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This paper studies boundary value problems for parametric differential
equations. By using the method of upper and lower solutions, monotone
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1. Introduction

Many problems in physical chemistry and physics, describing the exothermic and
isothermal chemical reactions, the steady-state temperature distributions, the
oscillation of a mass attached by two springs, lead to differential equations with a

parameter [5]. Existence, uniqueness and approximate solutions of problems with a

parameter have been discussed in [1] where several other references may be found.
Recently, the method of upper and lower solutions and monotone iterative

technique was initiated for boundary value problems with a parameter [2]. In this
paper, we shall extend the work of [2], under weaker assumptions in the general set
up of the standard work [3] so that further advances can be made for such problems.
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2. Main Results

Consider the parametric equation

0 g(x,A) (2.1)

x(0)- A

where f E C[J x R2, R], g E C[2 x R, R], where g -[0, T], f {u: u C[J, R]}.
Definition 2.1" A pair (v, a), v ci[j, R] and c R, is said to be a lower solution

of (2.1)if
v’ <_ f(g,v,c),

O<_g(v,), (2.2)

v(0) _< A.

An upper solution of (w,/) of (2.1) can be defined similarly by reversing the above
inequalities.

Theorem 2.1: Assume that
(i) v,w cl[j,R],c, E R,(v,c) and (w,) are lower solutions of (2.1),

respectively, such that c < fl and v(t) < w(t), t J;
(ii) f C[J R2, R], f(t, x, A) is nondecreasing in and for M >_ 0 such that

f(t, x, A) f(t,’, A) >_ M(x,’

(iii)
whenever v(t) <_’ <_ x <_ w(t), t S and <_ <_ fl;
g C[f2 R, R], g(x, ) is nondecreasing in x and for N >_ 0 such that

g(x, ) g(x, > N( A

whenever v(t) <_ x <_ w(t), t E J, c <_ A <_ A <_ .
Then, there exists monotone sequences {vn,n} {wn,n} which converge mono-

tonically to minimal and maximal solutions (p,k), (7,/) of (2.1), respectively, i.e.,

Proofi For any r/ (v, w), where

(v, w)- {x C C[J, nn]: v(t) <_ x(t) <_ w(t), t C J,

and e G [a, fl], we consider the linear parametric equation

x’+ Mx r(t,e), E J

0

x(O)-A,
where r(t, e) f(t, rl(t), e) + Mrl(t).
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It is not difficult to see that problem (2.3) possesses a unique solution (x(t),) for
any given pair ((t),e). Let (Vl,Ctl) (Wl,fll) be the solutions of (2.3) corresponding
(r/, e) (v, a) and (r/, e) (w, fl), respectively.

Let p=a-a1. We then get

0- g(v,a)-N(aI -a) >_ -N(a1 -a)- Np,

which implies p _< 0 and hence a _< a1.

P- Cl- ill" By condition (iii), we get
Similarly, we can show /1--< fl" Now let

0 g(v, a)- N(a1 -c) g(v, ct)- g(w, )- N(o1 -o)+ N(fl1 -/3)

<_ g(w, a)- g(w, )- N(c1 -a)+ N(fl1 fl)

N(- a)- N(aI -a) + N(/1 -/) Np.

Hence aI _< ill" Thus, we get

(2.4)

Next, we shall show

V(t) <_ Vl(t <_ Wl(t <_ W(t), t (3_ g.

Let re(t) v(t) vl(t), t E J. Then

m’ v’(t)- V’l(t < f(t, v(t),a)- f(t, v(t),a)- M(v(t)-

-Mm(t),

and m(0)_<A-A-0. Thus m(t)<_O and v(t)<_vl(t), tEJ.
show that wl(t < w(t), t J. Now let re(t) vl(t wl(t). Then

Similarly, we can

m’(t) V’l(t W’l(t f(t,v(t),c)- M(vl(t v(t))

f(t,w(t),fl)+ M(Wl(t w(t))

<_ f(t, v(t), fl)- f(t, w(t), fl)- M(Vl(t wl(t))+ M(v(t)- w(t))

<_ -Mm(t)

m(0)- Vl(0 --Wl(0 --0. Thus we get re(t)<_ 0 and vl(t _< w(t), t J.
(2.5) is proved.
Now let rl r/2 (v, w), el, e2 [a, fl] such that

Hence

r/l(t )_<r/2(t), t E J, el_<e2. (2.6)

Let (xl(t),,l),(x2(t),,2) be solutions of (2.3) corresponding to (r]l,el) and (r/2, e2)
respectively. We are going to show
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Xl(t

_
X2(t), t t J and A1 _< A2. (2.7)

Let re(t)- Xl(t -X2(t), t ( J. Then by condition (ii)

f(t, ql(t),el)- M(Xl(t rll(t))- f(t, rl2(t),e2)+ M(x2(t)- r/2(t))

<_ f(t, ql(t),e2) f(t,2(t),e2)- M(r2(t rl(t))- M(Xl(t x2(t))

<_ -Mm(t),

and m(0) Xl(0 x2(0 0. Thus we have m(t) <_ 0 and Xl(X

_
X2(t on J. Set

p- A1 -A2. Then by condition (iii)

0 g(r]l, el)- N(1 -el) g(r]l, el) g(r]2, e2)- N(,1 -el)+ N(A2 -e2)

<- N(e2 1) N(A1 1) -- N(A2 e2) Np,

which implies 1 -- 2" Thus (2.7) is established.
It is now easy to construct sequences {(vn(t),a,)} and {Wn(t),13n} where

(vn(t), an) and (wn(t), n) are solutions of (2.3) corresponding to
(r, e) (Vn 1’ Cn 1) and (rt, e) (wn 1, fin 1), respectively, with vo v, ao a,
w0 w and fl0 " We conclude from (2.4), (2.5) and (2.7)

V0 V1

__
V2

__... __
Vn

__
Wn

__... __
W2

__
W1

__
W0 on J

and

It then follows from the standard arguments that the sequences {(Vn(t),cn)},
{(wn(t),n)} converge uniformly and monotonically to (p(t),k), (7(t),/), respectively,
and (p(t),k), (7(t),/) are solutions of the parametric equation (2.1).
To show that (p(t),k), (7(t),/) are extremal solutions of (2.1), let (x(t),A) be any

solution of (2.1) such that

v(t) <_ x(t) <_ w(t), e J and a _< _< #.

Suppose that for some n, we have

Vn(t <_ x(t) <_ Wn(t), t J and cn _< _< fin"

Then, setting re(t) vn + l(t)- x(t), we obtain by condition (ii), and (2.8)

m’(t) f(t, vn(t),Cn)- M(vn + l(t)- Vn(t))- f(t,x(t),)

<_ M(x(t)- vn(t))- M(vn + l(t)- Vn(t Mm(t),

and m(0)- 0. Thus, we get re(t)<_ 0 and vn + l(t)_ X(t), t E J. Similarly, we can
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prove wn +l(t) >_ x(t),t E J.
Let p cn A. Then, in view of condition (iii) and (2.8),

0 g(v,, an) N(a, + 1 an) - g(x, an) N(an +

g(x, an) g(x, ) N(an + 1 On)

<_ N( an) N(an + l Cn) Np,

which implies an+ 1-- "" Similarly, we can show A _< fin + 1" We conclude by
induction that (2.8) is true for all n since Vo(t <_ x(t) <_ wo(t), t J and ao <_ A <_/30.
Hence, it follows that

p(t)

_
x(t)

_
7(t), tGJandk_A_l

by taking the limit as n-cx and the proof is therefore complete.
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