other hand, by (A2),
∥
∥x
(
t+k
)∥∥= ∥∥x(t−k

)
+ Ik

(
x
(
t−k
))∥∥≤ α∥∥x(t−k

)∥∥, k ∈N. (3.3)

From (3.1), the continuity of p(z) and μ( f ) + lnα/ρ < 0, there must exist an ε > 0 such
that

h(z) := z+
p(z) + ε

α

[
μ( f ) +

lnα
ρ

]−1

> 0 ∀z ∈ [z1,z2
]
. (3.4)

Let v(t) be a solution of

v̇(t)= μ( f )v(t) + p
([
v(t)

]
τ

)
+ ε, t �= tk, t ≥ t0,

v
(
tk
)= αv(t−k

)
, k ∈N,

v(t)= ∥∥φ(t− t0
)∥∥, t0− τ ≤ t ≤ t0.

(3.5)
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Taking F(t,x, y)= μ( f )x+ p(y) and Ik(x)= αx, from the monotonicity of p(·) and α > 0,
then F(t,x, y) is nondecreasing in y for each (t,x) and Ik(x) is nondecreasing in x. By
(3.2), (3.3), (3.5), and Lemma 2.5 with u(t)= ‖x(t)‖, we have

0≤ ∥∥x(t)
∥
∥≤ v(t), t ≥ t0. (3.6)

By the formula for the variation of parameters, we have

v(t)=W(t, t0
)
v
(
t0
)

+
∫ t

t0
W(t,s)

[
p
([
v(s)

]
τ

)
+ ε
]
ds, t ≥ t0, (3.7)

where W(t,s), t,s≥ t0 is the Cauchy matrix of linear impulsive system (refer to [6]):

ω̇(t)= μ( f )ω(t), t �= tk,

ω
(
tk
)= αω(t−k

)
, k ∈N.

(3.8)

It is easily seen that

W(t,s)= eμ( f )(t−s) ∏

s<tk≤t
α, t ≥ s≥ t0. (3.9)

Since 0 < α < 1 and ρ≥ tk − tk−1, we have the following estimate:

W(t,s)≤ eμ( f )(t−s)α[(t−s)/ρ−1]

= 1
α
e[μ( f )+lnα/ρ](t−s), t ≥ s≥ t0.

(3.10)

Combining with (3.7), we get

v(t)≤
∥
∥φ(0)

∥
∥

α
e[μ( f )+lnα/ρ](t−t0) +

∫ t

t0

p
(
[v(s)

]
τ

)
+ ε

α
e[μ( f ) lnα/ρ](t−s)ds. (3.11)

Since φ∈D1, we have

v(t)= ∥∥φ(t− t0
)∥∥ < αz2 ≤ z2, t0− τ ≤ t ≤ t0. (3.12)

In the following, we will prove that

v(t) < z2, t ≥ t0. (3.13)

If this is not true, then by the estimate (3.12) and the piecewise continuity of v(t), there
exists a t∗ > t0 satisfying

v
(
t∗
)≥ z2, v(t) < z2, for t < t∗. (3.14)



Z. Yang and D. Xu 7

By (3.11), (3.12), and (3.14), we have

v
(
t∗
)≤

∥
∥φ(0)

∥
∥

α
e[μ( f )+lnα/ρ](t∗−t0) +

∫ t∗

t0

p
([
v(s)

]
τ

)
+ ε

α
e[μ( f )+lnα/ρ](t∗−s)ds

≤ e[μ( f )+lnα/ρ](t∗−t0)z2 +
p
(
z2
)

+ ε
α

∫ t∗

t0
e[μ( f )+lnα/ρ](t∗−s)ds

= e[μ( f )+lnα/ρ](t∗−t0)z2− p
(
z2
)

+ ε
α

[
μ( f ) +

lnα
ρ

]−1[
1− e[μ( f )+lnα/ρ](t∗−t0)]

= e[μ( f )+lnα/ρ](t∗−t0)

{

z2 +
p
(
z2
)

+ ε
α

[
μ( f ) +

lnα
ρ

]−1
}

− p
(
z2
)

+ ε
α

[
μ( f ) +

lnα
ρ

]−1

.

(3.15)

In term of (3.4), μ( f ) + lnα/ρ < 0 and t∗ > t0, then

v
(
t∗
)
< z2 +

p
(
z2
)

+ ε
α

[
μ( f ) +

lnα
ρ

]−1

− p
(
z2
)

+ ε
α

[
μ( f ) +

lnα
ρ

]−1

= z2. (3.16)

This contradicts the first inequality in (3.14), and so the estimate (3.13) holds. Thus,

η := limsup
t→+∞

v(t)≤ z2. (3.17)

Since μ( f ) + lnα/ρ < 0, for any given δ > 0, there must be T > 0 such that

∫ +∞

T
e[μ( f )+lnα/ρ]sds < δ. (3.18)

Furthermore, for the above positive number δ, there is a T′ > t0 such that

v(t)≤ η+ δ, for t > T′. (3.19)

Employing (3.11), (3.13), (3.18), (3.19), and the monotonicity of p(·), when t > T +T′ +
τ, we have

v(t)≤
∥
∥φ(0)

∥
∥

α
e[μ( f )+lnα/ρ](t−t0) +

∫ t

t0

p
([
v(s)

]
τ

)
+ ε

α
e[μ( f )+lnα/ρ](t−s)ds

≤ e[μ( f )+lnα/ρ](t−t0)z2 +
∫ t−T

t0

p
([
v(s)

]
τ

)
+ ε

α
e[μ( f )+lnα/ρ](t−s)ds

+
∫ t

t−T
p
([
v(s)

]
τ

)
+ ε

α
e[μ( f )+lnα/ρ](t−s)ds

≤ e[μ( f )+lnα/ρ](t−t0)z2 +
p
(
z2
)

+ ε
α

∫ +∞

T
e[μ( f )+lnα/ρ]sds

+
p(η+ δ) + ε

α

∫ t

t−T
e[μ( f )+lnα/ρ](t−s)ds

≤ e[μ( f )+lnα/ρ](t−t0)z2 +
p
(
z2
)

+ ε
α

δ− p(η+ δ) + ε
α

[
μ( f ) +

lnα
ρ

]−1[
1− e[μ( f )+lnα/ρ]T].

(3.20)
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Then, by μ( f ) + lnα/ρ < 0,

η = limsup
t→+∞

v(t)≤ p
(
z2
)

+ ε
α

δ− p(η+ δ) + ε
α

[
μ( f ) +

lnα
ρ

]−1

. (3.21)

Letting δ→ 0+, we have

h(η)= η+
p(η) + ε

α

[
μ( f ) +

lnα
ρ

]−1

≤ 0. (3.22)

Combining with η ≤ z2 and h(z) > 0 for any z ∈ [z1,z2], then η < z1. From (3.6),

limsup
t→+∞

∥
∥x(t)

∥
∥≤ limsup

t→+∞
v(t)≤ z1. (3.23)

The conclusion holds and the proof is complete. �

Remark 3.2. The above conclusion remains valid even when the inequality (3.1) holds
for z ∈ (z1,z2). In fact, for an enough small ε > 0, the inequality (3.1) holds when z ∈
[z1 + ε,z2− ε]. According to Theorem 3.1, S′1 = {φ ∈ PC | ‖φ‖τ ≤ z1 + ε} is an attracting
set of (2.2) and D′1 = {φ ∈ PC | ‖φ‖τ < α(z2 − ε)} is an attracting basin of S′1. Letting
ε→ 0+, we can obtain the conclusion.

According to Theorem 3.1 and Remark 3.2, we have the following corollaries.

Corollary 3.3. Let tk − tk−1 ≤ ρ for k ∈N. Suppose that (A1) and (A2) with 0 < α < 1 and
p(z) = βz + γ hold, where β,γ ≥ 0. If β/α+ lnα/ρ + μ( f ) < 0, then S1 = {φ ∈ PC | ‖φ‖τ ≤
z1 =−(γ/α)[β/α+ lnα/ρ +μ( f )]−1} is a globally attracting set of (2.2).

Proof. It is obvious that

Ψ1(z)=
[
β

α
+

lnα
ρ

+μ( f )
]
z+

γ

α
< 0, z ∈ (z1,+∞). (3.24)

According to the above results, S1 = {φ ∈ PC | ‖φ‖τ ≤ z1} is a globally attracting set of
(2.2). �

Corollary 3.4. Let x = 0 be a solution of (2.2). If all the conditions in Theorem 3.1 are
satisfied except that the inequality (3.1) holds for z ∈ (0,z2), then the zero solution is asymp-
totically stable and D1 = {φ∈ PC | ‖φ‖τ < αz2} is an asymptotically stable region of (2.2).

Proof. According to Theorem 3.1 and Remark 3.2, the zero solution attracts solutions
x(t, t0,φ) for all φ ∈ D1 and D1 is a domain of attraction. Furthermore, for any given
zε ∈ (0,z2] and φ ∈Dε = {φ ∈ PC | ‖φ‖τ < αzε}, we can refer to the proof of (3.13) and
obtain that

∥
∥x
(
t, t0,φ

)∥∥ < zε, t ≥ t0. (3.25)

This implies that the zero solution is stable. Thus, the zero solution is asymptotically
stable and D1 = {φ ∈ PC | ‖φ‖τ < αz2} is an asymptotically stable region of (2.2). The
proof is complete. �
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Similarly, we can obtain the following results for the case with α≥ 1.

Theorem 3.5. Let 0 < θ ≤ tk − tk−1 for k ∈N. Assume that (A1) and (A2) with α≥ 1 hold.
If there exist two nonnegative constants z1 < z2 such that for any z ∈ (z1,z2)

Ψ2(z) := αp(z) +
[
μ( f ) +

lnα
θ

]
z < 0, (3.26)

then S2 = {φ ∈ PC | ‖φ‖τ ≤ z1} is an attracting set of (2.2) and D2 = {φ ∈ PC | ‖φ‖τ <
z2/α} is an attracting basin of S2.

Proof. Since 0 < θ ≤ tk − tk−1 and α ≥ 1, we replace the estimate (3.10) in the proof of
Theorem 3.1 with

W(t,s)≤ αe[μ( f )+lnα/θ](t−s), t ≥ s≥ t0. (3.27)

The rest of the proof is similar to one of the proof in Theorem 3.1 and we omit it here. �

According to Theorem 3.5, we have the following.

Corollary 3.6. Let tk − tk−1 ≥ θ > 0 for k ∈N. Suppose that (A1) and (A2) with α≥ 1 and
p(z) = βz + γ hold, where β,γ ≥ 0. If αβ + lnα/θ + μ( f ) < 0, then S1 = {φ ∈ PC | ‖φ‖τ ≤
−αγ[αβ+ lnα/θ +μ( f )]−1} is a globally attracting set of (2.2).

Corollary 3.7. Let x = 0 be a solution of (2.2). If all the conditions in Theorem 3.5 are sat-
isfied except that the inequality (3.26) holds for z ∈ (0,z2), then the zero solution is asymp-
totically stable and D2 = {φ∈ PC | ‖φ‖τ < z2/α} is an asymptotically stable region.

4. Illustrative examples

Example 4.1. Consider a scalar nonlinear impulsive delay system:

ẋ(t)= ax(t) + bx2(t− τ) + c, t �= tk, t ≥ t0 = 0,

Δx
(
tk
)

:= x(tk
)− x(t−k

)= Ik
(
x
(
t−k
))

, k ∈N,
(4.1)

where b �= 0, 0 < θ ≤ tk − tk−1 ≤ ρ < +∞, |x+ Ik(x)| ≤ α|x|. From (A1) and (A2), μ( f )= a,
p(z)= |b|z2 + |c|. We discuss the attractiveness of (4.1) for the following cases.

Case 1 (0 < α < 1). Clearly, Ψ1(z) = (|b|/α)z2 + (a + lnα/ρ)z + |c|/α. If a + lnα/ρ <
−2
√|bc|/α, then the algebraic equation Ψ1(z)= 0 has two different nonnegative roots:

z1,2 =
−(a+ lnα/ρ)∓

√
(a+ lnα/ρ)2− 4|bc|/α2

2|b|/α , (4.2)

and so Ψ1(z) < 0 for z ∈ (z1,z2). According to Theorem 3.1 and Remark 3.2, S1 = {φ ∈
PC | ‖φ‖τ ≤ z1} is an attracting set of (4.1) and D1 = {φ∈ PC | ‖φ‖τ < αz2} is an attract-
ing basin of S1. Especially, when c = 0 and a+ lnα/ρ < 0, it follows from Corollary 3.4
that the zero solution of (4.1) is asymptotically stable and an asymptotically stable region
D1 = {φ∈ PC | ‖φ‖τ <−(α2/|b|)(a+ lnα/ρ)}.
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Figure 4.1. The trajectory of (4.1): (a) no impulses; (b) impulsive effects.

Case 2 (α ≥ 1). Clearly, Ψ2(z) = α|b|z2 + (a + lnα/θ)z + α|c|. If a + lnα/θ < −2α
√|bc|,

then the algebraic equation Ψ2(z)= 0 has two different nonnegative roots:

z1,2 = −(a+ lnα/θ)∓√(a+ lnα/θ)2− 4α2|bc|
2α|b| , (4.3)

and so Ψ2(z) < 0 for z ∈ (z1,z2). According to Theorem 3.5, S2 = {φ ∈ PC | ‖φ‖τ ≤ z1}
is an attracting set of (4.1) and D2 = {φ ∈ PC | ‖φ‖τ < z2/α} is an attracting basin of
S2. Especially, when c = 0 and a+ lnα/θ < 0, it follows from Corollary 3.7 that the zero
solution of (4.1) is asymptotically stable and an asymptotically stable region D2 = {φ ∈
PC | ‖φ‖τ <−(1/α2|b|)(a+ lnα/θ)}.

Take a = b = 1, c = 10, τ = 1, Ik(x) = −0.2x, and tk = tk−1 + 0.025. From Case 1 with
α = 0.8 and ρ = 0.025, we have z1 = 2.9449, z2 = 3.3956, and so S1 = {φ ∈ PC | ‖φ‖τ ≤
2.9449} is an attracting set of the impulsive system (4.1), D1 = {φ ∈ PC | ‖φ‖τ < αz2 =
2.7165} is an attracting basin of S1. However, any solution of the corresponding contin-
uous delay system (i.e., Δx(tk)= 0 in (4.1)) is unbounded. Figure 4.1 shows the different
asymptotical behaviors between the impulsive system and the corresponding continuous
system under the initial condition x(t)= 2.7, t ∈ [−1,0].

Example 4.2. Consider a two dimensional impulsive delay system

ẋ1(t)= x1 sinx1(t) + x2(t− 1)cos
(
x1(t− 1)

)
+ 0.5 sinet, t ≥ t0 = 0,

ẋ2(t)= x2 cosx2(t)− x1(t− 1)sin
(
x2(t− 1)

)
+ 0.5 coset, t �= tk,

Δx1 := x1
(
t+k
)− x1

(
t−k
)=−0.4x1

(
t−k
)
, tk = tk−1 + 0.15,

Δx2 := x2
(
t+k
)− x2

(
t−k
)=−0.4x2

(
t−k
)
, k ∈N.

(4.4)
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Figure 4.2. The global attracting set of the impulsive delay system (4.4).

Letting f (x)= (x1 sinx1,x2 cosx2)T , g(t,x)= (x2 cosx1 + 0.5sinet, −x1 sinx2 + 0.5coset)T ,
then ‖ f (x)‖ ≤ ‖x‖, ‖g(t,x)‖ ≤ ‖x‖+ 0.5, where ‖ · ‖ is the 2-norm of the vector. From
Lemma 2.4, we can calculate the condition parameters in Theorem 3.1:

μ( f )≤ 1, p(z)= z+ 0.5, α= 0.6, ρ= 0.15,

Ψ1(z)≤−0.7388z+ 0.8333 < 0, z ∈ (1.1279,+∞).
(4.5)

It follows from Theorem 3.1 (or Corollary 3.3) that S1 = {φ | ‖φ‖τ ≤ 1.1279} is a global
attracting set of (4.4). Figure 4.2 shows the attractivity of the impulsive delay system (4.4)
under the different initial conditions.
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