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1. Introduction

Among the methods employed for the controllability of nonlinear systems in finite
and infinite dimensional Banach spaces, fixed point techniques are widely used.
Anichini [3], Dauer [7] and Dauer, et. al [9] studied the controllability of classical non-
linear systems by means of Schaefer’s theorem, Fan’s theorem, and Leray-Schauder’s
theorem, respectively. Several authors have extended the classical finite dimensional
controllability results to infinite dimensional controllability results represented by the
evolution equations with bounded and unbounded operators in Banach spaces using
semigroup theorem (see [5, 8]).

The semigroup theory gives a unified treatment of a wide class of stochastic para-
bolic, hyperbolic and functional differential equations, and much effort has been
devoted to the study of the controllability results of such evolution equations (see
[20]). Stochastic control theory is a stochastic generalization of classical control
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theory. Controllability of nonlinear stochastic systems has been one of the well-
known problems discussed in the literature [4, 22, 23]. If the nonlinear terms does
not depend on the probability distribution #(t)of the process at time t, then the
process is determined to be a standard Markov process. There are numerous papers
in the literature discussing the stability of such stochastic equations in Hilbert spaces
(for details see [1, 14, 17]). On the other hand, there are situations where the
nonlinear term f depends not only on the state of the process at time t but also on
the probability distribution. For example, one may think of an interacting particle
system (biological, chemical or physical) in which each particle moves in the space H
according to the dynamics described by the equation

dx(t) -lAx(t)+ f(x(t), #(t))]dt + X/-dw(t), t E J 0[0, T]

#(t) probability distribution of x(t) (1.1)

(0)-

with #(t) being replaced by the empirical measure

N

#N(t) -- 5xk(t (1.2)
k=l

of the N particles Xl(t), x2(t),...,xN(t at time t. In other words, we have a system
of N coupled semilinear stochastic evolution equations:

dxk(t -[Axk(t + f(xk(t), #N(t))]dt + V/-dwk(t), t J

#N(t)- empirical measure given by (1.2)

xk(O Xo, k 1, 2,..., N.

According to the McKean-Vlasov theory (see [2, 18]), under proper conditions, the
empirical measure-valued process #N converges in probability as N goes to infinity to
a deterministic measure-valued function # which corresponds to the probability distri-
bution of the process determined by (1.1). The limiting McKean-Vlasov process has
many interesting equilibrium and nonequilibrium asymptotic behaviors (at least in
the case H- Rn) and therefore has attracted a lot of research attention in recent
years (for more information see [10, 11, 13, 16]). For example, a stochastic model for
drug distribution in a closed biological system with a simplified heart, one organ or

capillary bed, and recirculation of the blood with a constant rate of flow, where the
heart is considered as a mixing chamber of constant volume was described in [21].
Drug concentration in the plasma in given areas of the system is assumed to be a ran-
dom function of time. Assume that for > 0, Xl(S t; w) is the concentration in moles
per unit volume at points in the capillary at time t and w G , the supporting set of a
complete probability measure space (,A,P) with at being the (r-algebra and P is
the probability measure. The heart is considered as a mixing chamber of constant
volume given by

V Ve/(ln(1 / Ve/Vr)

where Vr is the residual volume of the heart and Ve is the injection volume. It is
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assumed that an initial injection is given at the entrance of the heart resulting in a

concentration z(t),0 _< t _< tl, of the drug in plasma entering the heart, where is
the duration of injection. Let the time required for the blood to flow from the heart
exit to the entrance of the organ be r > 0, and also let r be the time required for
blood to flow from the exit of the organ to the heart entrance. Drug concentration in
the plasma leaving the heart z(t; co)satisfies the integral equation (see [6])

where

a(t)

.(t; a(t) + /
0

T(t)

[(C/V)x(s)ds, T(t)-
t, 0 <_ <_ 1

tl t > t 10

K(s,x(s; co); co) C/V){x(s; co) .1(1, s r; co)},

and Xl(1 s; co) 0 if s < 0, where C is the constant volume flow rate of plasma in the
capillary bed and zl(1,s; co) is the drug concentration in the plasma leaving the organ
at time s. The mild solutions are in the form of stochastic integral equations. The
main objective of this paper is to derive the controllability conditions of semilinear
stochastic evolution equations (1.1) in Hilbert space having the probability measure

#(t). The Banach fixed point theorem is employed to get the suitable controllability
conditions. The considered system is an abstract formulation of stochastic partial
differential equations (see [12]).

2. Preliminaries

Consider the stochastic evolution equation

dx(t) .--dw(t)
dt Ax(t) + (Bu)(t) + f(x(t), #(t)) + v/Q -t J [0, T]

(2.1)

where A is the infinitesimal generator of a strongly continuous semigroup {S(t),
_> 0} of bounded linear operators in a Hilbert space H. The state z(t) takes the

values in the Hilbert space H, the control function u is given in L2(J;U), and a

Hilbert space of admissible control functions with U as a Hilbert space. B is a

bounded linear operator from U into H. The function f is an appropriate H-valued
function defined on H x M 2(H) M2(H denotes a proper subset of probability

A
measures on H; #(t) is a probability distribution of z(t); Q is a positive, symmetric,
bounded operator on H and w is a given H-valued cylindrical Wiener process. Let
(f,,{t},P) be a complete probability space equipped with a family of

nondecreasing sub-sigma algebras. H is a real separable Hilbert space with scalar
product (.,.) and norm I1" I1" %(H) denotes the Borel sigma algebra of subsets of
H and M(H) is the space of probability measures on %(H) carrying the usual
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topology of weak convergence Further, let C(H), Cb(H and C(H) denote the space
of Borel measurable continuous, bounded continuous, and bounded continuous,
respectively, up to and including the kth Frechet derivative functions on H. The
notation (#,o) means f HO(x)#(dx) whenever this integral makes sense. Throughout
this paper, let A(x) 1 + II x ]], x E H, and define the Banach space

{ sup II ,(,)II II(x)-,(y)ll }Cp(H) C(H): I[Cp(H)--x H A2(x) +xySUp II -y II <

For p > 1, let MSp(H) be the Banach space of signed measures m on H satisfying

t, ),p j P() m I(d) <
H

where II II + +- and m m + m- is the Jordan decomposition of m.
Let M;2(H -M,x2(H Yl M(H) be the set of probability measures on %(H). We

put on M2(H a topology induced by the following metric:

{I)(#1 ’#2) sup (,#1-)" I1 H 2(x) x #, II -y II-sup
ll(x) ll +sup ]l(x) o(y) ll <1

Then F- (M,2(H),p) forms a complete metric space, and denote C(J,F) the

complete metric space of continuous functions from J to F with the metric

DT(#I’#2) supp(#l(t),#2(t))’ #1,#2 e C(J,F).
tEJ

Let C(J, L2(f,,P;H)) be the Banach space of continuous maps from J into
L2(12,,P;U) satisfying the condition sup E ]] x(t)]1 2< oc. Let K be the closed

tEJ
of C(J, L2(,,P;H)) consisting of measurable and t-adaptedsubspace processes

x- {x(t): t J}. Then K is a Banach space with the norm topology given by

IIIIK-- supE[l()ll
tJ

For the existence of solution of (2.1) assume the following hypotheses"
(H1) (i) A is the infinitesimal generator of a C0-semigroup {S(t):t > 0} of

bounded linear operators on H of negative type

(ii)
for some positive constants C1 > 0 and w > 0;
Q is a positive, symmetric, bounded operator in H such that the
operator Q defined by

Qt- / S(r)QS*(r)dr
0

is nuclear for all > 0 and sup trQt <
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(H2)

(iii) w is an H-valued Cylindrical Wiener process defined on (a, ff, P)
with covariance operator I.

f" H x FH satisfies the conditions

I[ f(x, 1)- f(Y, it2)11 -< C2( l] x- y l] + fl(tl, t2))

and

(H3)
where C2, C3 are positive constants.
The linear operator W from L2(j; U) into H defined by

T

Wu f S(T- s)Bu(s)ds
0

has an invertible operator W-1 defined on H\KerW (see [15]) and there
exist positive constants C4 and C5 such that

II B II 2 c4 and II w-ill 2 65

Suppose the hypotheses (H1) and (H2) are satisfied. Then the stochastic process

x(t) S(t)xo + j S(t- s)[(Bu)(s) + f(x(s), #(s))]ds
0

+ f s(t- )v/Od()
0

(2.2)

for t E J defined on the probability space (f, 5, P) is said to be a mild solution in K
of equation (2.1) for a given initial data x0 (see [1]).

Definition 2.1: The stochastic evolution equation (2.1) is said to be controllable on

J, if, for every x(0)-x0 E H, there exists a control u L2(j;U) such that the
solution x(.)of (2.1) satisfies x(T)= xI where xI and T are preassigned terminal
state and time, respectively. If the system is controllable for all x0 at t 0 and for
all xI at t- T, it is called completely controllable on J.

3. Main Result

Theorem 3.1" Suppose the hypotheses (H1)-(H3) are satisfied; then the system (2.1)
is completely controllable on j.

Proof: Using the hypothesis (H3), define the control

T T

u(t) W- I[S(T)xo + / S(T- s)f(x(s), #(s))ds + / S(T- s)v/-Qdw(s)](t ),
0 0
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Now it is shown that, when using this control, the operator defined by

((I)x)(t) S(t)X0 i S(t- r])UW- l[s(W)xo
o

T T

+ i S(T-s)f(x(s),#(s))ds + i S(T-s)v/-Qdw(s)]()d
0 0

(3.1)

0 0

has a fixed point. This fixed point is a solution of equation (2.1). Clearly ((I)x)(0)=
x0, which means that the control u steers the semilinear evolution equation from the
initial state x0 to xI in time T, provided we can obtain a fixed point of the nonlinear
operator (I).

First, we show that (I) maps K into K, for a fixed measure-valued function # 6
C(J, F). Since ]a + b + c [2 < 9(la 12 + ]b]2 + ]c 2) for any real numbers a, b and
c we have

T

II ((I,)(t)II 2 _< 9{E( II S(t)o II 2) + E II / S(t- ,)BW l[S(T)xo
0

T T

0 0

9 II f s(t- s)f(x(s), #(s))ds II + 9 II f s(t- )-Qd()II
0 0

<_ 9C{E II o II = + TC4C5[C21E II o II = + TC2E i C(1 + II II = +
0

+ trQT + TE/ C32(1 + II II 2 + I(s) l])ds) + 9trQ
0

2 2 2 2 (s) l)+trQT<_ 9C{E II o II : + Tc4ct[c21E II o II + T cic3(1 + II II + I

2 2 2+ T C3(1 + II II + v() )) + 9trQz

< kl -+- k2 II ’ II K
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where

k, 9(1 + TCC4Cs){CE II o [[2 + T2CC(1 + sup #(s)I )+ trQT}
tJ

k2 9T2CC23(I + TC21C4C5)

are two positive constants.
Hence II (apx)(t)II c < oo for x e K and it is easy to see that (Ox)(t) is 5t-measur-

able whenever x(t) is t-measurable and so q maps K into K.
To complete the proof, it remains to show that Ox E C(J,F). Let

{(apx)(t)’t J}, then it is enough to show that t(apx)(t) is continuous, since x K
and (apx)(t)e M,x2(H for any t e J. Let z(t)- ftoS(t-s)x/rQdw(s)and applying

semigroup property of co(t) for 0 _< s _< t _< T, we have

E II (+)()- (+)()II 2 9E( 1[ S(s)[S(t s) I]xo 112)
T

+ 18E I1 / S(t- rl)BW- I[S(T)x0 4- / S(T- s)f(x(s), #(s))ds + z(T)](l)dl II 2

s 0

$

4- 18E II / [S(t- s)- I]S(t- rl)BW- I[S(T)xo
0

T

+ / S(T- s)f(x(s), #(s))ds + z(T)](l)dr II 2

0

+ 18E II / s(t- r)/(x(r), #(7))dr II 2

8

+ lBE IIf [s(t- )- I]S(t- r)f(x(r), g(7))d7 II 2 + 9 l[ z(t)- z(s)[I 2

0

_< 9E( II S(,)[S(- )- I]xo II 2)
T

+ 18CC4C5(t s)2E II S(T)o + f S(T- s)f(x(s), #(s))ds + z(T)II 2

0

s T

+ 1BE II / [s(t- )- I]S(t- I)BW- l[S(T)xo / S(T s)f(x(s), #(s))ds
0 0

+ z(T)](rl)d II 2 + 18CC3(t- s)E / (1 + II x(r)II 2 + () )d
o
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8

18E II / [S(t- s)- I]S(t- v)f(x(r), #(r))dv II 2 + 9 II z(t)- z(s) II 2.
0

(3.2)

Since S(t)is strong continuous (see Pazy [19]), [S(t- s)- I]h converges to 0 as t-+s
for any h E H. One can easily derive by Lebesgue’s dominated convergence theorem
that the first, third and fifth terms on the right-hand side of equation (3.2) tends to 0
as t-+s. Further, since z(t) is a continuous process, z(t)- z(s) converges to 0 as t--.s
with probability 1. Lebesgue’s dominated convergence theorem and the fact trQt < cx
can be used to claim that

lime [I z(t)- z(s) II o.
t---s

Thus, E II (O)(t)-(O)()[I 2 converges to 0 as t-+s.
definition of the metric p, we have

For any a E Cx2(H), by

I[ (9, (((Px)(t)- ((x)(s))) ]1 II E[(x)(t)- (x)(s)] II

IloEII (t)- x()II

and therefore,

limp((Ox)(t), (Ox)(s)) 0
t---+s

hence (Ox)(t)e C(J,F). Now we prove that <I)is a contraction map on C(J,F)and
therefore has a unique fixed point. Indeed, for x,y It" satisfying x(0)- y(0) we
have _

E II j s(t- )BW I[S(T- s)[f(x(s), #(s))- f(y(s), #(s))]ds](o)dr II 2

0

+ E II J s(t- )[f((), ())- f(y(s), #(s))]ds II 2

0

_< (1 + TC21C4Cs)TCC2 / E II x(s)- y(s) II 2ds
0

C6f E II x(s)- y(s)II 2ds,
0

where C6 -(1 + TCC4Cs)TCC.
that

For any integer n _> 1, by iterations, it follows

C’Tn
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C6T 0n is a contraction map on K and thereforeSince for sufficiently large n, n! < 1,
itself has a unique fixed point x in K. Any fixed point of (I) is a solution of (2.1)

on J satisfying (Ox)(t)- x(t)E H for all x0 and T. Thus, the system (2.1) is
completely controllable on J.

4. Example

Consider the following nonlinear stochastic partial differential equation of the form

02
Otx(t, --.x(t, )dt + f(, #(t), (x(t, ), hl ), ., (x(t ), hn))dt + (Bu)(t)dt

+ E/ksin(k)dt3k(t) (0, r), t > 0
k=l

0) 0, > 0 (4.1)

x(0,.)-- x0(.) e X H L2(0,r),

with the following assumptions given by"
02

(1) Let doma H2(0, r) 71H(0, r) and (a)( -(), G (0, r), G doma

and B is a bounded linear operator from the control space U- L2(0, 7r) into
H.

(2) Define the function G:H---,H by choosing hl,h2,...,hn H and a function
f: [0, r] x F x RnR, (, #, Yl, Y2,’" Y)f((, #, Yl, Y2," Yn) and setting

(Gg)() f(,#,(g, hl),(g, h2>,...,(g, hn)), G [0, r], g G H,

(3)
(. is the usual scalar product in H.

ol ol 02IAlso for Yl, Y2, Yn G J and i- 1, 2,..., n, assume f, 0’ oyi’ ooy
are bounded

and continuous on [0, r] x F x Rn, such that

f(O, #, Yl, Y2, ", Yn) f(r, , Yl, Y2, Yn) O,

[Of/OYi](O’ #, Yl’ Y2, Yn) [Of/OYi](Tr, #, Yl, Y2, Yn) O.

(4) The functions ek()- Vf@rsinkt, e (0, r), for an orthonormal basis of H
consisting of eigenvectors of A corresponding to the eigenvalues ck -k2,
k 1,2,... etc., and /k(t) are standard, real independent Wiener processes.
Take a sequence of numbers {} and define the operator Q by setting
Qek ,ke, k 1, 2, Assume that "k > 0, sup,k < cx,

1/2e tk2
k

supk,k < o for > 0.
k

Then (4.1) has an abstract formulation of the following nonlinear stochastic equation
in a Hilbert space with constant, but possibly degenerate diffusion term

dx(t)
dt Ax(t) + f(x(t), #(t)) + (Bu)(t) + Q1/dWdlt,) d. (4.2)
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x(0)- x0 E H

where the linear operator A is the infinitesimal generator of a strongly continuous
semigroup eAt, t >_ 0 in H, Q is a continuous linear, self-adjoint nonnegative operator
in H, and the operators defined by

Qtx / eSAQeSA*xods, xo H
0

are trace class. Further f’H-H is Lipschitz continuous and w(t), t_> 0 is a

cylindrical Wiener process in H. Then 94.2) has a unique solution as the following
(see [12])

Axo + + /(t) t (t A[ (t SAQ1/2dw(s)
0 0

Hence by Theorem 3.1, for S(t) etA, the system (4.1) is completely controllable on
J.
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