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We prove an existence theorem for a special class of fuzzy integral equations involving
fuzzy set-valued mappings. The results are obtained by using the contraction mapping
principle.
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1. Introduction

Chandrasekhar [5] and Crum [6] considered the following integral equation:

H(t)= 1 +H(t)
∫ 1

0

t

t+ s
ψ(s)H(s)ds. (1.1)

This equation arises in the study of radiation transfer in a semi-infinite atmosphere. The
first rigorous proof of existence of solutions of (1.1) was given in [6]. By using operators
on a Banach algebra and a fixed point theorem of Darbo for a set contraction map, Legget
[8] proved an existence theorem for an equation of the form

x = x0 + xKx, (1.2)

where K is a compact operator on the Banach algebra. His abstract theorems are applied
to the integral equation of the form

x(t)= x0(t) + x(t)
∫
Ω
K(t,s) f

(
s,x(s)

)
ds, t ∈Ω, Ω⊂ Rn. (1.3)
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2 Fuzzy integral equations

Cahlon and Eskin [4] considered the equation

H(t)= 1 +H(t)
∫ 1

0

t

t+ s
ψ(s)H(s)ds+

∫ 1

0
P
(
t,s,H(t),H(s)

)
ds. (1.4)

This equation is a generalization of (1.3), where P is the perturbation of Chandrasekhar
H-equation.

The problem of existence of solutions of fuzzy integral equations has been studied
by many authors [1, 2, 9–11, 14–16]. Kaleva [7] and Seikkala [13] have discussed the
existence of solutions of fuzzy differential equations. Subrahmanyam and Sudarsanam
[14] studied existence results for fuzzy Volterra integral equation of the form

x(t)= φ(t) +
∫ t

0
g
(
t,s,x(s)

)
ds, (1.5)

where as Park et al. [11] proved the existence of solutions of fuzzy integral equation of
the form

φ(u)=w0 +
∫ u
u0

F
(
u,s,φ(s)

)
ds φ

(
u0
)=w0. (1.6)

Balachandran and Dauer [2] established the local existence of solutions and approximate
solutions of the perturbed fuzzy integral equation. Balachandran and Prakash [3] studied
the existence of solutions of nonlinear fuzzy Volterra integral equations of the form

x(t)= φ(t) + f
(
t,x(t),

∫ t
0
g
(
t,s,x(s)

)
ds
)
. (1.7)

In this paper we prove the existence of solutions of fuzzy integral equations of the form

x(t)= φ(t) + x(t)
∫ t

0
k(t,s) f

(
s,x(s)

)
ds+

∫ t
0
g
(
t,s,x(s)

)
ds, (1.8)

where φ : [0,T]→ En, k : [0,T]× [0,T]→ R, f : [0,T]×En→ En, and g : [0,T]× [0,T]×
En → En are continuous functions. This equation is a generalization of Chandrasekhar-
type equation in fuzzy setting.

The outlay of the paper is as follows. In Section 2 we give some basic definitions for
our study and in Section 3 we prove the main theorem on the existence of solutions of
fuzzy integral equation (1.8). In Section 4 we state a theorem on the existence of solutions
of a generalization of (1.8).

2. Preliminaries

Let Pk(Rn) denote the family of all nonempty, compact, convex subsets of Rn. Addition
and scalar multiplication in Pk(Rn) are defined as usual. U denotes the closure of U ,
where U is contained in Rn. Let I = [0,1]⊆ R be a compact interval and denote

En = {u : Rn −→ [0,1] : u satisfies (i)–(iv) below
}

, (2.1)
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where
(i) u is normal, that is, there exists an x0 ∈ Rn such that u(x0)= 1,

(ii) u is fuzzy convex,

(iii) u is upper semicontinuous,

(iv) [u]0 = cl{x ∈ Rn : u(x) > 0} is compact.
For 0 < α≤ 1 denote [u]α = {x ∈ Rn : u(x)≥ α}. Then from (i)–(iv) it follows that the

α-level set [u]α ∈ Pk(Rn) for all 0≤ α≤ 1.
If g : Rn×Rn→ Rn is a function, then using Zadeh’s extension principle we can extend

g to En×En→ En by the equation

g̃(u,v)(z)= sup
z=g(x,y)

min
{
u(x),v(y)

}
. (2.2)

It is well known that [g̃(u,v)]α = g([u]α, [v]α) for all u,v ∈ En, 0≤ α≤ 1, and continuous
function g. In addition the above equation gives [u+ v]α = [u]α + [v]α. The real numbers
can be embedded in En by the rule c→ ĉ(t), where

ĉ(t)=
⎧⎨
⎩

1 for t = c,
0 elsewhere.

(2.3)

We can also generalize the multiplication by a real number and for any real number c we
get [cu]α = c[u]α, where 0≤ α≤ 1 and u∈ En.

Let D : En × En → R+ ∪ {0} be defined by D(u,v) = sup0≤α≤1H([u]α, [v]α), where H
is the Hausdorff metric defined in PK (Rn). Then D is a metric on En. Further, (En,D)
is a complete metric space [7, 12]. Also D(u+w,v +w) = D(u,v) for every u,v,w ∈ En.
Furthermore, D(λu,λv)= |λ|D(u,v) for every u,v ∈ En and λ∈ R.

It can be proved straight away that D(u + v,w + z) ≤ D(u,w) +D(v,z) for u, v, w,
and z ∈ En. (The proof is based on the fact H(A1 +A2,B1 +B2)≤H(A1,B1) +H(A2,B2),
where H is the Hausdorff metric on Pk(Rn) induced by the norm in Rn.)

Definition 2.1 [1]. Let I be [0,1] and for each t in I , let F(t) be a nonempty subset of Rn.
Let � be the set of all point-valued functions f from I to Rn such that f is integrable over
I and f (t)∈ F(t) for all t in I . Then

∫
I
F(t)dt =

{∫
I
f (t)dt : f ∈�

}
. (2.4)

Definition 2.2 [7]. A mapping F : I → En is strongly measurable if for all α ∈ [0,1] the
set-valued map Fα : I → Pk(Rn) defined by Fα(t)= [F(t)]α is Lebesgue measurable when
Pk(Rn) has the topology induced by the Hausdorff metric H .

Definition 2.3 [7]. A mapping F : I → En is said to be integrably bounded if there is an
integrable function h such that ‖x‖ ≤ h(t) for every x ∈ F0(t).



4 Fuzzy integral equations

Definition 2.4 [12]. The integral of a fuzzy mapping F : [0,1]→ En is defined levelwise by

[∫
[0,1]

F(t)dt

]α
=
∫

[0,1]
Fα(t)dt

=
{∫

[0,1]
f (t)dt : f : [0,1]−→ Rn is a measurable selection for Fα

}

(2.5)

for all α∈ [0,1].
It has been proved by Puri and Ralescu [12] that a strongly measurable and integrably

bounded mapping F : I → En is integrable (i.e.,
∫
I F(t)dt ∈ En). The concept of a fuzzy

integral generalizes the Aumann integral of a set-valued mapping. The following results
are proved in [7].

Theorem 2.5. If F : I → En is continuous, then it is integrable.

Theorem 2.6. Let F,G : I → En be integrable and λ∈ R. Then
(i)
∫
I(F(t) +G(t))dt = ∫I F(t)dt+

∫
I G(t)dt,

(ii)
∫
I λF(t)dt = λ∫I F(t)dt,

(iii) D(F,G) is integrable,

(iv) D(
∫
I F(t)dt,

∫
I G(t)dt)≤ ∫I D(F(t),G(t))dt.

3. Existence theorem

Theorem 3.1. Let a and b be positive numbers such that

b = max
0≤t≤a

D
(
ψ(t)

∫ t
0
k(t,s) f

(
s,ψ(s)

)
ds+

∫ t
0
g
(
t,s,ψ(s)

)
ds, 0̂

)
. (3.1)

Suppose that
(i) φ : [0,a]→ En is continuous,

(ii) f : [0,T]× En → En and k : [0,T]× [0,T] → R are continuous and there exists a
constant L > 0 such that

D
(
x(t)

∫ t
0
k(t,s) f

(
s,x(s)

)
ds, y(t)

∫ t
0
k(t,s) f

(
s, y(s)

)
ds
)
≤ LD(x, y) (3.2)

for x, y ∈ En,
(iii) g :U → En is continuous, whereU = {(t,s,x) : 0≤ s≤ t≤a, x ∈ En and D(x,φ(t))≤

b} and satisfies Lipschitz condition with respect to x on U , that is, there exists a con-
stant M > 0 such that

D
(
g(t,s,x),g(t,s, y)

)≤MD(x, y) if (t,s,x),(t,s, y)∈U. (3.3)

If c = (α−L)/M for some fixed α∈ (0,1), then there is a unique solution of (1.7) on [0,T],
where T =min{a,b,c}.
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Proof. Let � be the space of continuous functions from [0,T] into (En,D) withH1(ψ,φ)≤
b, that is, � = {ψ : ψ : [0,T] → En is continuous and H1(ψ,φ) ≤ b}, where H1(ψ,φ) =
sup0≤t≤T D(ψ(t),φ(t)). Define an operator A : �→� by

Aψ(t)= φ(t) +ψ(t)
∫ t

0
k(t,s) f

(
s,ψ(s)

)
ds+

∫ t
0
g
(
t,s,ψ(s)

)
ds. (3.4)

To prove A : �→�, we have to prove that Aψ is continuous and H1(Aψ,φ)≤ b whenever
ψ ∈�. Consider

D
(
Aψ(t+h),Aψ(t)

)

=D
(
φ(t+h) +ψ(t+h)

∫ t+h
0

k(t+h,s) f
(
s,ψ(s)

)
ds+

∫ t+h
0

g
(
t+h,s,ψ(s)

)
ds,φ(t)

+ψ(t)
∫ t

0
k(t,s) f

(
s,ψ(s)

)
ds+

∫ t
0
g
(
t,s,ψ(s)

)
ds
)
≤D(φ(t+h),φ(t)

)

+D
(
ψ(t+h)

∫ t+h
0

k(t+h,s) f
(
s,ψ(s)

)
ds,ψ(t)

∫ t
0
k(t,s) f

(
s,ψ(s)

)
ds
)

+D
(∫ t+h

0
g
(
t+h,s,ψ(s)

)
ds,
∫ t

0
g
(
t,s,ψ(s)

)
ds
)

≤ ε
3

+D
(
ψ(t+h)

∫ t+h
0

k(t+h,s) f
(
s,ψ(s)

)
ds,ψ(t)

∫ t
0
k(t,s) f

(
s,ψ(s)

)
ds
)

+
∫ t

0
D
(
g
(
t+h,s,ψ(s)

)
ds,g

(
t,s,ψ(s)

))
ds+

∫ t+h
t

D
(
g
(
t+h,s,ψ(s)

)
ds, 0̂

)
ds.

(3.5)

Clearly the right-hand side of (3.5) is less than ε as h→ 0. So Aψ is continuous. Consider

H1(Aψ,φ)= sup
0≤t≤T

D
(
Aψ(t),φ(t)

)

= sup
0≤t≤T

D
(
φ(t) +ψ(t)

∫ t
0
k(t,s) f

(
s,ψ(s)

)
ds+

∫ t
0
g
(
t,s,ψ(s)

)
ds,φ(t)

)

= sup
0≤t≤T

D
(
ψ(t)

∫ t
0
k(t,s) f

(
s,ψ(s)

)
ds+

∫ t
0
g
(
t,s,ψ(s)

)
ds, 0̂

)

≤ b.

(3.6)

So Aψ ∈� and A maps � into itself. We show that � is a closed subset of C([0,T],En) a
complete metric space with the metric H1 (see [7]).
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Let (ψn) be a sequence in � converging to ψ in C([0,T],En). Consider

H1(ψ,φ)= sup
0≤t≤T

D
(
ψ(t),φ(t)

)

= sup
0≤t≤T

{
D
(
ψn(t),ψ(t)

)
+D

(
ψn(t),φ(t)

)}

≤H1
(
ψn,ψ

)
+H1

(
ψn,φ

)

≤ ε+ b

(3.7)

for sufficiently large n and all positive ε. So ψ ∈�. This implies that � is a closed subset
of C([0,T],En). Therefore � is a complete metric space. We prove that A is a contraction
mapping. For ψ1,ψ2 ∈�,

H1
(
Aψ1,Aψ2

)

= sup
0≤t≤T

D
(
Aψ1(t),Aψ2(t)

)

= sup
0≤t≤T

D
(
φ(t) +ψ1(t)

∫ t
0
k(t,s) f

(
s,ψ1(s)

)
ds+

∫ t
0
g
(
t,s,ψ1(s)

)
ds,φ(t)

+ψ2(t)
∫ t

0
k(t,s) f

(
s,ψ2(s)

)
ds+

∫ t
0
g
(
t,s,ψ2(s)

)
ds
)

≤ sup
0≤t≤T

{
D
(
ψ1(t)

∫ t
0
k(t,s) f

(
s,ψ1(s)

)
ds,ψ2(t)

∫ t
0
k(t,s) f

(
s,ψ2(s)

)
ds
)

+
∫ t

0
D
(
g
(
t,s,ψ1(s)

)
,g
(
t,s,ψ2(s)

))
ds
}

≤ (L+MT)H1
(
ψ1,ψ2

)

≤ (L+Mc)H1
(
ψ1,ψ2

)

≤ αH1
(
ψ1,ψ2

)
where α∈ (0,1).

(3.8)

So A : �→ � is a contraction map. Since � is a complete metric space and A is a con-
tracting self-map on �, it has a unique fixed point x ∈�. This fixed point is the required
unique solution to (1.8). �

4. General equations

As a generalization of (1.8) we consider the following fuzzy integral equation:

x(t)= φ(t) +h
(
t,x(t)

)∫ t
0
k(t,s) f

(
s,x(s)

)
ds+

∫ t
0
g
(
t,s,x(s)

)
ds, (4.1)

where h : [0,T]×En → En is continuous and all other conditions are as before. Now we
state without proof an existence theorem for (4.1).
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Theorem 4.1. Let a∗ and b∗ be positive numbers such that

b∗ = max
0≤t≤a∗

D
(
h
(
t,ψ(t)

)∫ t
0
k(t,s) f

(
s,ψ(s)

)
ds+

∫ t
0
g
(
t,s,ψ(s)

)
ds, 0̂

)
. (4.2)

Suppose that
(i) φ : [0,a∗]→ En is continuous,

(ii) f ,h : [0,T]× En → En and k : [0,T]× [0,T]→ R are continuous and there exists a
constant L∗ > 0 such that

D
(
h
(
t,x(t)

)∫ t
0
k(t,s) f

(
s,x(s)

)
ds,h

(
t, y(t)

)∫ t
0
k(t,s) f

(
s, y(s)

)
ds
)

≤ L∗D(x, y) for x, y ∈ En,

(4.3)

(iii) g : U → En is continuous where U = {(t,s,x) : 0 ≤ s ≤ t ≤ a∗, x ∈ En and D(x,
φ(t)) ≤ b∗} and satisfies Lipschitz condition with respect to x on U , that is, there
exists a constant M∗ > 0 such that

D
(
g(t,s,x),g(t,s, y)

)≤M∗D(x, y) if (t,s,x),(t,s, y)∈U. (4.4)

If c∗ = (α− L∗)/M for some fixed α ∈ (0,1), then there is a unique solution of (4.1) on
[0,T], where T =min{a∗,b∗,c∗}.
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