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We consider the MAP, M/G1,G2/1 queue with preemptive resume prior-
ity, where low priority customers arrive to the system according to a Mar-
kovian arrival process (MAP) and high priority customers according to a

Poisson process. The service time density function of low (respectively:
high) priority customers is gl(x) (respectively: g2(x)). We use the supple-
mentary variable method with Extended Laplace Transforms to obtain the
joint transform of the number of customers in each priority queue, as well
as the remaining service time for the customer in service in the steady
state. We also derive the probability generating function for the number
of customers of low (respectively, high) priority in the system just after
the service completion epochs for customers of low (respectively, high)
priority.
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1. Introduction

The Markovian arrival process (MAP) is a good mathematical model for input
traffics which have strong autocorrelations between cell arrivals and high burstiness
in broadband-integrated services digital networks (B-ISDNs). Well-known processes
such as the Poisson process, Interrupted Poisson process and Markov modulated
Poisson process are special cases of the MAP [6].

The supplementary variable method, which is the main analytic tool in this
paper, was first introduced by Cox [2] and has been applied by a number of authors.
See Keilson and Kooharian [5], Hokstad [3], Sugahara et al. [11] and references there-
in. To apply the supplementary variable method to the MAP/G/1 type queues, Choi
et al. [1] extended the notion of the Laplace Transform, which is suitable for dealing
with matrix equations. Using this Extended Laplace Transform (ELT) they obtained
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the joint transform of the number of customers and the remaining service time for
the customer in service for the MAP/G/1 queue in the steady state.

There are several journal publications which have considered this kind of priority.
Refer to [7, 13] and references therein. Takine and Hasegawa [13] studied the work-
load process in the MAP/G/1 queue with state-dependent service times. The results
were applied to analyze the Laplace-Stieltjes Transform of the waiting time distribu-
tion in the preemptive resume priority MAP/G/1 queue. Machihara [7] studied the
PH-MRP, M/G1,G2/1 queue with preemptive priority, where PH-MRP has high
priority and Poisson process has low priority. With the help of the fundamental
period of the PH-MRP/G/1 queue, he derived the distribution of the number of cus-

tomers in the system at the service completion epochs for non-priority customers by
the embedded Markov chain method. In addition, waiting times and interdeparture
time distributions for non-priority customers were derived.

In this paper, we investigate the MAP, M/G1,G2/1 queue with preemptive
resume priority by the supplementary variable method (with ELT) developed by
Choi et al. [1]. From our supplementary variable analysis, we derive the joint trans-
form of the number of customers in each priority queue, as well as the remaining ser-
vice time for the customer in service in the steady state. We also derive the distribu-
tion for the number of customers of low (respectively, high) priority in the system
just after the service completion epochs for customers of low (respectively, high)
priority.

The overall organization of this paper is as follows: Section 2 reviews MAPs and
the ELT; Section 3 derives the joint transform for the number of customers of each
priority and the remaining service time in the steady state for our model; Section 4
derives the PGF (Probability Generating Function) for the number of customers of
low (respectively, high) priority at the service completion epochs.

2. Preliminaries

A MAP is a process where arrivals are governed by an underlying m-state Markov
chain [6]. Precisely, the MAP is characterized by two matrices C1 and D1. C1 has
negative diagonal elements and nonnegative off-diagonal elements, while D1 has non-

negative elements. Here, [C1]ij # j is the state transition rate from state to state
j in the underlying Markov chain without an arrival; [D1]ij is the state transition
rate from state to state j in the underlying Markov chain with an arrival. We
assume the underlying Markov chain is irreducible. Since C1 + D1 is the infinitesimal
generator for the underlying Markov chain, we have:

(C -- D1)e O,

where e is an rnx 1 column vector of which elements are all equal to 1. Since the
finite state Markov chain is irreducible, there exists the stationary probability vector
r such that

7r(C1 -- D1) 0, 7re 1.

Next, we introduce the ELT developed by Choi et al. [<1. Given A [Aij is the
rn x rn matrix with Aij > 0 for :/: j, and Aii < 0 for 1_ _< rn, we find a column
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vector A with Ae + A- 0 and construct a Markov process for the states {1,2,...,
m, m + 1} with infinitesimal generator

A A).0 0

It is known that the (i,j)-component of eAx is the conditional probability that the
Markov chain is in state j at time z, given that the Markov chain starts in state at
time 0[4, 9]. Further if A is irreducible, A-1 exists [8]. For 0 < z < 1, let

Y(z) {SIS [Sij is an irreducible m x m real matrix such that

Sij >_ 0 for =/: j; (- Sij <_ 0 with strictly inequality for some i;

and S commutes with C1 + zD1}.

Note that the commutativity of S and C1 + zD1 is needed in taking the ELT for the
matrix differential equations of the system (formulas (6), (7), and (8)).

We define the ELT with domain Y(z). Let I(x) and hi(x), (i 1,...,m), be
functions defined on [0, cxz)such that

Definition 1: Let S be an element in 5(z). For a function f(x), the Extended
Laplace Transform F*(S) of f(x)is the m x m matrix defined by

/ f(x)e-SXdx.
0

For a vector of functions H(x)= (hl(X),...,hm(x)) the Extended Laplace Transform
H*(S) of H(x) is the 1 x m vector defined by

H*(S) / H(x)e- sXdx.
0

Note that F*(S) and H*(S) exist because any component of e-sx is dominated
by 1. If we identify s with sI (where I is the identity matrix of order m), then since
sI commutes with any matrix, especially C1 + zD1, {sls > 0} can be considered as a

subset of the domain (z). For a positive real number s, we have:

i.e., the ELT H*(sI) defined in Definition 1 is reduced to the vector H*(s), of which
ith component is the ordinary Laplace Transform H(s) of hi(x )"

]
0
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Thus, Definition 1 is a natural generalization of the Laplace Transform. To
determine the formula for the ordinary Laplace Transform version from the
corresponding formula for the ELT, formula (1) is used. See formulas (25), (26) and
(27) in Section 3 for more details.

3. Analysis of Our Model

We consider the MAP, M/G1,G2/1 queue with preemptive resume priority. The
arrival process of low priority is an MAP with representation (C1,D1) and the
arrival process of high priority is a Poisson process with rate 7. We assume that
both arrival processes are independent, and that for each process there is an infinite
capacity queue. The Poisson process with rate 7 can be regarded as an MAP with re-

presentation C2 -71 and D2 -7I. Therefore, the superposed arrival process of
an MAP and a Poisson process is considered as an MAP with representation C
C1 + C2 and D- D1 + D2. The service time density function of low (respectively:
high) priority customers is gl(x) (respectively" g2(x)). Also, it is assumed that the
service times of customers are independent of each other. Considering the preemptive
resume priority, a low priority customer who is interrupted during his service time
will start his service again from where it was interrupted. We define

"1 7rDle and A2 7rD2e( 7).

Let #1 (respectively: #2) be the mean service time for low (respectively: high)
priority customers. Throughout this paper, we assume p < 1 to guarantee the
stability of our system, where p Pl + P2 and pl )1#1, P2

We are now ready to analyze our system. Let Nl(t (respectively: N2(t)) be the
number of customers of low (respectively: high) priority in the low (respectively:
high) priority queue and Jt the state of the underlying Markov chain of the MAP at
time t. Let X (respectively: Yt) be the remaining service time of the customer of
low (respectively: high) priority in the process of service (if any) at time t. Let t be
the state of the server at time t as

0, if server is idle,

1, if a customer of low priority is served,

2, if a customer of high priority is served and there

exists an interrupted low priority customer,

3, if a customer of high priority is served and there

does not exist an interrupted low priority customer.

Note that the state of server enters the state 3 only when a customer of high priority
arrives at idle period.

Define

Pli(nl,x;t)Ax- P{NI(t -nl,x < X < x-t-Ax, J --i,( 1},
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p2i(nl,n2, x,y;t)AxAy P{NI(t nl,N2(t n2, x < X < x + Ax,

Y < Yt < Y + AY, Jt- i,t- 2},

P3i(nl,n2, y;t)AY P{NI(t) nl,N2(t) n2, Y < Yt < Y + AY, Jt i,t 3},

qi(t)-P{Jt-i,t-O}.

Let pl(nl,x;t),p2(nl,n2, x, y; t), P3(nl, n2, y;t), and q(t) be row vectors whose ith
elements are pli(nl,x;t),P2i(nl, n2, x,y;t), p3i(nl,n2, y;t), and qi(t), respectively. By
Chapman-Kolmogorov’s equations, we obtain the following for nl, n2 >_ 0:

Pl(nl, x At; t + At)

P2(nl, n2, x, y At; t + At)

P3(nl, n2, y At; t -- At)
q(t+At)

Pl(rtl, x; t)[I + CAt]-- pl(rtl- 1,x;t)DiAt. l{n >_ 1}

+ pl(nl + 1,0; t)gl(x)At

+ p2(nl, 0, x, 0; t)At

+ q(t)Dlgl(x)At, l{n 0}-- P3(nl + 1, 0, 0; t)gI (x)At -- o(At)e’,

P2(nl, n2, x, y; t)[I + CAt]

+ P2(n 1,n2, x,y;t)DiAt, l{n1

_
1}

+ P2(nl, n2 1, x, y; t)D2At. 1 {n2 >_ 1}
/ pl(nl,x;t)D2g2(y)At, l{n2 0}

+ P2(nt, n2 + 1, x, 0; t)g2(y)At + o(At)e’,

p3(rtl, rt2, y; t)[/+ CAt]

+ P3(nl- 1,n2, Y;t)D1At. l{nI

_
1}

+ p3(nx, n2- 1,y;t)D2At. l{n2 >_ 1}

+ q(t)D2g2(y)At, l{nI n2 0}

+ p3(nl, n2 -t- 1,0; t)g2(y)At + o(At)e’,
q(t)[I + CAt] + Pl(0, 0, t)At

+ P3(0, 0, 0; t)At + o(At)e’,

where e’ is the transpose of the column vector e and 1{. } denotes the indicator
function.

The condition p < 1 guarantees the existence of the stationary probability vectors
defined as follows:

pl(rtl, x) --tli__rrlPl(rtl, x; t),

p2(rtl, rt2, x, y) P2(rtl’ n2’ x, y;

p3(rt n2, y) tli_mP3(rtl, rt2, y;
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From the above equations, we get Kolmogorov’s forward differential equations as
follows:

d--pl(rtl, x)

ff-yp2(nl n2, x, Y)

d y)--P3(nl n2,

Pl(rtl’ x)C + Pl(nl 1, x)D1 1 {n >_ 1}- Pl(nl -- 1, 0)gl(x) -- P2(nl, 0, x, 0)

+ p3(rtl -- 1, 0, 0)g

+ qDlgl(x l{nI 0}, (2)

P2(nl, n2, x, y)C + p2(nl 1, n2, x, y)D1 l{nI

_
1 }

+ p2(nl,n2 1,x,y)D2 {n2 >_ 1}

+ pl(rtl,X)D2g2(y), l{n2 0}-- P2(nl, n2 + 1, x, O)g2(y (3)

p3(rtl, r2, y)C -t- p3(nl 1, rt2, y)D1 1 {n1

_
1}

+ P3(nl, n2 1, y)D2 1 {n2 >_ 1}

+ qD2g2(y l{n1 n2 0}-- p3(rtl, rt2 + 1, O)g2(y (4)
qC + Pl (0, O) + P3(O, O, 0). (5)

We now define the following PGFs for 0 < Zl, Z2 < 1"

Pl(Zl’X)- E Pl(rtl ’x)zl’
n 0

nln2P2(Zl, z2, x, y) P2(nl, n2, x, y)z1 z2
n1 0 n2 0

P2(Zl, 0, x, y) E P2(rtl’ O, x, y)z1,
nl=0

n2V3(Zl’ z2’ Y) E E P3(nl’rt2’Y)Z122
n1 ---0 n2 =0

P3(Zl,0, y)-- E P3(nl ’0’y)z1.
nl=0n1Multiplying zI in (2) and summing over nl, we have

PI(ZI,X) gl(Zl,X)[C nt- ZlD1] + z[gl(Zl, 0)- Pl(O,O]gl(x)

z-[P3(Zl, 0, 0) P3(0, 0, 0)]gl(x -- qDlgl(x).+ P2(Zl, 0) +
n1 n2Multiplying z1 and z2 in (3) and (4) and summing over n1 and n2, we get

(6)
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O P2(Zl,Z2, x,y P2(Zl,Z2, x,y)[C + zlD1 k- z2D2]Oy

-t- PI(Zl,X)D2g2(Y) + I2[P2(Zl, Z2, x,O P2(zl,O,x,O)]g2(y),

ddyP3(Zl,Z2, y) P3(zl,z2, Y)[C + ZlD1 + z2D2] + qD2g2(Y)

-1- z[P3(Zl, z2, 0) P3(Zl, 0, 0)]g2(y).

Let, for each z1 with 0 < Z1 < 1,

(7)

(8)

(Zl) {’]S [Sij is an irreducible m m real matrix such that

-Sij >_ 0 for 7 j; E (- SiJ) < 0 with strict inequality for some i;
3

and S commutes with C1 + ZlD1}.

Now we introduce the Extended Laplace Transforms (ELTs) defined on 5(zl) as

follows for E 5(Zl) and ( > 0"

P(Zl, ) / Pl(Zl, X)e- SXdx,
o

P(Zl, z2, x, S) / P2(Zl, z2, x, y)e Sydy,
o

s) / Pi(z ,P2 l:Z2
0

P*(Zl’Z2’S’O)- J P2(Zl’Z2’x’O)e-Sxdx’
0

P*(Zl’O’S’O)- / P2(Zl’O’x’O)e-Sxd’
0

P(Zl, z2, S) j P3(Zl, z2, y) Sydy,
0

a;(s) j
o

i-- 1,2.

By taking the ELT on both sides in formulas (6), (7) and (8), we get
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Thus,

P{(Zl,S)q + PI(Zl,0) P(Zl,S)[C + ZlD1]

+ [Pl(zl, 0)- pl(O,O)]G{(S) + P2 (Zl,0, S, 0)

+ z[P3(Zl, 0, 0) P3(0, 0, 0)].G(S) + qDIG(S),
P(zl,z,x,S)S + P2(Zl,Z2, x,O) P2(Zl,Z2, x,S)[C + ZlD1 + z2D2]

+ Pi(z2, z)D2G(S)+l-2[P2(Zl, Z2, x,O)

P(Zl,Z2, S)S q-- P3(Zl,Z2,0) P(Zl,Z2, S)[C -k ZlD1 + z202]

+ qD2G(S + z[P3(Zl, z2, 0) P3(Zl, 0, 0)]G(q).

P{(Zl,,.q)[S + C q- ZlD1]- Pl(Zl, 0)[1 -Zll---G*l(S)]
1-- -1pl (0, O)G(S) P*(z1,0 S, O)

1 [Pa(z1, 0, 0) pa(0 0, 0)]a(S) qDla(’), (9)Z1

P(z1, z2, x, S)[oc q--C q- ZlD1 -q- z2D2]- P2(Zl, z2, x, 0)[I- 2G2(S)]1
PI(Zl,X)D2G( o) + l-2P2(zl, O,x, O)G(o), (lO)

P(z,z2, S)[S +C + zD + z2D2]- P3(Zl, Z2,0)[I- 1G*

qD2G(S + zP3(Zl, 0, O)G(S). (11)

Let S2(Zl,Z2) -C-ZlD1 --z2D2. Since C2 -71 and D2 71, we see that

S2(zI, z2) E aJ(Zl). Thus, we may take S S2(Zl, Z2) to make the right hand sides of
formulas (10) and (11) zero, so that

P2(Zl z2, x,O)[I 1G*--Z2 2(q2(Zl’Z2))]

Z- *(S2(z1 z2) (12)Pl(Zl,X)D2G(S2(Zl,Z2)) P2(zl,O,x,O)G2

Pa(Zl z2 0)[I- 122a2(S2(Zl, Z2))]

qD2G(2(Zl,Z2))- l-2g3(Zl,O,O)G(l(Zl,Z2) ). (13)

Define a P2 period by the duration of period from the epoch when a low priority
customer is interrupted by an arriving customer of high priority to the epoch when
the busy period for customers of high priority generated by the arriving customer of
high priority ends. A P2 period has the sme distribution s the busy period for the

M/G2/1 queue. To solve P2(Zl,Z,x,O) and P3(Zl,Z2,0) explicitly we need the
following lemma.

Lemma 1: Let [O)(Zl)]ij be the generating function of the customers of low
priority arriving during a P2 period which ends with underlying Markov chain in



The MAP,M/G1,G2/1 Queue With Preemptive Priority 415

state j, given that the P2 period starts with underlying Markov chain in state i. Let
@(Zl) be the matrix of which the (i,j)-component is [@(Zl)]ij. Then @(21) is given
by

O(Zl)- J e(c1 or-ZlD1)xdg(x),
o

where the Laplace-Stieltjes Transform of distribution B(x) of the busy period for the

M//G2/1 queue is given by

B*(,) +

where G(s) is the ordinary Laplace Transform of g2(x).
Proof: Note that B*(s) is the Laplace-Stieltjes Transform of the length of a P2

period. Since both arrival processes are independent of each other, we have

O(Zl)- J e(cl+ZlD1)XdB(x)"
0

The explicit formula for the distribution function B(x) is given by equation (2.9b)
in Takagi [12]. From Lemma 1, we have the following lemma:

Lemma 2: (R)(zl) commutes with C1 --k ZlD1, and ((Zl) is a substochastic matrix.

Therefore, C ZlD1 D20(Zx) is in
Proof: By irreducibility of C1 + ZlD- and Lemma 1, (R)(Zl) is a positive substoch-

astic matrix. Thus, C + ZlD1

ZlD1 + D2@(Zl) has nonnegative off-diagonal elements with row sums less than 0.
By Lemma 1, @(Zl) and C1 + ZlD1 obviously commute. Therefore, -C-ZlD1

D2(Zl) is in (z1). [-]

From Lemma 1 and Lemma 2, we can also obtain the matrix exponential form
for @(z) as follows:

(R)(Zl) G(- C- zlD D2(R)(zl) ). (14)

Lemma 3: P2(Zl, 0, x, 0) and P3(Zl, 0, 0) are given by

p2(Zl,O,x,O)-- pI(Zl,X)D2I(Zl),

P3(z, 0, 0) qD2(R)(z).

Further P*(Zl, 0, S, 0) is given by

P*(zI,O,S,O)- P(z,S)D2(R)(Zl).

Proof: Note that P(nl,x)At is the vector of the probability that the state of
server is 1, the number of customers of low priority in the queue is n, and the re-

maining service time for the customer in service is in (x,x + At) at an arbitrary time.
By preemptive resume priority, the customers of high priority arriving during the ser-

vices of low priority customers always generate P2 periods. If we consider the epochs
when P2 periods start as embedded points, the vector of probability generating func-
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tions for the number of customers of low priority at the embedded points is given by

Pl(Zl, X)D2
Pl(1 -,x)D2e"

Hence, by the definition of P2(Zl,0, x,O), we have

P2(Zl, O,x,O) PI(Zl,X)D2O(Zl)
P2(1 -, 0, x, 0)e PI(1 -, x)D2e

Note that (R)(zl) is the matrix of generating functions for the number of customers of
low priority arriving during a single P2 period. Further, note that Pl(1-,x)D2e is
the rate of starting P2 periods with remaining service time x for the interrupted low
priority customer, and P2(1-,O,x,O)e is the rate of ending P2 periods with
remaining service time x for the interrupted low priority customer. So, in the steady
state both rates must be the same; thus,

Pl(1-,x)D2e P2(1-,O,x,O)e. (16)

The above equation (16) can be also proved from formula (12) by letting
Z1 Z2 1-- and multiplying e. Therefore, from formulas (15) and (16), we have

P2(Zl,0, x,O) PI(Zl,X)D20(Zl).

By taking the ELT on the above equation, we get

p2*(Zl, O,S, O) P(Zl,S)D20(Zl).

By the similar argument, we can also prove that

P3(Zl, O, O) qD20(z1).

By Lemma 3 and taking the ordinary Laplace Transform on formula (12) with
respect to x, for > 0, we get

PO2*(Zl,Z2,,O)[I- 1--a*(S2(Zl Z2))]z2 2

P(Zl,)D2[I- l-20(Zl)]G(S2(Zl,Z2)), (17)

where P*(zl,z2,4, O) and P(Zl,4) are the ordinary Laplace Transforms of
P2(Zl,Z2, x,O and P(Zl,X). By Lemma 3 and formula (13), we get

P3(Zl,Z2,0)[I l--G*Z2
2($2(Zl, z2))]

qD2[I- l20(Zl)]G(S2(Zl, Z2) ). (18)

Taking the ordinary Laplace Transform on formula (10) with respect to x, for
> 0, we get

P*(Zl,Z2,,S)[S +C + ZlD1 + z2D2]
O, ,P2 (Zl z2, 0)[I 1----a*(S)] Pl(ZlZ2 2
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+ P*(z1,0,,O)2-2G2(S), (19)

where o,
P2 (Zl,0,,0) is the ordinary Laplace Transform of P2(Zl,0, x,O). By substi-

tuting (17) and (18) into (19) and (11), from Lemma 3 we get

P*(z1 z2 ,S)[S 4- C 4- ZlD1 + z2D2][I- l--G*Z2
2(S2(Zl’ Z2))]

P(Zl, )D2[I zO(Zl)][G(S2(Zl, z2)) G(S)]

P(z1 z2 S)[S + C + ZlD1 + z202][I- 1-2G2(S2(Zl,Z2))]
qD2[I- l-20(Zl)][a(S2(Zl, Z2) -G(S)]. (21)

From (5), (9) and Lemma 3, we have

P(z1, S)[S 4- C 4- ZlD1 + D20(Zl) Pl(Zl, 0)[I- 1G’z1
1--q[C 4 zlD1 4" D20(zl)]IGI(S). (22)

Let Sl(Zl)- -C-zlD1-D2(R)(Zl). Since Sl(Zl)E if(z1), by letting S- Sl(Zl)in
equation (22), we have

PI(Zl 0)[/- 1 1IGI(S(z))]- q[C + ZlD1 + DO(q)]lal(S(Zl)). (3)

By substituting equation (23) into equation (22), we get

+ C + zD1 + D2(R)(Zl)][I- 127G(S(z1))]P(Zl,S)[S
1 1q[C + ZlD1 + D)(z)][Gl(S(z) IGI(S)]. (24)

For an arbitrary s > 0, since sI is an element of ff(Zl) for any z with 0 < z1 < 1,
by taking S- sI in equations (20), (21) and (24), we obtain the following formulas
for the ordinary Laplace Transform version for any 0 < zl, z2 < 1, > 0 and s > 0"

P*(Zl,Z2,,s)[sI + C + ZlD1 + zD2][zI-G(S2(Zl,Z))]

P(Zl,)D2[z2I O(Zl)][G(Co2(Zl, Z2) G(s)I], (25)

P(Zl,Z2, S)[SI 4" C 4" ZlD1 4" z2D2][z2I- G(S2(Zl,Z2))]

qD2[z2I O(Zl)][G(S2(Zl,Z2) G(s)I], (26)

P(Zl,S)[SI 4"C 4" ZlD 4" D2Q)(Zl)][ZlI G’( cI(Zl))]

q[C 4" ZlD 4" D2@(zl)][G(SI(Zl))- G(s)I]. (27)

The stationary invariant vector q of the underlying Markov chain during the
server idle periods must still be calculated. From the same argument as in Takine
and Hasegawa [13], q satisfies the following equation:
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Q-C+ / dD(x)eQx,
0

qQ O, qe l p, (28)

where dD(x) Dlgl(X)dx + D2g2(x)dx. IIence, we finally establish the main
theorem.

* s)Theorem 1: For 0 < Zl,Z2 < 1, > O, and s > O, the joint transforms Pl(Zl,
P2*(z1, z2, ,8), and P(z1, z2, 8) are given by

P(Zl,S)[sI -t-C + ZlD + D2O(Zl)l[ZlI- G(Sl(Zl))]

q[C + ZlD1 -]- D2O(Zl)][G(SI(Zl) -G(s)I],

P*(Zl,Z2,,s)[sI + C + ZlD1 + z2D2][z2I-a(S2(Zl, Z2))]

P{(Zl, )D2[z2I O(Zl)][G(co2(Zl,Z2) G(s)I],

P(Zl,)D2[z2I C -t- ZlD1 + z2D2][z2I G(S2(Zl,Z2))],

qD2[z2I O(z1)][G(S2(Z1, z2) G(s)I],

where q is given by

Q-C+ / dD(x)eQx

0

qQ O, qe l p,

dD(x) Dlgl(X)dx + D2g2(x)dx.

4. Marginal Queue Length Distributions

We find the distribution for the number of customers of low (respectively: high)
priority just after the service completion epochs for customers of low (respectively"
high) priority. Let Hi(x (respectively: II2(z)) be the vector of probability generating
functions for the number of customers of low (respectively" high) priority just after
the service completion epochs of the low (respectively: high) priority customers.
Then, IIl(Z and II2(z are given by

PI(Z, 0)
Ill(Z) Pl(1 ;)e,

P2*(1-,z, 0 +,0)/ P3(1-, z, 0)II2(z)- 0, + P3(1 ,1 ,0P2 (1 ,1 ,0 ,0)e+ )e
From formulas (2a), (17) and (18) we have

1 o)eq[C + ZlD1 4. D2O(z)]G(Wl(Z)),IIl(Z)[ZI G{(SI(Z)) Pl(1 -, (29)
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[q + P(1-, 0 + )]D2[zI- (9(1-)]
II2(z)[zI G(S2(1 -,z))] P*(1 -, 1 -, 0 +, 0)e + P3(1 -, 1 -, 0)e

(1-, z)). (0)

Next we derive Pl(1-,0)e and P2*(1-, 1-,0 +,0)e + P3(1-, 1-,0)e.
Lemma 4:

PI(1 -,0)

q[C -b- D1 + D20(1 )]G(Sl(1 ))[I G(o1(1 )) + er]- 1

__
P1(1 -, 0)eTr,

Pl(1 -, 0)e 1,

P(1-,0 +) q[G(SI(1-))- I][er + I- G(SI(1-))]- 1 + P(1-,0 +)er,

P(1-, 0 + )e -/91.

Proof: The first equation is obtained from (29) by the same argument as in the
proof of Corollary 3.2.7 in Ramaswami [10].

To obtain the second equation, recall that

)(z) G(- C- zD1 D20(z)),

Ol(Z) -C- zD1- D20(z).

By differentiating the above equations with respect to z and letting z 1-, we get

zSl(Z) z=l-e-- [eTr-C1-D1]-1

#2eTrx [eTr C D1 -t- D21 P2
D2@(1 -) + D2]Dle,

and by differentiating G’(SI(Z))and letting z- 1-, we get

d..(l(Sl(Z)) z=l_e_ [eTr_C_Dl_D2O( 1 )1-1

X [#leTr G(SI(1 )) + I][- d-Sl(Z) z 1 e].

By differentiating (29) with respect to z, letting z 1- and multiplying e on both
sides, we get, with the help of the above equations,

P1(1-,0)e z1.

From (27), by letting s 0 +, we get

P(z, 0 + )[zI G(S (z))] q[G(S1 (z)) I].

From the above equation, we compute the third equation by the same argument as in
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the proof of Corollary 3.2.7 in Ramaswami [10]. By differentiating the above
equation with respect to z, letting z- 1- and multiplying e on both sides, we get

P(1 -, 0 + )e -/)1" [-i

Note that PI(1-,0)e is the departure rate of low priority customers in the steady
state. The second equation of Lemma 4 demonstrates that the input and output
rates of low priority customers are the same, which is a natural property in the
steady state.

From Lemma 4, we obtain the following lemma.
Lemma 5:

** +P2 (1 1 ,0 ,0 + P3(1 1 ,0 P2,

P*(1-,1-,0 +,0)e + P3(1-,1-,0)e 2"
Proof: We know that

qe 1-- p1-- P2,

P(1-, 0 + )e --/91.

So, the first equation follows from the fact that

**( + p*-,-qe+P(1-,O+)e+P2 1-,1 ,0 ,0 + 3(1 1 ,0 -1.

From Lemma 4 we derive the second equation by the same argument as in the
proof of Lemma 4. V1

0, +,0)e P3 0)e is the departure rate of highNote that P2 (1 ,1 ,0 + (1- 1-,
priority customers in the steady sate. The second equation in Lemma 5 demonstrates
that the input and output rates of high priority customers are the same, which is
natural in the steady state. From Lemma 4 and Lemma 5 we get the following
theorem.

Theorem 2: Hi(z (respectively: II2(z)) the vector of the probability generating
functions for the number of customers of low (respectively: high) priority in the
system just after the service completion epochs for customers of low (respectively:
high) priority are given by for 0 < z < 1:

IIl(Z)[ZI- G(SI(Z))]- -lq[C + ZlD1 -t- D20(z)]G(Sl(Z)),

II2(z)[zI G(S2(1 -,z))] 22[q + P(1 -, 0 + )]D2[zI (9(1 )]G(S2(1 -,z)).

Remark: When 7 0, our model is reduced to the MAP /G/1 queue. So we
have, from Theorem 1,

g(zl, s)[’3I huG1 nt- ZlD1][zlt a( C1 ZlDi))]

q[C1 nu ZlDll[G( C1 ZlD1) G(s)I]

where q is given by
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Q=c+ dD(x)eQx,
o

qQ=O, qe= l-p,

dD(x)-- Dlgl(X)dx.

the above equations are in accordance with the results in Choi, et al. [1].
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