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In this paper by using the coincidence degree theory, sufficient conditions
are given for the existence of periodic solutions of the first order nonlinear
neutral delay differential equation.
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1. Introduction

In [3], Kuang and Feldstein proposed to study the existence of a periodic solution for
the first order periodic neutral delay equation. In particular, Gopalsamy, He and
Wen [2] studied the existence of periodic solutions of the first order neutral delay
logistic equation. In this paper, we discuss the following nonlinear neutral delay
equation"

[.(t) + c.(t )]’ + (t..(t- )) p(t). (1)

where v, cr and c are constants, and r>_O, cr>_O, [c] <1; geC(R2,R), g(t,x) is a

function with period T( > O) for t and g(t,x)is nondecreasing for x in [0, /c);
p E C(R,R), p(t,T) p(t) for t G’R and f ToP(t)dt O. Using coincidence degree
theory developed by Mawhin [1], we establish a theorem of the existence of periodic
solutions with period T of Equation (1).

2. Main Result

The following result provides sufficient conditions for the existence of periodic
solution of Equation (1).

Theorem: Assume that there exist constants D > 0 and M > 0 such that
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xg(t,x) > O for t R and x > D,

g(t,x) >_ M for t e R and x < D,

and

g(t,x) <_ g(t, Ix I) for (t,x) R2. (4)

Then there exists a periodic solution with period T of Equation (1).
In order to prove the above theorem, we introduce the following preliminaries.
Let X and Z be two Banach spaces. Consider an operator equation,

Lx- Nx,

where L: DomL gl XZ is a linear operator and A E [0, 1] is a parameter.
Q denote two projectors,

Let P and

P: DomL N X-KerL and Q: ZZ/ImL.

We will use the following result of Mawhin [1].
Lemma 1" Let X and Y be two Banach spaces and L be a Fredholm mapping with

index null. Assume that f2 is open bounded in X and N:f--,Z is L-compact on

Furthermore, suppose that
(a) for each E (0, 1), x 0 DomL,

Lx :/: $Nx;

for each x Of fq KerL,

QNz -Tt: O

and

deg{QN, f2 f3 KerL, 0} 5 0,

then Lx- Nx has at least one solution in f2 fq DomL.
To prove Lemma 2, we make the following preparations. Set

X: {x el(n, R) x(t + T) x(t)}

-max {Ix(t) l, [x’(t) }. Similarly, setand define the norm on Xas IIxll e[O,T]

Z: {z e C(R,n) z(t + T)- z(t)}

and define the norm on Z as

(Z, II" II 0)are Banach spaces.

II z II o- max Iz(t) l. Then both (X, l[ II) and
e [O,T]

Define respectively the operators L and N as

L" XZ, x(t)-x’(t), (5)
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and

(6)

We know that Karl- R. Define, respectively, the projective operators P and Q as

and

T

P: X---,KerL, xPx -/ x(t)dt,
o

T

Q:Z---Z/ImL, z--Qz -/ z(t)dt.
o

(7)

(8)

Hence, we have ImP- Karl and ImL- KerQ. Consider the equation

’(t) + (9)

where E (0, 1) is a parameter.
Lemma 2: Suppose that conditions (2)-(4) are satisfied.

solution with period T of Equation (9), then there
Dj(j O, 1) independent of A and such that

If z(t) is any periodic
exist positive constants

and x’(t) <_ D, t [0,T]. (10)

Proof: Suppose that x(t) is a periodic solution with period T of Equation (9). By
integrating (9) from 0 to T, we find

T

g(t,x(t-r))dt-O.
o

(11)

Set

E1 {t E [0, T]lx(t- r) > D}, E2 -[0, T]\E1.

Since g C(R2, R) and g(t,x) is a function with period T for t, we know that

sup g(t,x) max g(t,x) < c.
(t,x) e Rx[-D,D] (t,x) E[O,T]x[-D,D]

From (2) and (3) we see that

/ Ig(t,x(t-r))ldt <_ max{M, supT

E2
(t,x) R x I- D,D]

Using (2)and (11), we have

/ g(t, x(t- )) dt / g(t, x(t- ))dt
E E1

(12)
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J g(t,x(t-a))dt
E2

(13)

By (12) and (13), we have

<_ / g(t,x(t-a))ldt.
E2

T

Ig(t,x(t--r))ldt <_ 2T max{M,
0

sup
(t,x) 6_R[-n,n]

g(t,) }.

Thus
T

Ig(t,x(t-r))ldt <_ Ko,
0

(14)

where Ko is a positive constant.
follows from (9) that

Since x’(t) is a periodic function with period T, it

T T T T

0 0 0 0

(15)
T T

< [c[ J [x’(t)[dt+J [g(t,x(t-))ldt+T max [p(t)[.
(/[0, T]

0 0

From (14)and (15) we see that

T T

/ Ix’(t) ldt<_ Icl ] ]x’(t) ldt-t-K1,

0 0

(16)

where K1-Ko+T max
E [0, T]

p(t) I. It follows from (16) that

T

Ix’(t) ldt<_K2,

0

(17)

where K2-K1/(1-Icl). By (2)and (11), there exists t1 E[0, T] such that
Ix(tl-a) <D. Taking t1-a-nT+t2, where n is an integer and t2E[0,T], we
have

x(tz) < D. (lS)

Then, by (17) and (18), we conclude that for any [0, T],
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T

I(t) Iz(t)+ / x’(s)ds _< Ix(tz) + / Ix’(t) ldt
2 o_
x(t2) + Ku < Do, (19)

where DO -D-4-K2. Since x(t) is a periodic function with period T, from (19) we
see that Iz(t-r) < DO for t [0, T]. Note that g(t,z)is nondecreasing for z in
[0, + ). rIen we have for any t E [0, T],

g(t,x(t- r)) < g(t, x(t- r) < g(t, Do). (20)

Note that if g(t, Do) is a periodic continuous function, then there exists a positive
constant K3, for any t E [0, T], such that

g(t,Do) <_ g(t, Do) <_ K3. (21)

From (9), (20), (21) and note that x’(t)is a periodic function with period T, we
conclude that for any t [0, T]

Ix’(t) _< A lcl x’(t--)l +AIg(t,x(t-))l +AIp(t)

< [c max Ix’(t) +g(t,x(t-(r))+ max Ip(t)
e [0, T] e [0, T]

< ]c max ]z’(t)]+g(t, Do)+ max Ip(t)
e [0, T] e [0, T]

(22)

< Icl max ]x’(t) l+K3+ max Ip(t) l.e [0,T] e[0, T]

Letting K4-K3+tE[0,T]max Ip(t) for any t e [O, T] we have

max x’(t) + gIx’(t) < Iclte[o,T 4"

By (23) we obtain

(23)

Thus,

max I’(t)l _< Icl max I’(t)l +K4.e [0, T] [0, T]

max x’(t) <_ D1, (24)
[0, T]

where D1 K4/(1 ]c I). The proof of Lemma 2 is complete.
Proof of the Theorem: Suppose that x(t) is any periodic solution with period T of

Equation (9). By Lemma 2, there exist positive constants Dj (j- 0,1), which are

independent of , such that

x(t) <_ DO and Ix’(t) <_ D, t e [0, T].
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Let D2 max(Do, D,D} + 1, and

In view of (2), we see that

T T

1/ og(t _D2)d/>0 and --/ g(t, D2)dt < O (25)Z
0

By (5)-(7) and (8_), we know that L is the Fredholm operator with index null and N
is L-compact on fl (see [1]). In terms of evaluation of a bound of periodic solutions
in Lemma 2, we know that for any x E 0fl V DomL and A E (0, 1), Lx y ANx. Since
for any xOflNKerL, x-D2(>D or x--D2, in view of (25) and

f Top(t)dt O, we have

T

QNx / [- cx’(t r)- g(t, x(t )) + p(t)]dt
0

which shows that

T

Tf g(t,
0

4-D2)dt 7 O,

deg{QN, f3 KerL, 0} # O.

By Lemma 1, there exists a periodic solution with period T of Equation (1).
proof is complete.

Example: Consider the equation

The

Ix(t) 1/2x(t r)]’ + esin tx(t r)ex(’ r) -cos t sin t. (26)

It is easy to verify that for Equation 926), all the conditions of the theorem are
satisfied with D > 0 and M- 3. Thus Equation (26) has a periodic solution with
period 2r. We see that x(t) sin is such a periodic solution of Equation (26).
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