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This paper deals with discrete-time Markov decision processes with Borel state and ac-
tion spaces. The criterion to be minimized is the average expected costs, and the costs
may have neither upper nor lower bounds. In our former paper (to appear in Journal of
Applied Probability), weaker conditions are proposed to ensure the existence of average
optimal stationary policies. In this paper, we further study some properties of optimal
policies. Under these weaker conditions, we not only obtain two necessary and sufficient
conditions for optimal policies, but also give a “semimartingale characterization” of an
average optimal stationary policy.
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1. Introduction

The long-run average expected cost criterion in discrete-time Markov decision processes
has been widely studied in the literature; for instance, see [3, 12–14], the survey paper
[1], and their extensive references. As is well known, when the state and action spaces
are both finite, the existence of average optimal stationary policies is indeed guaranteed
[2, 3, 11, 12]. However, when a state space is countably infinite, an average optimal policy
may not exist even though the action space is compact [3, 12]. Thus, many authors are
interested in finding optimality conditions when a state space is not finite. We now sim-
ply describe some existing works. (I) When the costs/rewards are bounded, the minorant
condition [3] or the ergodicity condition [5, 6, 8] ensures the existence of a bounded solu-
tion to the average optimality equation and of an average optimal stationary policy. Their
common ways are via the Banach’s fixed point theorem. (II) When the costs are nonnega-
tive (or bounded below), the optimality inequality approach [1, 9, 10] is used to prove the
existence of average optimal stationary policies. A key character of this approach is via
the Abelian theorem which requires that the costs have to be nonnegative (or bounded
below). In particular, Hernández-Lerma and Lasserre [9] also get the average optimality
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equation under the additional equi-continuity condition and give a “martingale charac-
terization” of an average optimal stationary policy. (III) For the much more general case,
when the costs have neither upper nor lower bounds, in order to establish the average op-
timality equation and then prove the existence of an average optimal stationary policy,
the equi-continuity condition [4, 9] or the irreducibility condition (e.g., [10, Assump-
tion 10.3.5]) is required. But in [7], we propose weaker conditions under which we prove
the existence of average optimal stationary policies by two optimality inequalities rather
than the “optimality equality” in [4, 9, 10]. Moreover, we remove the equi-continuity
condition used in [4, 9, 10] and the irreducibility condition in [10]. In this paper, we
further study some properties of optimal policies. Under these weaker conditions, we not
only obtain two necessary and sufficient conditions for optimal policies, but also give a
semimartingale characterization of an average optimal stationary policy.

The rest of the paper is organized as follows. In Section 2, we introduce the control
model and the optimality problem that we are concerned with. After optimality condi-
tions and a technical preliminary lemma given in Section 3, we present a semimartingale
characterization of an average optimal stationary policy in Section 4.

2. The optimal control problem

Notation 1. If X is a Borel space (i.e., a Borel subset of a complete and separable metric
space), we denote by �(X) its Borel σ-algebra.

In this section, we first introduce the control model

{
S,
(
A(x)⊂ A, x ∈ S

)
, Q(· | x,a), c(x,a)

}
, (2.1)

where S and A are the state and the action spaces, respectively, which are assumed to be
Borel spaces, and A(x) denotes the set of available actions at state x ∈ S. We suppose that
the set

K := {(x,a) : x ∈ S, a∈A(x)
}

(2.2)

is a Borel subset of S×A. Furthermore, Q(· | x,a) with (x,a)∈ K , the transition law, is a
stochastic kernel on S given K .

Finally, c(x,a), the cost function, is assumed to be a real-valued measurable function
on K . (As c(x,a) is allowed to take positive and negative values, it can also be interpreted
as a reward function rather than a “cost.”)

To introduce the optimal control problem that we are concerned with, we need to
introduce the classes of admissible control policies.

For each t ≥ 0, let Ht be the family of admissible histories up to time t, that is, H0 := S,
and Ht := K ×Ht−1 for each t ≥ 1.

Definition 2.1. A randomized history-dependent policy is a sequence π := (πt, t ≥ 0) of
stochastic kernels πt on A given Ht satisfying

πt
(
A(x) | ht

)= 1 ∀ht =
(
x0,a0, . . . ,xt−1,at−1,x

)∈Ht, t ≥ 0. (2.3)
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The class of all randomized history-dependent policies is denoted by Π. A randomized
history-dependent policy π := (πt, t ≥ 0)∈Π is called (deterministic) stationary if there
exists a measurable function f on S with f (x)∈ A(x) for all x ∈ S, such that

πt
({

f (x)
} | ht

)= πt
({

f (x)
} | x)= 1 ∀ht =

(
x0,a0, . . . ,xt−1,at−1,x

)∈Ht, t ≥ 0.
(2.4)

For simplicity, denote this policy by f . The class of all stationary policies is denoted by F,
which means that F is the set of all measurable functions f on S with f (x)∈ A(x) for all
x ∈ S.

For each x ∈ S and π ∈ Π, by the well-known Tulcea’s theorem [3, 8, 10], there ex-
ist a unique probability measure space (Ω,�,Pπ

x ) and a stochastic process {xt,at, t ≥ 0}
defined on Ω such that, for each D ∈�(S) and t ≥ 0,

Pπ
x

(
xt+1 ∈D | ht,at

)=Q
(
D | xt,at

)
, (2.5)

with ht = (x0,a0, . . . ,xt−1,at−1,xt)∈Ht, where xt and at denote the state and action vari-
ables at time t ≥ 0, respectively. The expectation operator with respect to Pπ

x is denoted
by Eπ

x .
We now define the α-discounted cost (α-DC) and the long-run average expected cost

(AEC) criteria, respectively, as follows: for each π ∈Π, x ∈ S, and α∈ (0,1),

Vα(x,π) := Eπ
x

[ ∞∑

t=0

αtc
(
xt,at

)
]

, V∗
α (x) := inf

π∈Π
Vα(x,π);

V̄(x,π) := lim
n→∞sup

Eπ
x

[∑n−1
t=0 c

(
xt,at

)]

n
, V̄∗(x)= inf

π∈Π
V̄(x,π).

(2.6)

Definition 2.2. A policy π∗ ∈Π is said to be α-DC-optimal if

Vα
(
x,π∗

)=V∗
α (x) ∀x ∈ S. (2.7)

An AEC-optimal policy is defined similarly.

The main goal of this paper is to give conditions for a semimartingale characterization
of an average optimal stationary policy.

3. Optimality conditions

In this section, we state conditions for a semimartingale characterization of an average
optimal stationary policy, and give a preliminary lemma that is needed to prove our main
results.
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We will first introduce two sets of hypotheses. The first one, Assumption 3.1, is a com-
bination of a “Lyapunov-like inequality” condition together with a growth condition on
the one-step cost c.

Assumption 3.1. (1) There exist constants b ≥ 0 and 0 < β < 1 and a (measurable) function
w ≥ 1 on S such that

∫

S
w(y)Q(dy | x,a)≤ βw(x) + b ∀(x,a)∈ K. (3.1)

(2) There exists a constant M > 0 such that |c(x,a)| ≤Mw(x) for all (x,a)∈ K .

Remark 3.2. Assumption 3.1(1) is well known as a Lyapunov-like inequality condition;
see [10, page 121], for instance. Obviously, the constant b in (3.1) can be replaced by a
bounded nonnegative measurable function b(x) on S as in [10, Assumption 10.2.1(f)].

The second set of hypotheses we need is the following standard continuity-compact-
ness conditions; see, for instance, [7, 12, 13, 15, 16] and their references.

Assumption 3.3. (1) For each x ∈ S, A(x) is compact.
(2) For each fixed x ∈ S, c(x,a) is lower semicontinuous in a∈A(x), and the function∫

S u(y)Q(dy | x,a) is continuous in a∈ A(x) for each bounded measurable function u on
S, and also for u=: w as in Assumption 3.1.

Remark 3.4. Assumption 3.3 is the same as in [10, Assumption 10.2.1]. Obviously,
Assumption 3.3 holds when A(x) is finite for each x ∈ S.

To ensure the existence of average optimal stationary policies, in addition to Assump-
tions 3.1 and 3.3, we give a weaker condition (Assumption 3.5 below). To state this as-
sumption, we introduce the following notation.

For the function w ≥ 1 in Assumption 3.1, we define the weighted supremum norm
‖u‖w for real-valued functions u on S by

‖u‖w := sup
x∈S

[
w(x)−1

∣
∣u(x)

∣
∣], (3.2)

and the Banach space Bw(S) := {u : ‖u‖w <∞}.
Assumption 3.5. There exist two functions v1,v2 ∈ Bw(S) and some state x0 ∈ S such that

v1(x)≤ hα(x)≤ v2(x) ∀x ∈ S, α∈ (0,1), (3.3)

where hα(x) :=V∗
α (x)−V∗

α (x0) is the so-called relative difference of the function V∗
α (x).

Remark 3.6. Assumption 3.5 is from [7] and it is weaker than [9, Assumption 5.4.1(b)]
and [13, Assumption (SEN2), page 132] because the function v1(x) may not be bounded
below,whereas the difference hα(x) is assumed to be bounded below in [9, 13].
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Lemma 3.7. Suppose that Assumptions 3.1, 3.3, and 3.5 hold. Then the following hold.
(a) There exist a unique constant g∗, two functions h∗k ∈ Bw(S) (k = 1,2), and a station-

ary policy f ∗ ∈ F satisfying the two optimality inequalities

g∗ +h∗1 (x)≤ min
a∈A(x)

{

c(x,a) +
∫

S
h∗1 (y)Q(dy | x,a)

}

∀x ∈ S; (3.4)

g∗ +h∗2 (x)≥ min
a∈A(x)

{

c(x,a) +
∫

S
h∗2 (y)Q(dy | x,a)

}

(3.5)

= c
(
x, f ∗(x)

)
+
∫

S
h∗2 (y)Q

(
dy | x, f ∗(x)

) ∀x ∈ S. (3.6)

(b) g∗ = infπ∈ΠV(x,π) for all x ∈ S.
(c) Any stationary policy f in F realizing the minimum of (3.5) is average optimal, and

so f ∗ in (3.6) is an average optimal stationary policy.
(d) In addition, from the proof of part (b), it yields that for each h ∈ Bw(S), x ∈ S, and

π ∈Π,

lim
n→∞

1
n
Eπ
x [|h(xn)|]= 0. (3.7)

Proof. See [7, Theorem 4.1]. �

4. A semimartingale characterization of average optimal stationary policies

In this section, we present our main results. To do this, we use the following notations.
Let h∗1 , h∗2 , g∗ be as in Lemma 3.7, and define

Δ1(x,a) := c(x,a) +
∫

S
h∗1 (y)Q(dy | x,a)−h∗1 (x)− g∗ ∀(x,a)∈ K ; (4.1)

Δ2(x,a) := c(x,a) +
∫

S
h∗2 (y)Q(dy | x,a)−h∗2 (x)− g∗ ∀(x,a)∈ K ; (4.2)

M(1)
n :=

n−1∑

t=0

c
(
xt,at

)
+h∗1

(
xn
)−ng∗ ∀n≥ 1, M(1)

0 := h∗1 (x) ∀x ∈ S; (4.3)

M(2)
n :=

n−1∑

t=0

c
(
xt,at

)
+h∗2

(
xn
)−ng∗ ∀n≥ 1, M(2)

0 := h∗2 (x) ∀x ∈ S. (4.4)

Theorem 4.1. Under Assumptions 3.1, 3.3, and 3.5, the following statements hold.
(a) A policy π∗ is AEC-optimal and V(x,π∗)=V∗(x)= g∗ for all x ∈ S if and only if

lim
n→∞

1
n

n−1∑

t=0

Eπ∗
x

[
Δ1
(
xt,at

)]= 0 ∀x ∈ S. (4.5)
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(b) A policy π∗ is AEC-optimal and V(x,π∗)=V∗(x)= g∗ for all x ∈ S if and only if

lim
n→∞

1
n

n−1∑

t=0

Eπ∗
x

[
Δ2
(
xt,at

)]= 0 ∀x ∈ S. (4.6)

Proof. (a) For each π ∈Π and x ∈ S, it follows from (4.1) that

Δ1
(
xt,at

)
:= c

(
xt,at

)

+
∫

S
h∗1 (y)Q

(
dy | xt,at

)−h∗1
(
xt
)− g∗ ∀xt ∈ S, at ∈A

(
xt
)
, t ≥ 0,

(4.7)

which together with (2.5) yields

Eπ
x

[
Δ1
(
xt,at

)]= Eπ
x

[
c
(
xt,at

)]
+Eπ

x

[
h∗1
(
xt+1

)]−Eπ
x

[
h∗1
(
xt
)]− g∗, (4.8)

and so

n−1∑

t=0

Eπ
x

[
Δ1
(
xt,at

)]= Eπ
x

[n−1∑

t=0

c
(
xt,at

)
]

+Eπ
x

[
h∗1
(
xn
)]−h∗1 (x)−ng∗ ∀n≥ 1. (4.9)

Multiplying by 1/n and letting n→∞, from (3.7), we see that part (a) is satisfied.
Similarly, combining (4.2) and (3.7), we see that part (b) is also true. �

Theorem 4.2. Suppose that Assumptions 3.1, 3.3, and 3.5 hold. Then the following hold:

(a) {M(1)
n } is a Pπ

x -submartingale for all π ∈Π and x ∈ S;

(b) let f ∗ be the average optimal stationary policy obtained in Lemma 3.7, then {M(2)
n }

is a P
f ∗
x -supermartingale for all x ∈ S;

(c) if {M(2)
n } is a Pπ∗

x -supermartingale, then π∗ is AEC-optimal and V(x,π∗) = g∗ for
all x ∈ S.

Proof. (a) For each hn = (x0,a0, . . . ,xn−1,an−1,xn), it follows from (4.3) that

Eπ
x

(
M(1)

n+1 | hn
)=M(1)

n +Eπ
x

(
Δ1
(
xn,an

) | hn
) ∀n≥ 0. (4.10)

On the other hand, combining (3.4) and (4.1), we get

Δ1(x,a)≥ 0 ∀(x,a)∈ K , (4.11)

which together with (4.10) implies that {M(1)
n } is a Pπ

x -submartingale.
(b) For each hn = (x0,a0, . . . ,xn−1,an−1,xn), similarly, it follows from (4.4) that

Eπ
x

(
M(2)

n+1 | hn
)=M(2)

n +Eπ
x

(
Δ2
(
xn,an

) | hn
) ∀n≥ 0. (4.12)

In particular, if π = f ∗, then

E
f ∗
x
(
M(2)

n+1 | hn
)=M(2)

n +E
f ∗
x
(
Δ2
(
xn,an

) | hn
) ∀n≥ 0. (4.13)
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Also, combining (3.6) and (4.2), we get

Δ2
(
x, f ∗(x)

)≤ 0 ∀x ∈ S, (4.14)

which together with (4.13) yields that {M(2)
n } is a P

f ∗
x -supermartingale.

(c) If {M(2)
n } is a Pπ∗

x -supermartingale, then

Eπ∗
x

[
M(2)

n

]≤ Eπ∗
x

[
M(2)

0

]= h∗2 (x) ∀n≥ 0, x ∈ S, (4.15)

which together with (4.4) yields

Eπ∗
x

[n−1∑

t=0

c
(
xt,at

)
]

+Eπ∗
x

[
h∗2
(
xn
)]−ng∗ ≤ h∗2 (x) ∀n≥ 1, x ∈ S. (4.16)

Multiplying by 1/n and letting n→∞, we get

V
(
x,π∗

)≤ g∗ ∀x ∈ S. (4.17)

On the other hand, from part (a), we have that for all π ∈Π and x ∈ S, {M(1)
n } is a Pπ

x -
submartingale. Thus,

Eπ
x

[
M(1)

n

]≥ Eπ
x

[
M(1)

0

]= h∗1 (x) ∀π ∈Π, x ∈ S. (4.18)

From this inequality and (4.3), we get

Eπ
x

[n−1∑

t=0

c
(
xt,at

)
]

+Eπ
x

[
h∗1
(
xn
)]−ng∗ ≥ h∗1 (x) ∀n≥ 1, π ∈Π, x ∈ S. (4.19)

As in the proof of (4.17), similarly, we have

V(x,π)≥ g∗ ∀π ∈Π, x ∈ S, (4.20)

and so

inf
π∈Π

V(x,π)≥ g∗ ∀x ∈ S, (4.21)

which together with (4.17) implies that π∗ is AEC-optimal and V(x,π∗) = g∗ for all
x ∈ S. �

Remark 4.3. Theorems 4.1–4.2 are our main results: Theorem 4.1 gives two necessary and
sufficient conditions for AEC-optimal policies, whereas Theorem 4.2 further provides a
semimartingale characterization of an average optimal stationary policy.
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