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This paper presents new existence results for the singular discrete boundary value prob-
lem −Δ2u(k− 1) = g(k,u(k)) + λh(k,u(k)), k ∈ [1,T], u(0) = 0 = u(T + 1). In particu-
lar, our nonlinearity may be singular in its dependent variable and is allowed to change
sign.
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1. Introduction

Let a,b (b > a) be nonnegative integers. We define the discrete interval [a,b] = {a,a +
1, . . . ,b}. All other intervals will carry its standard meaning, for example, [0,∞) denotes
the set of nonnegative real numbers. The symbol Δ denotes the forward difference oper-
ator with step size 1, that is, Δu(k) = u(k + 1)− u(k). Furthermore for a positive m, Δm

is defined as Δmu(k)= Δm−1(Δu(k)). In this paper, we will study positive solutions of the
second-order discrete boundary value problem

−Δ2u(k− 1)= g(k,u(k)
)

+ λh
(
k,u(k)

)
, k ∈ [1,T],

u(0)= 0= u(T + 1),
(1.1)

where λ > 0 is a constant and T > 2 is a positive integer. Here, g : [1,T]× (0,∞)→R and
h : [1,T]× [0,∞)→ [0,∞) are continuous. As a result, our nonlinearity may be singular
at u= 0 and may change sign.

By a solution u of the boundary value problem (1.1), we mean u : [0,T + 1]→ R, u
satisfies the difference equation (1.1) on [1,T] and the stated boundary data.

We will let C[0,T + 1] denote the class of map u continuous on [0,T + 1] (discrete
topology), with norm |u|∞ =maxk∈[0,T+1] |u(k)|.

2. Main results

The main result of the paper is the following.
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Theorem 2.1. Suppose the following conditions hold:
(G) there exist gi : [1,T]× (0,∞)→ (0,∞) (i= 1,2) continuous functions such that

gi(k,·) is strictly decreasing for k ∈ [1,T],

− g1(k,u)≤ g(k,u)≤ g2(k,u) for (k,u)∈ [1,T]× (0,∞),
∫ 1

0
g1(k,s)ds <∞ for k ∈ [1,T],

∀s0 > 0, sup
s0≤s

∣
∣
∣
∣
∂

∂s
g2(·,s)

∣
∣
∣
∣∈ C[1,T];

(2.1)

(H) there exist hi : [1,T]× [0,∞)→ (0,∞) (i= 1,2) continuous functions such that

hi(k,·) increasing for k ∈ [1,T],

h1(k,u)≤ h(k,u)≤ h2(k,u) for (k,u)∈ [1,T]× (0,∞),

lim
u→∞

h2(k,u)
u

= 0 for k ∈ [1,T],

there exists s > 0 such that h1(k,s) > 0 for all k ∈ [1,T].

(2.2)

Then there exists λ0 ≥ 0 such that for every λ ≥ λ0, problem (1.1) has at least one solution
u ∈ C[0,T + 1] and u(k) > 0 for k ∈ [1,T]. Moreover, there exists ci = ci(λ,g,h,φ1) > 0
(i= 1,2) such that

c1φ1(k)≤ u(k)≤ c2
(
φ1(k) + 1

)
for k ∈ [0,T + 1], (2.3)

where φ1 is defined in Lemma 2.2.

It is worth remarking here that an estimate for λ0 will be given in the proof of Lemma
2.11.

We first give some lemmas which will help us to prove Theorem 2.1.

Lemma 2.2 [1]. Consider the following eigenvalue problem:

−Δ2u(k− 1)= λu(k), k ∈ [1,T],

u(0)= u(T + 1)= 0.
(2.4)

Then the eigenvalues are

λm = 4sin2 mπ

2(T + 1)
, 1≤m≤ T , (2.5)

and the corresponding eigenfunctions are

φm(k)= sin
mkπ

T + 1
for k ∈ [0,T + 1], 1≤m≤ T. (2.6)

Lemma 2.3 [3]. Let Ga(k, l) be Green’s function of the BVP

−Δ2u(k− 1) + a(t)u(t)= 0 for t ∈ [1,T],

u(0)= 0, u(T + 1)= 0.
(2.7)
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Then

0 < Ga(k, l)≤Ga(l, l) for every (k, l)∈ [1,T]× [1,T], (2.8)

where a∈ C[1,T] and a(k)≥ 0 for k ∈ [1,T].

Remark 2.4. If a(k)≡ 0 for k ∈ [1,T], then

G0(k, l)= 1
T + 1

⎧
⎨

⎩
l(T + 1− k), l ∈ [0,k− 1],

k(T + 1− l), l ∈ [k,T + 1],
for k ∈ [1,T]. (2.9)

Next we consider the boundary value problem

−Δ2u(k− 1) + a(k)u(k)= f (k), k ∈ [1,T],

u(0)= 0= u(T + 1),
(2.10)

where a, f ∈ C[1,T] and a(k)≥ 0 for k ∈ [1,T].
Let A : C[1,T]→ C[1,T] be the operator defined by

Au(k) :=
T∑

l=1

Ga(k, l)u(l). (2.11)

It is easy to see that A is a completely continuous operator (see [3]).
Note that if u∈ C[0,T + 1], u(0)= u(T + 1)= 0, and

u(k)=A( f )(k) for k ∈ [1,T], (2.12)

then u is a solution of (2.10).

From Lemma 2.3, we have the following lemma.

Lemma 2.5. The following statements hold:
(i) for any f ∈ C[1,T], (2.10) is uniquely solvable and u=A( f );

(ii) if f (k)≥ 0 for k ∈ [1,T], then the solution of (2.10) is nonnegative.

Corollary 2.6. If f1(k)≤ f2(k) for k ∈ [1,T], then A( f1)(k)≤A( f2)(k) for k ∈ [1,T].

Lemma 2.7. Suppose (G) and (H) hold. Let n0 ∈N. Assume that for every n > n0, there exist
an ∈ C[1,T], 0≤ an, and there exist u,un, ûn, û∈ C[0,T + 1] such that

0 < u(k)≤ un(k)≤ ûn(k)≤ û(k) for k ∈ [1,T], (2.13)

and û(0)= û(T + 1)= 0. If

−Δ2un(k− 1) + an(k)un(k)

≤ g
(
k,

1
n

+ v(k)
)

+ λh
(
k,v(k)

)
+ an(k)v(k) for k ∈ [1,T],

(2.14)

−Δ2ûn(k− 1) + an(k)ûn(k)

≥ g
(
k,

1
n

+ v(k)
)

+ λh
(
k,v(k)

)
+ an(k)v(k) for k ∈ [1,T],

(2.15)
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where λ≥ 0 and v ∈ [un, ûn]= {u∈ C[0,T + 1], un(k)≤ u(k)≤ ûn(k) for k ∈ [0,T + 1]},
then problem (1.1) has a solution u ∈ C[0,T + 1] such that u(k) ≤ u(k) ≤ û(k) for k ∈
[0,T + 1].

Proof. Fix v ∈ [u, û]. From Lemma 2.5, there exists Ψ(v)∈ C[0,T + 1] such that

−Δ2Ψ(v)(k− 1) + an(k)Ψ(v)(k)

= g
(
k,

1
n

+ v(k)
)

+ λh
(
k,v(k)

)
+ an(k)v(k) for k ∈ [1,T],

Ψ(v)(0)=Ψ(v)(T + 1)= 0.

(2.16)

Then

Ψ(v)(k)= A
(
g
(
·, 1
n

+ v
)

+ λh(·,v) + anv
)

(k) for k ∈ [1,T]. (2.17)

Note also thatΨ : C[0,T + 1]→ C[0,T + 1] is a completely continuous operator. By Corol-
lary 2.6, we have

un(k)≤Ψ(v)(k)≤ ûn(k) for k ∈ [0,T + 1]. (2.18)

From Schauder’s fixed point theorem (note that Ψz : [u, û] → [u, û]), there exists un ∈
C[0,T + 1] such that un(k) ≤ un(k) ≤ ûn(k) and Ψ(un)(k) = un(k) for k ∈ [1,T]. Note
that

−Δ2un(k− 1)= g
(
k,

1
n

+un(k)
)

+ λh
(
k,un(k)

)
for k ∈ [1,T],

un(0)= un(T + 1)= 0.
(2.19)

Let m :=min{u(k) : k ∈ [1,T]} > 0 and M :=max{û(k) : k ∈ [1,T]}. Then

m≤ un(k)≤M for k ∈ [1,T], n= 1,2, . . . , (2.20)

and for k ∈ [1,T], we have

∣
∣
∣
∣g
(
k,

1
n

+un(k)
)

+ λh
(
k,un(k)

)
∣
∣
∣
∣≤ g2(k,m) + λh2(k,M). (2.21)

From the Arzela-Ascoli theorem, there exist a u ∈ C[0,T + 1] and a subsequence
{unm}m∈N converging to u in C[0,T + 1], and of course

u(k)= lim
m→∞unm(k) for k ∈ [0,T + 1]. (2.22)
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Observe that unm ∈ [u, û], so u(0)= u(T + 1)= 0 and u∈ C[0,T + 1] with u > 0 in [1,T].
Also,

u(k)= lim
m→∞

T∑

l=1

G0(k, l)
[
g
(
l,

1
n

+unm(l)
)

+ λh
(
l,unm(l)

)
]

=
T∑

l=1

G0(k, l)
[
g
(
l,u(l)

)
+ λh

(
l,u(l)

)]
.

(2.23)

As a result

−Δ2u(k− 1)= g(k,u(k)
)

+ λh
(
k,u(k)

)
for k ∈ [1,T],

u(0)= u(T + 1)= 0.
(2.24)

�

Lemma 2.8. Let ψ : [1,T]× (0,∞)→ (0,∞) be a continuous function with ψ(k,·) strictly
decreasing. Then the problem

−Δ2ω(k− 1)= ψ
(
k,ω+

1
n

)
for k ∈ [0,T],

ω(0)= ω(T + 1)= 0
(2.25)

has a solution ωn ∈ C[0,T + 1] such that

ωn(k)≤ ωn+1(k)≤ 1 +ω1(k) for k ∈ [0,T + 1], n∈N. (2.26)

If ω(k)= limn→∞ωn(k) for k ∈ [0,T + 1], then

ω ∈ C[0,T + 1], ω(k) > 0, for k ∈ [1,T],

−Δ2ω(k− 1)= ψ(k,ω) for k ∈ [1,T],

ω(0)= ω(T + 1)= 0.

(2.27)

Proof. There exists χ1 ∈ C[0,T + 1] such that

−Δ2χ1(k− 1)= ψ(k,1),

χ1(0)= χ1(T + 1)= 0,

χ1(k) > 0 for k ∈ [1,T].

(2.28)

Notice that

−Δ2χ1(k− 1)= ψ(k,1)≥ ψ(k,1 + χ1(k)
)
,

0≤ ψ(k,1 + 0).
(2.29)

By a standard upper-lower solution method [2, page 264], there exists ω1∈C[0,T+1]
such that

−Δ2ω1(k− 1)= ψ(k,1 +ω1(k)
)

for k ∈ [1,T],

ω1(0)= ω1(T + 1)= 0.
(2.30)
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Suppose that there exists ωn ∈ C[0,T + 1] such that

−Δ2ωn(k− 1)= ψ
(
k,

1
n

+ωn(k)
)

,

ωn(0)= ωn(T + 1)= 0,

ωn(k) > 0 for k ∈ [1,T].

(2.31)

We know that there exist χn+1 ∈ C[0,T + 1] such that

−Δ2χn+1(k− 1)= ψ
(
k,

1
n+ 1

)
,

χn+1(0)= χn+1(T + 1)= 0,

χn+1(k) > 0 for k ∈ [1,T].

(2.32)

Then

−Δ2χn+1(k− 1)= ψ
(
k,

1
n+ 1

)
≥ ψ

(
k,

1
n+ 1

+ χn+1(k)
)

,

−Δ2ωn(k− 1)= ψ
(
k,

1
n

+ωn(k)
)
≤ ψ

(
k,

1
n+ 1

+ωn(k)
)

for k ∈ [1,T],

ωn(0)= ωn(T + 1)= 0,

ωn(k)=
T∑

l=1

G0(k, l)ψ
(
l,

1
n

+ωn(l)
)
≤

T∑

l=1

G0(k, l)ψ
(
l,

1
n+ 1

)
= χn+1(k) for k ∈ [1,T].

(2.33)

By a standard upper-lower solution method, there exist ωn+1 ∈ C[0,T + 1] such that

−Δ2ωn+1(k− 1)= ψ
(
k,

1
n+ 1

+ωn+1

)
for k ∈ [1,T],

ωn+1(0)= ωn+1(T + 1)= 0,

ωn(k)≤ ωn+1(k) for k ∈ [0,T + 1].

(2.34)

Next we prove

ωn+1(k) +
1

n+ 1
≤ ωn(k) +

1
n

for k ∈ [0,T + 1]. (2.35)

To see this, we consider the problem

−Δ2v(k− 1)= ψ(k,v) for k ∈ [1,T],

v(0)= v(T + 1)= 1
n
.

(2.36)n

Then vn(k)= 1/n+ωn(k) for k ∈ [0,T + 1] is a solution of (2.36)n. We next prove

vn+1(k)≤ vn(k) for k ∈ [0,T + 1]. (2.37)
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Since vn+1(0) = 1/(n+ 1) < 1/n = vn(0), vn+1(1) = 1/(n+ 1) < 1/n = vn(1), we need only
to prove that

vn+1(k)≤ vn(k) for k ∈ [1,T]. (2.38)

If this is not true, then there exist m∈ [1,T] with vn+1(m) > vn(m) > 0. Let σ be the point
where vn+1(k)− vn(k) assumes its maximum over [1,T]. Certainly, vn+1(σ)− vn(σ) > 0.
Let y(k)= vn+1(k)− vn(k). Now y(σ)≥ y(σ + 1) and y(σ)≥ y(σ − 1) imply that

2y(σ)≥ y(σ + 1) + y(σ − 1), (2.39)

that is,

y(σ + 1) + y(σ − 1)− 2y(σ)≤ 0. (2.40)

Thus

Δ2y(σ − 1)≤ 0. (2.41)

On the other hand, since vn+1(σ) > vn(σ), we have

Δ2y(σ − 1)=Δ2vn+1(σ − 1)−Δ2vn(σ − 1)

=−ψ(σ ,vn+1(σ)
)

+ψ
(
σ ,vn(σ)

)

=ψ(σ ,vn(σ)
)−ψ(σ ,vn+1(σ)

)
> 0.

(2.42)

This is a contradiction. Thus vn+1(k)≤ vn(k) for k ∈ [1,T], and so

0 <
1

n+ 1
+ωn+1 ≤ ωn +

1
n
. (2.43)

Also notice that

ω1(k)≤ ωn(k)≤ ωn+1(k)≤ 1 +ω1(k) for k ∈ [0,T + 1], n∈N. (2.44)

Now with

ω(k)= lim
n→∞ωn(k)= sup

n∈N
ωn(k) for k ∈ [0,T + 1], (2.45)

we have

0 < ω1(k)≤ ω(k)≤ 1 +ω1(k) for k ∈ [1,T],

ω(0)= ω(T + 1)= 0.
(2.46)
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Also for k ∈ [1,T], we have

ω(k)= lim
n→∞ωn(k)

= lim
n→∞

T∑

l=1

G(k, l)ψ
(
l,

1
n

+ωn(l)
)

=
T∑

l=1

G(k, l)ψ
(
l,ω(l)

)
,

(2.47)

so

−Δ2ω(k− 1)= ψ(k,ω) for k ∈ [0,T],

ω(0)= ω(T + 1)= 0.
(2.48)

�

Lemma 2.9. Suppose that m : [1,T]× [0,∞)→ [0,∞)is a continuous function such that

m(k,·) is increasing,

lim
u→+∞

m(k,u)
u

= 0 for k ∈ [1,T].
(2.49)

There exist R0 > 0 and ṽ ∈ C[0,T + 1] with 0≤ ṽ ≤ R0φ1 and

−Δ2ṽ(k− 1)=m(k, ṽ) for k ∈ [1,T],

ṽ(0)= ṽ(T + 1)= 0.
(2.50)

Proof. We first prove that

lim
R→∞

∑T
l=1G0(k, l)m

(
l,v(l)

)

Rφ1(k)
= 0 for k ∈ [1,T], (2.51)

for all v ∈ C[0,T + 1] with 0≤ v(i)≤ Rφ1(i) for i∈ [0,T + 1].
From (2.49), for all σ > 0, there exist sσ > 0 such that

m(k,s)≤ σs for k ∈ [1,T] and sσ ≤ s. (2.52)

As a result,

m
(
k,v(k)

)∣∣
0≤v(k)≤Rφ1(k) ≤m

(
k,sσ

)
+ σv(k)≤m(k,sσ

)
+ σRφ1(k) for k ∈ [1,T],

(2.53)

so

1
φ1(k)

T∑

l=1

G0(k, l)m
(
l,v(l)

)≤ 1
φ1(k)

[ T∑

l=1

G0(k, l)m
(
l,sσ
)

+Rσ
T∑

l=1

G0(k, l)φ1(l)

]

= 1
φ1(k)

T∑

l=1

G0(k, l)m
(
l,sσ
)

+
Rσ

λ1
,

(2.54)
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and consequently

1
Rφ1(k)

T∑

l=1

G0(k, l)m
(
l,v(l)

)≤ 1
Rφ1(k)

T∑

l=1

G0(k, l)m
(
l,sσ
)

+
σ

λ1
, (2.55)

so (2.51) follows. Thus there exist R0 > 0 such that if v ∈ C[0,T + 1] and 0 ≤ v(i) ≤
R0φ1(i) for i∈ [0,T + 1], then

1
R0φ1(k)

T∑

l=1

G0(k, l)m
(
l,v(l)

)≤ 1 for k ∈ [1,T], (2.56)

and so

0≤
T∑

l=1

G0(k, l)m
(
l,v(l)

)≤ R0φ1(k) for k ∈ [1,T]. (2.57)

Let Φ : C[1,T]→ C[1,T] be the operator defined by

(Φv)(k) :=
T∑

l=1

G0(k, l)m
(
l,v(l)

)
for v ∈ C[1,T], k ∈ [1,T]. (2.58)

It is easy to see that Φ is a completely continuous operator. Also if v ∈ C[0,T + 1] and 0≤
v(k) ≤ R0φ1(k) for k ∈ [1,T], then 0 ≤ Φ(v)(k) ≤ R0φ1(k) for k ∈ [1,T], so Schauder’s
fixed point theorem guarantees that there exists ṽ ∈ [0,R0φ1] with Φ(ṽ)= ṽ, that is,

−Δ2ṽ(k− 1)=m(k, ṽ), ṽ(0)= ṽ(T + 1)= 0. (2.59)
�

Corollary 2.10. Let ψ(k,s), m(k,s), (ωn)n∈N, and R0 > 0 be as in Lemmas 2.8 and 2.9.
Then there exist {ṽn}n∈N ⊂ C[0,T + 1] and 0≤ ṽn ≤ R0φ1 such that

−Δ2ṽn(k− 1)=m(k,ωn + ṽn
)

for k ∈ [1,T],

ṽn(0)= ṽn(T + 1)= 0,

−Δ2(wn + ṽn
)
(k− 1)≥ ψ

(
k,

1
n

+ωn + ṽn

)
+m

(
k,ωn + ṽn

)
for k ∈ [1,T].

(2.60)

Proof. Let n ∈ N be fixed. Then m(k,ωn + s) satisfies the conditions of Lemma 2.9, so
there exists ṽn ∈ C[0,T + 1] with 0≤ ṽn ≤ R0φ1 such that (2.60) holds and

−Δ2(wn + ṽn
)
(k− 1)=−Δ2wn(k− 1)−Δ2ṽn(k− 1)= ψ

(
k,

1
n

+ωn

)
+m

(
k,ωn + ṽn

)

≥ ψ
(
k,

1
n

+ωn + ṽn

)
+m

(
k,ωn + ṽn

)
for k ∈ [1,T].

(2.61)
�
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Lemma 2.11. Suppose (G) and (H) hold. Then there exist λ0 ≥ 0, c > 0 such that for all
λ≥ λ0, there exist Rc > c, u∈ C([0,T + 1]) with cφ1(k)≤ u(k)≤ Rcφ1(k) and

−Δ2u(k− 1)=−g1(k,u) + λh1(k,u) for k ∈ [1,T],

u(0)= u(T + 1)= 0.
(2.62)

Proof. Let us consider the operator Tλ : C[1,T]→ C[1,T] given by

Tλ(v)(k) := 1
φ1(k)

T∑

l=1

G0(k, l)
[− g1

(
l,v(l)φ1(l)

)
+ λh1(l,v(l)φ1(l)

)]
for k ∈ [1,T].

(2.63)

By (H), there exists s≥ 0 such that 0 < h1(k,s) for k ∈ [1,T]. We let

c = 2
s+ 1
∣
∣φ1

∣
∣∞

, Θ=
{
k ∈ [1,T] :

∣
∣φ1

∣
∣∞

2
< φ1(k)

}
. (2.64)

Note that Θ is nonempty. If k ∈Θ, v ∈ C[0,T + 1], and c ≤ v, we have

s= c
∣
∣φ1

∣
∣∞

2
− 1≤ c

∣
∣φ1

∣
∣∞

2
≤ cφ1(k)≤ v(k)φ1(k), (2.65)

so

h1(k,s)≤ h1
(
k,v(k)φ1(k)

)
, (2.66)

for all v ∈ C[0,T + 1] with c ≤ v. Let

ρ= min
k∈[1,T]

1
φ1(k)

∑

l∈Θ
G0(k, l)h1(l,s) > 0, (2.67)

and note for v ∈ C[0,T + 1] with c ≤ v that

1
φ1(k)

T∑

l=1

G0(k, l)h1
(
l,v(l)φ1(l)

)≥ 1
φ1(k)

∑

l∈Θ
G0(k, l)h1

(
l,v(l)φ1(l)

)

≥ 1
φ1(k)

∑

l∈Θ
G0(k, l)h1(l,s)

(
see (2.66)

)

≥ min
k∈[1,T]

1
φ1(k)

∑

l∈Θ
G0(k, l)h1(l,s)

= ρ ∀k ∈ [1,T],

(2.68)

that is,

φ1(k)
∑T

l=1G0(k, l)h1
(
l,v(l)φ1(l)

) ≤ 1
ρ
. (2.69)
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On the other hand, for all v ∈ C[0,T + 1] with v ≥ c, we have

c+
1

φ1(k)

T∑

l=1

G0(k, l)g1
(
l,v(l)φ1(l)

)

≤ c+
1

φ1(k)

T∑

l=1

G0(k, l)g1
(
l,cφ1(l)

)≤ c+
1

φ1(k)

T∑

l=1

G0(k, l)g1(l,cμ),

(2.70)

where μ=min1≤l≤T φ1(l). Thus, for all v ∈ C[0,T + 1] with v(k)≥ c, we have

c+
(
1/φ1(k)

)∑T
l=1G0(k, l)g1

(
l,v(l)φ1(l)

)

(∑T
l=1G0(k, l)h1

(
l,v(l)φ1(l)

))
/φ1(k)

≤ 1
ρ

(
c+

1
φ1(k)

T∑

l=1

G0(k, l)g1(l,cμ)
)

for k ∈ [1,T].

(2.71)

Let

λ0 := sup

{∣∣
∣
∣
∣
c+
(
1/φ1(k)

)∑T
l=1G0(k, l)g1

(
l,v(l)φ1(l)

)

(∑T
l=1G0(k, l)h1(l,v(l)φ1(l)

))
/φ1(k)

∣
∣
∣
∣
∣
∗

: v ∈ C[0,T + 1], c ≤ v
}

<∞,

(2.72)

where |u|∗ =max[1,T]|u(k)|. Then, for all λ ≥ λ0, v ∈ C[0,T + 1], and c ≤ v, we have
for k ∈ [1,T] that

c+
(
1/φ1(k)

)∑T
l=1G0(k, l)g1

(
l,v(l)φ1(l)

)

(∑T
l=1G0(k, l)h1

(
l,v(l)φ1(l)

))
/φ1(k)

≤ λ, (2.73)

that is,

c+
1

φ1(k)

T∑

l=1

G0(k, l)g1
(
l,v(l)φ1(l)

)≤ λ

φ1(k)

T∑

l=1

G0(k, l)h1
(
l,v(l)φ1(l)

)
, (2.74)

so

c ≤ 1
φ1(k)

T∑

l=1

G0(k, l)
(− g1

(
l,v(l)φ1(l)

)
+ λh1

(
l,v(l)φ1(l)

))

= Tλ(v)(k) for k ∈ [1,T].

(2.75)

On the other hand, for all v ∈ C[0,T + 1] with v ≥ c, we have

1
φ1(k)

T∑

l=1

G0(k, l)g1
(
l,v(l)φ1(l)

)≤ 1
φ1(k)

T∑

l=1

G0(k, l)g1
(
l,cφ1(l)

)

≤ max
k∈[1,T]

1
φ1(k)

T∑

l=1

G0(k, l)g1
(
l,cφ1(l)

)
,

(2.76)
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so

lim
R→∞

1
R

[
1

φ1(k)

T∑

l=1

G0(k, l)g1
(
l,v(l)φ1(l)

)
]
= 0, (2.77)

for all v ∈ C[0,T + 1] with v ≥ c and k ∈ [1,T]. Essentially the same reasoning as in the
proof of (2.51) yields (note that limu→∞(h1(k,u)/u)= 0 for k ∈ [1,T])

lim
R→∞

1
R

[
1

φ1(k)

T∑

l=1

G0(k, l)h1
(
l,v(l)φ1(l)

)
]
= 0 (2.78)

for all v ∈ C[0,T + 1] with 0 ≤ v(i)≤ R and i ∈ [1,T]. Thus if λ ≥ λ0, there exists Rc > c
with Tλ([c,Rc])⊂ [c,Rc].

It is easy to see that Tλ is a completely continuous operator, so Schauder’s fixed point
theorem guarantees that there exists v ∈ [c,Rc] with Tλ(v)= v, that is,

v(k)φ1(k)=
T∑

l=1

G0(k, l)
(− g1

(
l,v(l)φ1(l)

)
+ λh1

(
l,v(l)φ1(l)

))
. (2.79)

The function u= φ1v satisfies (2.62). �

Proof of Theorem 2.1. Let λ0 > 0, c > 0, and u∈ (C[0,T + 1]) be defined as in Lemma 2.11.
Also let

ψ(k,s)= g2(k,s) + λh1
(
k,u(k)

)
for k ∈ [1,T],

m(k,s)= λh2(k,s),
(2.80)

where λ≥ λ0.
From (G), we notice that ψ satisfies the assumptions of Lemma 2.8. As a result, there

exist ω,ωn ∈ C[0,T + 1] such that

−Δ2ωn(k− 1)= g2

(
k,

1
n

+ωn

)
+ λh1

(
k,u(k)

)
for k ∈ [1,T],

ωn(0)= ωn(T + 1)= 0,

ω(k)= lim
n→∞ωn(k) for k ∈ [0,T + 1].

(2.81)

From (H), we notice that m satisfies the assumptions of Lemma 2.9. As a result from
Corollary 2.10, there exist R0 > 0 and ṽn ∈ C([0,T + 1]), 0 ≤ ṽn(k) ≤ R0φ1(k) for k ∈
[0,T + 1] such that

−Δ2ṽn(k− 1)= λh2
(
k,ωn + ṽn

)
for k ∈ [1,T],

ṽn(0)= ṽn(T + 1)= 0,

−Δ2(ωn + ṽn
)
(k− 1)≥g2

(
k,

1
n

+ωn + ṽn

)
+λh1

(
k,u(k)

)
+λh2

(
k,ωn + ṽn

)
for k ∈ [1,T].

(2.82)
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Let

ûn(k)= ωn(k) + ṽn(k) for k ∈ [0,T + 1]. (2.83)

Then, ûn ∈ C[0,T + 1], ûn(1)= ûn(T + 1)= 0.
We let

û(k)= ω(k) +R0φ1(k) for k ∈ [0,T + 1], (2.84)

so

0≤ ûn(k)≤ û(k) for k ∈ [0,T + 1]. (2.85)

From Lemma 2.11, we have

−Δ2u(k− 1)=−g1
(
k,u(k)

)
+ λh1

(
k,u(k)

)

≤ λh1
(
k,u(k)

)

≤ λh1
(
k,u(k)

)
+ g2

(
k,

1
n

+ ûn(k)
)

+ λh2
(
k, ûn(k)

)

≤−Δ2ûn(k− 1) for k ∈ [1,T],

(2.86)

that is,

−Δ2(u− ûn
)
(k− 1)≤ 0. (2.87)

A standard argument (see the argument to show (2.35)) yields

u(k)≤ ûn(k) for k ∈ [1,T]. (2.88)

Let

an(k)= sup
{∣∣
∣
∣
∂

∂s
g2

(
k,

1
n

+ s
)∣∣
∣
∣ : 0 < s

}
, (2.89)

and notice that s→ g2(k,1/n+ s) + a(k)s is increasing. Let un = u. From (2.85) and (2.88),
we have

u(k)= un(k)≤ ûn(k)≤ û(k) for k ∈ [0,T + 1]. (2.90)

Also for v ∈ C[1,T] with un(k)≤ v(k)≤ ûn(k), k ∈ [1,T], we have

−Δ2un(k− 1) + an(k)un(k)=−g1
(
k,un(k)

)
+ λh1

(
k,un(k)

)
+ an(k)un(k)

≤−g1
(
k,v(k)

)
+ λh1

(
k,v(k)

)
+ an(k)v(k)

≤−g1

(
k,

1
n

+ v(k)
)

+ λh1
(
k,v(k)

)
+ an(k)v(k)

≤ g
(
k,

1
n

+ v(k)
)

+ λh(k,v) + an(k)v(k) for k ∈ [1,T],

(2.91)

so (2.14) holds.
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Also for v ∈ C[1,T] with un(k)≤ v(k)≤ ûn(k), k ∈ [1,T], we have

−Δ2ûn(k− 1) + an(k)ûn(k)

≥ g2

(
k,

1
n

+ ûn(k)
)

+ λh1
(
k,u(k)

)
+ λh2

(
k, ûn(k)

)
+ an(k)ûn(k)

≥ g2

(
k,

1
n

+ ûn(k)
)

+ an(k)ûn(k) + λh2
(
k, ûn(k)

)

≥ g2

(
k,

1
n

+ v(k)
)

+ an(k)v(k) + λh2
(
k,v(k)

)

≥ g
(
k,

1
n

+ v(k)
)

+ λh
(
k,v(k)

)
+ an(k)v(k) for k ∈ [1,T],

(2.92)

so (2.15) holds. Lemma 2.7 guarantees that there exists a solution u∈ C[0,T + 1] to (1.1)
with

u(k)≤ u(k)≤ û(k) for k ∈ [0,T + 1]. (2.93)

Moreover, because û(k) ≤ |ω|∞ + R0φ1(k) ≤ (|ω|∞ + R0)(1 + φ1(k)) and cφ1(k) ≤ u(k)
(see Lemma 2.11), the estimates asserted in the theorem follow. �
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