A POSITIVE SOLUTION FOR SINGULAR DISCRETE BOUNDARY VALUE PROBLEMS WITH SIGN-CHANGING NONLINEARITIES

HAISHEN LÜ, DONAL O'REGAN, AND RAVI P. AGARWAL

Received 17 February 2005; Revised 1 March 2005; Accepted 2 March 2005

This paper presents new existence results for the singular discrete boundary value problem $-\Delta^2 u(k-1) = g(k, u(k)) + \lambda h(k, u(k)), k \in [1, T], u(0) = 0 = u(T+1)$. In particular, our nonlinearity may be singular in its dependent variable and is allowed to change sign.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

Let a, b (b > a) be nonnegative integers. We define the discrete interval $[a, b] = \{a, a + 1, ..., b\}$. All other intervals will carry its standard meaning, for example, $[0, \infty)$ denotes the set of nonnegative real numbers. The symbol Δ denotes the forward difference operator with step size 1, that is, $\Delta u(k) = u(k+1) - u(k)$. Furthermore for a positive m, Δ^m is defined as $\Delta^m u(k) = \Delta^{m-1}(\Delta u(k))$. In this paper, we will study positive solutions of the second-order discrete boundary value problem

$$-\Delta^2 u(k-1) = g(k, u(k)) + \lambda h(k, u(k)), \quad k \in [1, T],$$

$$u(0) = 0 = u(T+1),$$

(1.1)

where $\lambda > 0$ is a constant and T > 2 is a positive integer. Here, $g : [1, T] \times (0, \infty) \to \mathbb{R}$ and $h : [1, T] \times [0, \infty) \to [0, \infty)$ are continuous. As a result, our nonlinearity may be singular at u = 0 and may change sign.

By a solution *u* of the boundary value problem (1.1), we mean $u : [0, T + 1] \rightarrow \mathbb{R}$, *u* satisfies the difference equation (1.1) on [1, T] and the stated boundary data.

We will let C[0, T + 1] denote the class of map u continuous on [0, T + 1] (discrete topology), with norm $|u|_{\infty} = \max_{k \in [0, T+1]} |u(k)|$.

2. Main results

The main result of the paper is the following.

Hindawi Publishing Corporation Journal of Applied Mathematics and Stochastic Analysis Volume 2006, Article ID 46287, Pages 1–14 DOI 10.1155/JAMSA/2006/46287

THEOREM 2.1. Suppose the following conditions hold:

(G) there exist $g_i : [1,T] \times (0,\infty) \rightarrow (0,\infty)$ (i = 1,2) continuous functions such that

$$g_{i}(k, \cdot) \text{ is strictly decreasing for } k \in [1, T],$$

$$-g_{1}(k, u) \leq g(k, u) \leq g_{2}(k, u) \quad \text{for } (k, u) \in [1, T] \times (0, \infty),$$

$$\int_{0}^{1} g_{1}(k, s) ds < \infty \quad \text{for } k \in [1, T],$$

$$\forall s_{0} > 0, \quad \sup_{s_{0} \leq s} \left| \frac{\partial}{\partial s} g_{2}(\cdot, s) \right| \in C[1, T];$$

(2.1)

(H) there exist $h_i: [1,T] \times [0,\infty) \to (0,\infty)$ (i = 1,2) continuous functions such that

$$\begin{aligned} h_i(k, \cdot) \text{ increasing for } k &\in [1, T], \\ h_1(k, u) &\leq h(k, u) \leq h_2(k, u) \quad \text{for } (k, u) \in [1, T] \times (0, \infty), \\ \lim_{u \to \infty} \frac{h_2(k, u)}{u} &= 0 \quad \text{for } k \in [1, T], \\ \text{there exists } \bar{s} > 0 \text{ such that } h_1(k, \bar{s}) > 0 \text{ for all } k \in [1, T]. \end{aligned}$$

$$(2.2)$$

Then there exists $\lambda_0 \ge 0$ such that for every $\lambda \ge \lambda_0$, problem (1.1) has at least one solution $u \in C[0, T+1]$ and u(k) > 0 for $k \in [1, T]$. Moreover, there exists $c_i = c_i(\lambda, g, h, \phi_1) > 0$ (i = 1, 2) such that

$$c_1\phi_1(k) \le u(k) \le c_2(\phi_1(k)+1) \quad \text{for } k \in [0, T+1],$$
(2.3)

where ϕ_1 is defined in Lemma 2.2.

It is worth remarking here that an estimate for λ_0 will be given in the proof of Lemma 2.11.

We first give some lemmas which will help us to prove Theorem 2.1.

LEMMA 2.2 [1]. Consider the following eigenvalue problem:

$$-\Delta^2 u(k-1) = \lambda u(k), \quad k \in [1,T],$$

$$u(0) = u(T+1) = 0.$$
 (2.4)

Then the eigenvalues are

$$\lambda_m = 4\sin^2 \frac{m\pi}{2(T+1)}, \quad 1 \le m \le T,$$
(2.5)

and the corresponding eigenfunctions are

$$\phi_m(k) = \sin \frac{mk\pi}{T+1}$$
 for $k \in [0, T+1], \ 1 \le m \le T.$ (2.6)

LEMMA 2.3 [3]. Let $G_a(k, l)$ be Green's function of the BVP

$$-\Delta^2 u(k-1) + a(t)u(t) = 0 \quad \text{for } t \in [1,T],$$

$$u(0) = 0, \qquad u(T+1) = 0.$$
 (2.7)

Then

$$0 < G_a(k,l) \le G_a(l,l) \quad for \ every \ (k,l) \in [1,T] \times [1,T],$$
(2.8)

where $a \in C[1, T]$ *and* $a(k) \ge 0$ *for* $k \in [1, T]$ *.*

Remark 2.4. If $a(k) \equiv 0$ for $k \in [1, T]$, then

$$G_0(k,l) = \frac{1}{T+1} \begin{cases} l(T+1-k), & l \in [0,k-1], \\ k(T+1-l), & l \in [k,T+1], \end{cases} \text{ for } k \in [1,T].$$
(2.9)

Next we consider the boundary value problem

$$-\Delta^2 u(k-1) + a(k)u(k) = f(k), \quad k \in [1, T],$$

$$u(0) = 0 = u(T+1),$$

(2.10)

where $a, f \in C[1, T]$ and $a(k) \ge 0$ for $k \in [1, T]$.

Let $A : C[1,T] \rightarrow C[1,T]$ be the operator defined by

$$Au(k) := \sum_{l=1}^{T} G_a(k,l)u(l).$$
(2.11)

It is easy to see that A is a completely continuous operator (see [3]).

Note that if $u \in C[0, T+1]$, u(0) = u(T+1) = 0, and

$$u(k) = A(f)(k) \quad \text{for } k \in [1, T],$$
 (2.12)

then u is a solution of (2.10).

From Lemma 2.3, we have the following lemma.

LEMMA 2.5. The following statements hold:

(i) for any $f \in C[1, T]$, (2.10) is uniquely solvable and u = A(f);

(ii) if $f(k) \ge 0$ for $k \in [1, T]$, then the solution of (2.10) is nonnegative.

COROLLARY 2.6. If $f_1(k) \le f_2(k)$ for $k \in [1, T]$, then $A(f_1)(k) \le A(f_2)(k)$ for $k \in [1, T]$.

LEMMA 2.7. Suppose (G) and (H) hold. Let $n_0 \in \mathbb{N}$. Assume that for every $n > n_0$, there exist $a_n \in C[1,T]$, $0 \le a_n$, and there exist $\overline{u}, \overline{u}_n, \hat{u}_n, \hat{u} \in C[0,T+1]$ such that

$$0 < \overline{u}(k) \le \overline{u}_n(k) \le \hat{u}_n(k) \le \hat{u}(k) \quad \text{for } k \in [1, T],$$
(2.13)

and $\hat{u}(0) = \hat{u}(T+1) = 0$. If

$$-\Delta^{2}\overline{u}_{n}(k-1) + a_{n}(k)\overline{u}_{n}(k)$$

$$\leq g\left(k,\frac{1}{n}+\nu(k)\right) + \lambda h(k,\nu(k)) + a_{n}(k)\nu(k) \quad \text{for } k \in [1,T],$$

$$-\Delta^{2}\widehat{u}_{n}(k-1) + a_{n}(k)\widehat{u}_{n}(k)$$

$$\geq g\left(k,\frac{1}{n}+\nu(k)\right) + \lambda h(k,\nu(k)) + a_{n}(k)\nu(k) \quad \text{for } k \in [1,T],$$

$$(2.14)$$

$$(2.15)$$

where $\lambda \ge 0$ and $v \in [\overline{u}_n, \hat{u}_n] = \{u \in C[0, T+1], \overline{u}_n(k) \le u(k) \le \hat{u}_n(k) \text{ for } k \in [0, T+1]\},$ then problem (1.1) has a solution $u \in C[0, T+1]$ such that $\overline{u}(k) \le u(k) \le \hat{u}(k)$ for $k \in [0, T+1]$.

Proof. Fix $v \in [\overline{u}, \hat{u}]$. From Lemma 2.5, there exists $\Psi(v) \in C[0, T+1]$ such that

$$-\Delta^{2}\Psi(\nu)(k-1) + a_{n}(k)\Psi(\nu)(k)$$

= $g\left(k, \frac{1}{n} + \nu(k)\right) + \lambda h(k, \nu(k)) + a_{n}(k)\nu(k)$ for $k \in [1, T]$, (2.16)
 $\Psi(\nu)(0) = \Psi(\nu)(T+1) = 0.$

Then

$$\Psi(\nu)(k) = A\left(g\left(\cdot, \frac{1}{n} + \nu\right) + \lambda h(\cdot, \nu) + a_n\nu\right)(k) \quad \text{for } k \in [1, T].$$
(2.17)

Note also that Ψ : $C[0, T+1] \rightarrow C[0, T+1]$ is a completely continuous operator. By Corollary 2.6, we have

$$\overline{u}_n(k) \le \Psi(\nu)(k) \le \hat{u}_n(k) \quad \text{for } k \in [0, T+1].$$
(2.18)

From Schauder's fixed point theorem (note that $\Psi z : [\overline{u}, \hat{u}] \to [\overline{u}, \hat{u}]$), there exists $u_n \in C[0, T+1]$ such that $\overline{u}_n(k) \le u_n(k) \le \hat{u}_n(k)$ and $\Psi(u_n)(k) = u_n(k)$ for $k \in [1, T]$. Note that

$$-\Delta^2 u_n(k-1) = g\left(k, \frac{1}{n} + u_n(k)\right) + \lambda h(k, u_n(k)) \quad \text{for } k \in [1, T],$$

$$u_n(0) = u_n(T+1) = 0.$$
 (2.19)

Let $m := \min\{\overline{u}(k) : k \in [1, T]\} > 0$ and $M := \max\{\hat{u}(k) : k \in [1, T]\}$. Then

$$m \le u_n(k) \le M$$
 for $k \in [1, T], n = 1, 2, ...,$ (2.20)

and for $k \in [1, T]$, we have

$$\left|g\left(k,\frac{1}{n}+u_n(k)\right)+\lambda h(k,u_n(k))\right| \le g_2(k,m)+\lambda h_2(k,M).$$
(2.21)

From the Arzela-Ascoli theorem, there exist a $u \in C[0, T + 1]$ and a subsequence $\{u_{n_m}\}_{m \in \mathbb{N}}$ converging to u in C[0, T + 1], and of course

$$u(k) = \lim_{m \to \infty} u_{n_m}(k) \text{ for } k \in [0, T+1].$$
 (2.22)

Haishen Lü et al. 5

Observe that $u_{n_m} \in [\overline{u}, \hat{u}]$, so u(0) = u(T+1) = 0 and $u \in C[0, T+1]$ with u > 0 in [1, T]. Also,

$$u(k) = \lim_{m \to \infty} \sum_{l=1}^{T} G_0(k,l) \left[g\left(l, \frac{1}{n} + u_{n_m}(l)\right) + \lambda h(l, u_{n_m}(l)) \right]$$

= $\sum_{l=1}^{T} G_0(k,l) \left[g(l, u(l)) + \lambda h(l, u(l)) \right].$ (2.23)

As a result

$$-\Delta^{2}u(k-1) = g(k,u(k)) + \lambda h(k,u(k)) \quad \text{for } k \in [1,T],$$

$$u(0) = u(T+1) = 0.$$

LEMMA 2.8. Let $\psi : [1,T] \times (0,\infty) \to (0,\infty)$ be a continuous function with $\psi(k,\cdot)$ strictly decreasing. Then the problem

$$-\Delta^2 \omega(k-1) = \psi\left(k, \omega + \frac{1}{n}\right) \quad \text{for } k \in [0, T],$$

$$\omega(0) = \omega(T+1) = 0 \tag{2.25}$$

has a solution $\omega_n \in C[0, T+1]$ *such that*

$$\omega_n(k) \le \omega_{n+1}(k) \le 1 + \omega_1(k) \text{ for } k \in [0, T+1], n \in \mathbb{N}.$$
 (2.26)

If $\omega(k) = \lim_{n \to \infty} \omega_n(k)$ for $k \in [0, T+1]$, then

$$\omega \in C[0, T+1], \quad \omega(k) > 0, \quad for \ k \in [1, T], -\Delta^2 \omega(k-1) = \psi(k, \omega) \quad for \ k \in [1, T], \omega(0) = \omega(T+1) = 0.$$
(2.27)

Proof. There exists $\chi_1 \in C[0, T+1]$ such that

$$-\Delta^{2} \chi_{1}(k-1) = \psi(k,1),$$

$$\chi_{1}(0) = \chi_{1}(T+1) = 0,$$

$$\chi_{1}(k) > 0 \quad \text{for } k \in [1,T].$$

(2.28)

Notice that

$$-\Delta^{2}\chi_{1}(k-1) = \psi(k,1) \ge \psi(k,1+\chi_{1}(k)),$$

$$0 \le \psi(k,1+0).$$
(2.29)

By a standard upper-lower solution method [2, page 264], there exists $\omega_1 \in C[0, T+1]$ such that

$$-\Delta^2 \omega_1(k-1) = \psi(k, 1+\omega_1(k)) \quad \text{for } k \in [1, T],$$

$$\omega_1(0) = \omega_1(T+1) = 0.$$
 (2.30)

Suppose that there exists $\omega_n \in C[0, T+1]$ such that

$$-\Delta^{2}\omega_{n}(k-1) = \psi\left(k, \frac{1}{n} + \omega_{n}(k)\right),$$

$$\omega_{n}(0) = \omega_{n}(T+1) = 0,$$

$$\omega_{n}(k) > 0 \quad \text{for } k \in [1, T].$$

(2.31)

We know that there exist $\chi_{n+1} \in C[0, T+1]$ such that

$$-\Delta^{2} \chi_{n+1}(k-1) = \psi\left(k, \frac{1}{n+1}\right),$$

$$\chi_{n+1}(0) = \chi_{n+1}(T+1) = 0,$$

$$\chi_{n+1}(k) > 0 \quad \text{for } k \in [1, T].$$

(2.32)

Then

$$-\Delta^{2}\chi_{n+1}(k-1) = \psi\left(k, \frac{1}{n+1}\right) \ge \psi\left(k, \frac{1}{n+1} + \chi_{n+1}(k)\right),$$

$$-\Delta^{2}\omega_{n}(k-1) = \psi\left(k, \frac{1}{n} + \omega_{n}(k)\right) \le \psi\left(k, \frac{1}{n+1} + \omega_{n}(k)\right) \quad \text{for } k \in [1, T],$$

$$\omega_{n}(0) = \omega_{n}(T+1) = 0,$$

$$\omega_{n}(k) = \sum_{l=1}^{T} G_{0}(k, l)\psi\left(l, \frac{1}{n} + \omega_{n}(l)\right) \le \sum_{l=1}^{T} G_{0}(k, l)\psi\left(l, \frac{1}{n+1}\right) = \chi_{n+1}(k) \quad \text{for } k \in [1, T].$$

(2.33)

By a standard upper-lower solution method, there exist $\omega_{n+1} \in C[0, T+1]$ such that

$$-\Delta^{2}\omega_{n+1}(k-1) = \psi\left(k, \frac{1}{n+1} + \omega_{n+1}\right) \text{ for } k \in [1, T],$$

$$\omega_{n+1}(0) = \omega_{n+1}(T+1) = 0,$$

$$\omega_{n}(k) \le \omega_{n+1}(k) \text{ for } k \in [0, T+1].$$
(2.34)

Next we prove

$$\omega_{n+1}(k) + \frac{1}{n+1} \le \omega_n(k) + \frac{1}{n} \quad \text{for } k \in [0, T+1].$$
 (2.35)

To see this, we consider the problem

$$-\Delta^2 \nu(k-1) = \psi(k,\nu) \quad \text{for } k \in [1,T],$$

$$\nu(0) = \nu(T+1) = \frac{1}{n}.$$
 (2.36)_n

Then $v_n(k) = 1/n + \omega_n(k)$ for $k \in [0, T + 1]$ is a solution of $(2.36)_n$. We next prove

$$v_{n+1}(k) \le v_n(k) \quad \text{for } k \in [0, T+1].$$
 (2.37)

Since $v_{n+1}(0) = 1/(n+1) < 1/n = v_n(0)$, $v_{n+1}(1) = 1/(n+1) < 1/n = v_n(1)$, we need only to prove that

$$v_{n+1}(k) \le v_n(k) \quad \text{for } k \in [1, T].$$
 (2.38)

If this is not true, then there exist $m \in [1, T]$ with $v_{n+1}(m) > v_n(m) > 0$. Let σ be the point where $v_{n+1}(k) - v_n(k)$ assumes its maximum over [1, T]. Certainly, $v_{n+1}(\sigma) - v_n(\sigma) > 0$. Let $y(k) = v_{n+1}(k) - v_n(k)$. Now $y(\sigma) \ge y(\sigma + 1)$ and $y(\sigma) \ge y(\sigma - 1)$ imply that

$$2y(\sigma) \ge y(\sigma+1) + y(\sigma-1), \tag{2.39}$$

that is,

$$y(\sigma+1) + y(\sigma-1) - 2y(\sigma) \le 0.$$
 (2.40)

Thus

$$\Delta^2 y(\sigma - 1) \le 0. \tag{2.41}$$

On the other hand, since $v_{n+1}(\sigma) > v_n(\sigma)$, we have

$$\Delta^{2} y(\sigma - 1) = \Delta^{2} v_{n+1}(\sigma - 1) - \Delta^{2} v_{n}(\sigma - 1)$$

$$= -\psi(\sigma, v_{n+1}(\sigma)) + \psi(\sigma, v_{n}(\sigma))$$

$$= \psi(\sigma, v_{n}(\sigma)) - \psi(\sigma, v_{n+1}(\sigma)) > 0.$$

(2.42)

This is a contradiction. Thus $v_{n+1}(k) \le v_n(k)$ for $k \in [1, T]$, and so

$$0 < \frac{1}{n+1} + \omega_{n+1} \le \omega_n + \frac{1}{n}.$$
(2.43)

Also notice that

$$\omega_1(k) \le \omega_n(k) \le \omega_{n+1}(k) \le 1 + \omega_1(k) \text{ for } k \in [0, T+1], \ n \in \mathbb{N}.$$
 (2.44)

Now with

$$\omega(k) = \lim_{n \to \infty} \omega_n(k) = \sup_{n \in \mathbb{N}} \omega_n(k) \quad \text{for } k \in [0, T+1],$$
(2.45)

we have

$$0 < \omega_1(k) \le \omega(k) \le 1 + \omega_1(k) \quad \text{for } k \in [1, T],$$

$$\omega(0) = \omega(T+1) = 0.$$
(2.46)

Also for $k \in [1, T]$, we have

$$\omega(k) = \lim_{n \to \infty} \omega_n(k)$$

=
$$\lim_{n \to \infty} \sum_{l=1}^T G(k, l) \psi\left(l, \frac{1}{n} + \omega_n(l)\right)$$

=
$$\sum_{l=1}^T G(k, l) \psi(l, \omega(l)),$$
 (2.47)

so

$$-\Delta^2 \omega(k-1) = \psi(k,\omega) \quad \text{for } k \in [0,T],$$

$$\omega(0) = \omega(T+1) = 0.$$

$$(2.48)$$

LEMMA 2.9. Suppose that $m: [1,T] \times [0,\infty) \rightarrow [0,\infty)$ is a continuous function such that

$$m(k, \cdot) \text{ is increasing,}$$
$$\lim_{u \to +\infty} \frac{m(k, u)}{u} = 0 \quad \text{for } k \in [1, T].$$
(2.49)

There exist $R_0 > 0$ *and* $\tilde{v} \in C[0, T+1]$ *with* $0 \leq \tilde{v} \leq R_0 \phi_1$ *and*

$$-\Delta^{2}\widetilde{\nu}(k-1) = m(k,\widetilde{\nu}) \quad \text{for } k \in [1,T],$$

$$\widetilde{\nu}(0) = \widetilde{\nu}(T+1) = 0.$$
(2.50)

Proof. We first prove that

$$\lim_{\mathbb{R} \to \infty} \frac{\sum_{l=1}^{T} G_0(k, l) m(l, \nu(l))}{R \phi_1(k)} = 0 \quad \text{for } k \in [1, T],$$
(2.51)

for all $v \in C[0, T+1]$ with $0 \le v(i) \le R\phi_1(i)$ for $i \in [0, T+1]$.

From (2.49), for all $\sigma > 0$, there exist $s_{\sigma} > 0$ such that

$$m(k,s) \le \sigma s \quad \text{for } k \in [1,T] \text{ and } s_{\sigma} \le s.$$
 (2.52)

As a result,

$$m(k,\nu(k))\big|_{0\le\nu(k)\le R\phi_1(k)}\le m(k,s_{\sigma})+\sigma\nu(k)\le m(k,s_{\sigma})+\sigma R\phi_1(k) \quad \text{for } k\in[1,T],$$
(2.53)

so

$$\frac{1}{\phi_{1}(k)} \sum_{l=1}^{T} G_{0}(k,l) m(l,\nu(l)) \leq \frac{1}{\phi_{1}(k)} \left[\sum_{l=1}^{T} G_{0}(k,l) m(l,s_{\sigma}) + R\sigma \sum_{l=1}^{T} G_{0}(k,l) \phi_{1}(l) \right] \\
= \frac{1}{\phi_{1}(k)} \sum_{l=1}^{T} G_{0}(k,l) m(l,s_{\sigma}) + \frac{R\sigma}{\lambda_{1}},$$
(2.54)

and consequently

$$\frac{1}{R\phi_1(k)}\sum_{l=1}^T G_0(k,l)m(l,\nu(l)) \le \frac{1}{R\phi_1(k)}\sum_{l=1}^T G_0(k,l)m(l,s_{\sigma}) + \frac{\sigma}{\lambda_1},$$
(2.55)

so (2.51) follows. Thus there exist $R_0 > 0$ such that if $v \in C[0, T+1]$ and $0 \le v(i) \le R_0\phi_1(i)$ for $i \in [0, T+1]$, then

$$\frac{1}{R_0\phi_1(k)}\sum_{l=1}^T G_0(k,l)m(l,\nu(l)) \le 1 \quad \text{for } k \in [1,T],$$
(2.56)

and so

$$0 \le \sum_{l=1}^{T} G_0(k, l) m(l, v(l)) \le R_0 \phi_1(k) \quad \text{for } k \in [1, T].$$
(2.57)

Let Φ : $C[1, T] \rightarrow C[1, T]$ be the operator defined by

$$(\Phi \nu)(k) := \sum_{l=1}^{T} G_0(k,l) m(l,\nu(l)) \quad \text{for } \nu \in C[1,T], \ k \in [1,T].$$
(2.58)

It is easy to see that Φ is a completely continuous operator. Also if $v \in C[0, T+1]$ and $0 \le v(k) \le R_0\phi_1(k)$ for $k \in [1, T]$, then $0 \le \Phi(v)(k) \le R_0\phi_1(k)$ for $k \in [1, T]$, so Schauder's fixed point theorem guarantees that there exists $\tilde{v} \in [0, R_0\phi_1]$ with $\Phi(\tilde{v}) = \tilde{v}$, that is,

$$-\Delta^2 \widetilde{\nu}(k-1) = m(k,\widetilde{\nu}), \qquad \widetilde{\nu}(0) = \widetilde{\nu}(T+1) = 0.$$
(2.59)

COROLLARY 2.10. Let $\psi(k,s)$, m(k,s), $(\omega_n)_{n\in\mathbb{N}}$, and $R_0 > 0$ be as in Lemmas 2.8 and 2.9. Then there exist $\{\widetilde{\nu}_n\}_{n\in\mathbb{N}} \subset C[0,T+1]$ and $0 \leq \widetilde{\nu}_n \leq R_0\phi_1$ such that

$$-\Delta^{2}\widetilde{\nu}_{n}(k-1) = m(k,\omega_{n}+\widetilde{\nu}_{n}) \quad \text{for } k \in [1,T],$$

$$\widetilde{\nu}_{n}(0) = \widetilde{\nu}_{n}(T+1) = 0,$$

$$\Delta^{2}(w_{n}+\widetilde{\nu}_{n})(k-1) \ge \psi\left(k,\frac{1}{n}+\omega_{n}+\widetilde{\nu}_{n}\right) + m(k,\omega_{n}+\widetilde{\nu}_{n}) \quad \text{for } k \in [1,T].$$
(2.60)

Proof. Let $n \in \mathbb{N}$ be fixed. Then $m(k, \omega_n + s)$ satisfies the conditions of Lemma 2.9, so there exists $\tilde{v}_n \in C[0, T+1]$ with $0 \leq \tilde{v}_n \leq R_0 \phi_1$ such that (2.60) holds and

$$-\Delta^{2}(w_{n}+\widetilde{v}_{n})(k-1) = -\Delta^{2}w_{n}(k-1) - \Delta^{2}\widetilde{v}_{n}(k-1) = \psi\left(k,\frac{1}{n}+\omega_{n}\right) + m(k,\omega_{n}+\widetilde{v}_{n})$$
$$\geq \psi\left(k,\frac{1}{n}+\omega_{n}+\widetilde{v}_{n}\right) + m(k,\omega_{n}+\widetilde{v}_{n}) \quad \text{for } k \in [1,T].$$

$$(2.61)$$

LEMMA 2.11. Suppose (G) and (H) hold. Then there exist $\lambda_0 \ge 0$, c > 0 such that for all $\lambda \ge \lambda_0$, there exist $R_c > c$, $\overline{u} \in C([0, T+1])$ with $c\phi_1(k) \le \overline{u}(k) \le R_c\phi_1(k)$ and

$$-\Delta^{2}\overline{u}(k-1) = -g_{1}(k,\overline{u}) + \lambda h_{1}(k,\overline{u}) \quad \text{for } k \in [1,T],$$

$$\overline{u}(0) = \overline{u}(T+1) = 0.$$
(2.62)

Proof. Let us consider the operator $T_{\lambda} : C[1,T] \to C[1,T]$ given by

$$T_{\lambda}(\nu)(k) := \frac{1}{\phi_1(k)} \sum_{l=1}^{T} G_0(k,l) \left[-g_1(l,\nu(l)\phi_1(l)) + \lambda h_1(l,\nu(l)\phi_1(l)) \right] \quad \text{for } k \in [1,T].$$
(2.63)

By (H), there exists $\overline{s} \ge 0$ such that $0 < h_1(k, \overline{s})$ for $k \in [1, T]$. We let

$$c = 2\frac{\overline{s}+1}{|\phi_1|_{\infty}}, \qquad \Theta = \left\{ k \in [1,T] : \frac{|\phi_1|_{\infty}}{2} < \phi_1(k) \right\}.$$
(2.64)

Note that Θ is nonempty. If $k \in \Theta$, $v \in C[0, T+1]$, and $c \le v$, we have

$$\bar{s} = \frac{c |\phi_1|_{\infty}}{2} - 1 \le \frac{c |\phi_1|_{\infty}}{2} \le c \phi_1(k) \le v(k) \phi_1(k), \tag{2.65}$$

so

$$h_1(k,\bar{s}) \le h_1(k,\nu(k)\phi_1(k)),$$
 (2.66)

for all $v \in C[0, T+1]$ with $c \le v$. Let

$$\rho = \min_{k \in [1,T]} \frac{1}{\phi_1(k)} \sum_{l \in \Theta} G_0(k,l) h_1(l,\bar{s}) > 0, \qquad (2.67)$$

and note for $v \in C[0, T+1]$ with $c \le v$ that

$$\frac{1}{\phi_{1}(k)} \sum_{l=1}^{T} G_{0}(k,l) h_{1}(l,\nu(l)\phi_{1}(l)) \geq \frac{1}{\phi_{1}(k)} \sum_{l\in\Theta} G_{0}(k,l) h_{1}(l,\nu(l)\phi_{1}(l))$$

$$\geq \frac{1}{\phi_{1}(k)} \sum_{l\in\Theta} G_{0}(k,l) h_{1}(l,\bar{s}) \quad (\text{see} (2.66))$$

$$\geq \min_{k\in[1,T]} \frac{1}{\phi_{1}(k)} \sum_{l\in\Theta} G_{0}(k,l) h_{1}(l,\bar{s})$$

$$= \rho \quad \forall k \in [1,T],$$
(2.68)

that is,

$$\frac{\phi_1(k)}{\sum_{l=1}^T G_0(k,l)h_1(l,\nu(l)\phi_1(l))} \le \frac{1}{\rho}.$$
(2.69)

On the other hand, for all $v \in C[0, T+1]$ with $v \ge c$, we have

$$c + \frac{1}{\phi_{1}(k)} \sum_{l=1}^{T} G_{0}(k,l) g_{1}(l,\nu(l)\phi_{1}(l))$$

$$\leq c + \frac{1}{\phi_{1}(k)} \sum_{l=1}^{T} G_{0}(k,l) g_{1}(l,c\phi_{1}(l)) \leq c + \frac{1}{\phi_{1}(k)} \sum_{l=1}^{T} G_{0}(k,l) g_{1}(l,c\mu),$$
(2.70)

where $\mu = \min_{1 \le l \le T} \phi_1(l)$. Thus, for all $\nu \in C[0, T+1]$ with $\nu(k) \ge c$, we have

$$\frac{c + (1/\phi_{1}(k)) \sum_{l=1}^{T} G_{0}(k,l)g_{1}(l,\nu(l)\phi_{1}(l))}{\left(\sum_{l=1}^{T} G_{0}(k,l)h_{1}(l,\nu(l)\phi_{1}(l))\right)/\phi_{1}(k)} \leq \frac{1}{\rho} \left(c + \frac{1}{\phi_{1}(k)} \sum_{l=1}^{T} G_{0}(k,l)g_{1}(l,c\mu)\right) \quad \text{for } k \in [1,T].$$
(2.71)

Let

$$\lambda_{0} := \sup\left\{ \left| \frac{c + (1/\phi_{1}(k)) \sum_{l=1}^{T} G_{0}(k, l) g_{1}(l, \nu(l)\phi_{1}(l))}{\left(\sum_{l=1}^{T} G_{0}(k, l) h_{1}(l, \nu(l)\phi_{1}(l))\right) / \phi_{1}(k)} \right|_{*} : \nu \in C[0, T+1], \ c \le \nu \right\} < \infty,$$

$$(2.72)$$

where $|u|_* = \max[1,T]|u(k)|$. Then, for all $\lambda \ge \lambda_0$, $v \in C[0, T+1]$, and $c \le v$, we have for $k \in [1,T]$ that

$$\frac{c + (1/\phi_1(k)) \sum_{l=1}^T G_0(k, l) g_1(l, \nu(l)\phi_1(l))}{\left(\sum_{l=1}^T G_0(k, l) h_1(l, \nu(l)\phi_1(l))\right) / \phi_1(k)} \le \lambda,$$
(2.73)

that is,

$$c + \frac{1}{\phi_1(k)} \sum_{l=1}^T G_0(k,l) g_1(l,\nu(l)\phi_1(l)) \le \frac{\lambda}{\phi_1(k)} \sum_{l=1}^T G_0(k,l) h_1(l,\nu(l)\phi_1(l)),$$
(2.74)

so

$$c \leq \frac{1}{\phi_{1}(k)} \sum_{l=1}^{T} G_{0}(k,l) \left(-g_{1}(l,\nu(l)\phi_{1}(l)) + \lambda h_{1}(l,\nu(l)\phi_{1}(l)) \right)$$

= $T_{\lambda}(\nu)(k)$ for $k \in [1,T].$ (2.75)

On the other hand, for all $v \in C[0, T+1]$ with $v \ge c$, we have

$$\frac{1}{\phi_{1}(k)} \sum_{l=1}^{T} G_{0}(k,l)g_{1}(l,\nu(l)\phi_{1}(l)) \leq \frac{1}{\phi_{1}(k)} \sum_{l=1}^{T} G_{0}(k,l)g_{1}(l,c\phi_{1}(l)) \\ \leq \max_{k \in [1,T]} \frac{1}{\phi_{1}(k)} \sum_{l=1}^{T} G_{0}(k,l)g_{1}(l,c\phi_{1}(l)),$$
(2.76)

so

$$\lim_{\mathbb{R}\to\infty} \frac{1}{R} \left[\frac{1}{\phi_1(k)} \sum_{l=1}^T G_0(k,l) g_1(l,\nu(l)\phi_1(l)) \right] = 0,$$
(2.77)

for all $v \in C[0, T+1]$ with $v \ge c$ and $k \in [1, T]$. Essentially the same reasoning as in the proof of (2.51) yields (note that $\lim_{u\to\infty} (h_1(k, u)/u) = 0$ for $k \in [1, T]$)

$$\lim_{\mathbb{R}\to\infty} \frac{1}{R} \left[\frac{1}{\phi_1(k)} \sum_{l=1}^T G_0(k,l) h_1(l,\nu(l)\phi_1(l)) \right] = 0$$
(2.78)

for all $v \in C[0, T+1]$ with $0 \le v(i) \le R$ and $i \in [1, T]$. Thus if $\lambda \ge \lambda_0$, there exists $R_c > c$ with $T_{\lambda}([c, R_c]) \subset [c, R_c]$.

It is easy to see that T_{λ} is a completely continuous operator, so Schauder's fixed point theorem guarantees that there exists $\overline{\nu} \in [c, R_c]$ with $T_{\lambda}(\overline{\nu}) = \overline{\nu}$, that is,

$$\overline{\nu}(k)\phi_1(k) = \sum_{l=1}^T G_0(k,l) \left(-g_1(l,\overline{\nu}(l)\phi_1(l)) + \lambda h_1(l,\overline{\nu}(l)\phi_1(l)) \right).$$
(2.79)

The function $\overline{u} = \phi_1 \overline{v}$ satisfies (2.62).

Proof of Theorem 2.1. Let $\lambda_0 > 0$, c > 0, and $\overline{u} \in (C[0, T+1])$ be defined as in Lemma 2.11. Also let

$$\psi(k,s) = g_2(k,s) + \lambda h_1(k,\overline{u}(k)) \quad \text{for } k \in [1,T],$$

$$m(k,s) = \lambda h_2(k,s), \qquad (2.80)$$

where $\lambda \ge \lambda_0$.

From (G), we notice that ψ satisfies the assumptions of Lemma 2.8. As a result, there exist $\omega, \omega_n \in C[0, T+1]$ such that

$$-\Delta^{2}\omega_{n}(k-1) = g_{2}\left(k, \frac{1}{n} + \omega_{n}\right) + \lambda h_{1}\left(k, \overline{u}(k)\right) \quad \text{for } k \in [1, T],$$
$$\omega_{n}(0) = \omega_{n}(T+1) = 0,$$
$$\omega(k) = \lim_{n \to \infty} \omega_{n}(k) \quad \text{for } k \in [0, T+1].$$
$$(2.81)$$

From (H), we notice that *m* satisfies the assumptions of Lemma 2.9. As a result from Corollary 2.10, there exist $R_0 > 0$ and $\tilde{\nu}_n \in C([0, T+1])$, $0 \le \tilde{\nu}_n(k) \le R_0\phi_1(k)$ for $k \in [0, T+1]$ such that

$$-\Delta^{2}\widetilde{\nu}_{n}(k-1) = \lambda h_{2}(k,\omega_{n}+\widetilde{\nu}_{n}) \quad \text{for } k \in [1,T],$$

$$\widetilde{\nu}_{n}(0) = \widetilde{\nu}_{n}(T+1) = 0,$$

$$-\Delta^{2}(\omega_{n}+\widetilde{\nu}_{n})(k-1) \ge g_{2}\left(k,\frac{1}{n}+\omega_{n}+\widetilde{\nu}_{n}\right) + \lambda h_{1}(k,\overline{u}(k)) + \lambda h_{2}(k,\omega_{n}+\widetilde{\nu}_{n}) \quad \text{for } k \in [1,T].$$

(2.82)

Let

$$\hat{u}_n(k) = \omega_n(k) + \widetilde{\nu}_n(k) \quad \text{for } k \in [0, T+1].$$
(2.83)

Then, $\hat{u}_n \in C[0, T+1], \hat{u}_n(1) = \hat{u}_n(T+1) = 0.$

We let

$$\hat{u}(k) = \omega(k) + R_0 \phi_1(k) \quad \text{for } k \in [0, T+1],$$
(2.84)

so

$$0 \le \hat{u}_n(k) \le \hat{u}(k) \quad \text{for } k \in [0, T+1].$$
 (2.85)

From Lemma 2.11, we have

$$-\Delta^{2}\overline{u}(k-1) = -g_{1}(k,\overline{u}(k)) + \lambda h_{1}(k,\overline{u}(k))$$

$$\leq \lambda h_{1}(k,\overline{u}(k))$$

$$\leq \lambda h_{1}(k,\overline{u}(k)) + g_{2}\left(k,\frac{1}{n} + \hat{u}_{n}(k)\right) + \lambda h_{2}(k,\hat{u}_{n}(k))$$

$$\leq -\Delta^{2}\hat{u}_{n}(k-1) \quad \text{for } k \in [1,T],$$

$$(2.86)$$

that is,

$$-\Delta^2 \left(\overline{u} - \hat{u}_n\right)(k-1) \le 0. \tag{2.87}$$

A standard argument (see the argument to show (2.35)) yields

$$\overline{u}(k) \le \hat{u}_n(k) \quad \text{for } k \in [1, T].$$
(2.88)

Let

$$a_n(k) = \sup\left\{ \left| \frac{\partial}{\partial s} g_2\left(k, \frac{1}{n} + s\right) \right| : 0 < s \right\},\tag{2.89}$$

and notice that $s \to g_2(k, 1/n + s) + a(k)s$ is increasing. Let $\overline{u}_n = \overline{u}$. From (2.85) and (2.88), we have

$$\overline{u}(k) = \overline{u}_n(k) \le \hat{u}_n(k) \le \hat{u}(k) \quad \text{for } k \in [0, T+1].$$
(2.90)

Also for $v \in C[1,T]$ with $\overline{u}_n(k) \le v(k) \le \hat{u}_n(k), k \in [1,T]$, we have

$$\begin{aligned} -\Delta^{2}\overline{u}_{n}(k-1) + a_{n}(k)\overline{u}_{n}(k) &= -g_{1}\left(k,\overline{u}_{n}(k)\right) + \lambda h_{1}\left(k,\overline{u}_{n}(k)\right) + a_{n}(k)\overline{u}_{n}(k) \\ &\leq -g_{1}\left(k,\nu(k)\right) + \lambda h_{1}\left(k,\nu(k)\right) + a_{n}(k)\nu(k) \\ &\leq -g_{1}\left(k,\frac{1}{n}+\nu(k)\right) + \lambda h_{1}\left(k,\nu(k)\right) + a_{n}(k)\nu(k) \\ &\leq g\left(k,\frac{1}{n}+\nu(k)\right) + \lambda h(k,\nu) + a_{n}(k)\nu(k) \quad \text{for } k \in [1,T], \end{aligned}$$

$$(2.91)$$

so (2.14) holds.

Also for $v \in C[1,T]$ with $\overline{u}_n(k) \le v(k) \le \hat{u}_n(k), k \in [1,T]$, we have

$$-\Delta^{2}\hat{u}_{n}(k-1) + a_{n}(k)\hat{u}_{n}(k)$$

$$\geq g_{2}\left(k,\frac{1}{n} + \hat{u}_{n}(k)\right) + \lambda h_{1}\left(k,\overline{u}(k)\right) + \lambda h_{2}\left(k,\hat{u}_{n}(k)\right) + a_{n}(k)\hat{u}_{n}(k)$$

$$\geq g_{2}\left(k,\frac{1}{n} + \hat{u}_{n}(k)\right) + a_{n}(k)\hat{u}_{n}(k) + \lambda h_{2}\left(k,\hat{u}_{n}(k)\right)$$

$$\geq g_{2}\left(k,\frac{1}{n} + v(k)\right) + a_{n}(k)v(k) + \lambda h_{2}\left(k,v(k)\right)$$

$$\geq g\left(k,\frac{1}{n} + v(k)\right) + \lambda h\left(k,v(k)\right) + a_{n}(k)v(k) \quad \text{for } k \in [1,T],$$
(2.92)

so (2.15) holds. Lemma 2.7 guarantees that there exists a solution $u \in C[0, T+1]$ to (1.1) with

$$\overline{u}(k) \le u(k) \le \hat{u}(k) \quad \text{for } k \in [0, T+1].$$
(2.93)

Moreover, because $\hat{u}(k) \le |\omega|_{\infty} + R_0\phi_1(k) \le (|\omega|_{\infty} + R_0)(1 + \phi_1(k))$ and $c\phi_1(k) \le \overline{u}(k)$ (see Lemma 2.11), the estimates asserted in the theorem follow.

Acknowledgment

This research was supported by National Natural Science Foundation (NNSF) of China (10301033).

References

- [1] R. P. Agarwal, *Difference Equations and Inequalities*, 2nd ed., Monographs and Textbooks in Pure and Applied Mathematics, vol. 228, Marcel Dekker, New York, 2000.
- [2] R. P. Agarwal, D. O'Regan, and P. J. Y. Wong, *Positive Solutions of Differential, Difference and Integral Equations*, Kluwer Academic, Dordrecht, 1999.
- [3] F. Merdivenci Atici, *Existence of positive solutions of nonlinear discrete Sturm-Liouville problems*, Mathematical and Computer Modelling **32** (2000), no. 5-6, 599–607.

Haishen Lü: Department of Applied Mathematics, College of Sciences, Hohai University, Nanjing 210098, China *E-mail address*: haishen2001@yahoo.com.cn

Donal O'Regan: Department of Mathematics, Faculty of Science, National University of Ireland, Galway, University Road, Galway, Ireland *E-mail address*: donal.oregan@nuigalway.ie

Ravi P. Agarwal: Department of Mathematical Sciences, College of Science, Florida Institute of Technology, Melbourne, FL 32901-6975, USA *E-mail address*: agarwal@fit.edu