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A general model of a branching Markov process on R is considered.
Sufficient and necessary conditions are given for the random variable
M =su max = (t
tz% 1<k <N(1) (1)
to be finite. Here Z;(t) is the position of the kth particle, and N(t) is the
size of the population at time f. For some classes of processes (smooth
branching diffusions with Feller-type boundary points), this results in a

2
criterion stated in terms of the linear ODE UT(x)f”(:c) +a(z)f'(z) =
Mz)(1 — k(z))f(z). Here o(z) and a(z) are the diffusion coefficient and
the drift of the one-particle diffusion, respectively, and A(z) and «(x) the
intensity of branching and the expected number of offspring at point z, res-
pectively. Similarly, for branching jump Markov processes the conditions
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are expressed in terms of the relations between the integral
w(z) [m(z,dy)(f(y) — f(z)) and the product A(z)(1—&(z))f(z), where
A(z) and x(z) are as before, p(z) is the intensity of jumping at point z,
and 7(z,dy) is the distribution of the jump from z to y.

Key words: Branching Markov Process, Branching Diffusion, Branch-
ing Jump Markov Process, Boundedness, Green Measure, Green Operator,
Generator.

AMS subject classifications: 60K35, 60J80.

1. Introduction and Comments

1.1 In this paper, the term branching Markov (BM) process is used for a continuous
time Markov-type evolution of a system of randomly moving particles on the line R.
Particles may create new offspring; the rate of creation and the offspring number dis-
tribution depend only on the position of the parent particle. Each new particle starts
moving from the point where it was created, in accordance with a fixed Markov
process of individual motion (IM), which is not supposed to be space-homogeneous.
For the formal construction of a BM process and its basic properties we refer to
Athreya and Ney [1]; some more recent works are discussed, e.g., in the review by
Dynkin [6]. In particular, the reader is referred to Dynkin et al. [7], where general
construction and properties of a measure-valued branching Markov process are discuss-
ed. Specific problems arising in the non-homogeneous and non-Euclidean cases are
discussed in Lalley and Sellke [16] (see also the references therein) and Lalley and
Sellke [17]. In this paper, we use the standard facts about the BD without going into
detail. The IM Markov process is denoted by & ( = &(t),t > 0). The distribution of
process , given that it starts at point « € R, is denoted by P_, and the expectation in
P_ is denoted by E_. The rate (intensity) of the branching of the particle positioned
at ¢ is denoted by A(z), and the distribution of the number of offspring by K(z, -).
We agree to think that a particle “dies” at the moment of branching, therefore it is
not counted afterwards. By x(z) we denote the expected number of offspring produc-
ed at point z:x(z) = Y. K(z,7)j. Throughout the paper we assume that A € CO(R)
and J
0 <A <A<A <00, 1 <Ky <k <Ky <00, (1.1)

where A, k; are constants, ¢ = 1,2. [Here, and below, Ci(R) denotes the space of func-
tions on R which are of class C* at each point z € R (without any assumption of
boundedness); a similar notation is used when the line R is replaced by its subset.]
We also assume that

K(-,0)=0, (1.2)

which means that the particles always produce at least one offspring.

A number of interesting examples are incorporated if we assume that the IM pro-
cess £ may have an “absorbing” state, %, such that £ remains at % once it reaches it.
We agree to think of % as a “point at — 00”, meaning formally that % < co and,
moreover, * € (—oo,z) for any z € R. The “extended” line {*} UR is denoted by
R.

It is convenient to fix a phase space of the process (i.e., a subset S C R such that
P (£, €SVt>0)=1 for each z€S). In the sequel, we work within S without
mentioning this fact explicitly every time. It is assumed that SNR is a Borel set
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which contains a sequence z, with lim 2 =oo. It is also assumed that, for each
n—oo N

r €S, P, is concentrated on the set O, of the right-continuous trajectories
w:[0,00)—S with w(0) = z. Finally, we suppose that ¢ is a Feller process on S (in the
topology induced by the standard Euclid topology on R); i.e., the corresponding semi-
group {T,:t >0} given by T,f(z) = E_f(&(t)) takes space C(S) of the bounded con-
tinuous functions S—R to itself and is strongly continuous there. Thus, ¢ is deter-
mined by a generator ® which is a densely defined operator inC(S). While dealing
with some particular types of processes (a smooth diffusion on R or on R + =
{*}U[0,00) with a boundary point at 0), it is convenient to treat ® as an operator
in the space D( = De(IR) or D¢(R )). See Section 3 below.

The BM process is denoted by _(t) and its sample space and probability distribu-
tion, given that the starting point is z, by ©, and ®_, respectively. Given t > 0, let
Ei(t), k=1,...,,N(t), denote the random positions of particles by time ¢, where N(t)
is the total number of particles in the population. We are interested in the quantity

M= sup Y (t) = sup Y( ) (1.3a)
where t20
(t) —

<t>lzzn2’§v(t Z(), YT Ssup V(o). (1.38)

Here, the random variable Y(t) (Y( ) gives the maximal position of the particles in
the BM process at time ¢ (respectively, on the time interval [0,t]) and M the overall
supremum of the positions. The question is whether the random variable M is pro-
per, i.e.,

‘.Py(M <oo)=1,y€eR. (1.4)

A BM is called bounded (in a positive direction) if the variable M is proper.
A similar question arises about the quantity

M =sup ¥ (n) = sup v, (1.5)
n>0 n>0

where iv’(n) (17(")) gives the maximum of the position of the particles of the nth
generation (respectlvely, the generatlons 0,1,...,n) in the BM process, at the times of
their divisions T'y,.. R (n ) N (n) is the number of particles of the nth generation.

[The nth _generation is formed by particles that have precisely n ancestors.] By de-
finition, Y (0) = 7O =z We say that a BM process is quasibounded (in a positive
direction) if the random variable M is proper.

It is clear that if a BM process is bounded, it is quasibounded. We show that if
the IM process € is a smooth diffusion (possibly with a boundary point), the converse
is also true.

Intuitively, the answer to both questions depends on the outcome of a “competi-
tion” between several factors: the “drift” and “volatility” of the law of process £ and
the parameters A and K of the branching mechanism. In Section 2 we give general
sufficient and necessary conditions for boundedness and quasiboundedness of a BM
process under quite general assumptions on £. These conditions are stated in the
form of inequalities involving the so-called Green measures of process & and its
stopped version. [The conditions on ¢ imposed in the necessity part are more restric-
tive than in the sufficiency part.]

An interesting example of the BM process is the branching diffusion (BD), where
¢ is a diffusion process. We consider the case where ¢ is a “smooth” diffusion on
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S=R or R+, where R+ ={*x}UR, and R, =[0,00). In the latter case we
assume that 0 is a Feller-type boundary point. In Section 3 we establish a criterion
(i.e., a necessary and sufficient condition) which is quite unexpectedly short: let &,
denote the “local” generator of process ¢, with a domain D(®, ). “Local” means that
no assumption is made about the behavior of functions f € D(®,)) as z— = co; all
conditions are stated in terms of their properties in some neighborhoods of the points
z €S. In other words, ®, is merely a second order differential operator, with the
diffusion coefficient az(a:) and drift a(z), completed, when necessary, with the
corresponding boundary condition. Formally, & is an extension of the “global”
generator ®. [The precise meaning is given in Section 3.] Then there is the following
necessary and sufficient condition, called below Condition (or Criterion) CD for the
BD process to be bounded (and hence, quasibounded).

There exists a function f° (on R or R + ) such that

f2>0, Jim ) = oo, (1.6)
and
[P € D(B,), 6, f(z) + Ax)(k(z) — 1)f°(z) = 0. (1.7)

Thus, Criterion CD reduces a rather intricate probability-type question about a
BD process to a problem concerning a spectral property of a linear differential opera-
tor. In Sections 1.2-1.5 we comment on the applicability of Criterion CD, and show
that in a number of interesting examples it leads to a straightforward answer.

The problem of boundedness (or, more generally, of an asymptotical behavior) of
a BM process was first discussed, in a somewhat different setting, by Hammersley [9]
and Kingman [15); later it was actively investigated by Biggins and co-authors (see
(2, 3] and the references therein). However, the above papers considered the case of a
space-homogeneous IM process €, constant A, and fixed probability distribution K. A
general model of a discrete-time and one-dimensional discrete-space non-homogeneous
BM process was recently discussed by Karpelevich and Suhov (see [14] and the refer-
ences therein), where a “discrete” analog of Condition CD was derived.

1.2 We start our comments on Criterion CD with the case of a space-homogeneous
BD process, where £ has a constant drift and diffusion coefficients a € R and o > 0,
and A and K (and hence ) do not depend on z € R. In this case, we speak of a
branching Brownian (BB) motion. Then, if x> 1, a necessary and sufficient
condition of boundedness is: 9
a<0, 45> 2x\(k—1). (1.8)
o

Bound (1.8) follows from results of McKean [18]. See also Karpelevich et al. [12].
[Barlier, it was established in Biggins [2] that under (1.8), the space-homogeneous BB
motion is quasibounded; the fact that (1.8) is necessary for quasiboundedness also
may be derived from results of [2].]

It is easy to check that (1.8) is equivalent to Condition CD. [Of course, the BB
motion will then be unbounded in a negative direction.] In fact, in this case G is a
second-order differential operator on R with constant coefficients

61, () = G f"(2) +af (2), = €R. (19)
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The general solution to the linear ODE (1.7) is of the form ¢, exp(b z)+

2 2X(k-1) 1/2
c_exp(b_=z), r €R, where ¢ are constants, and b = —-—a—z:lz(a—4 — ——%——) ,
o o o

which immediately leads to (1.8). Note that under (1.8), b, >b_ >0.
Pictorially speaking, the ratio az/o—2 in (1.8) measures the “rigidity” of a BM:
the greater it is, the less “random” the motion looks at large times. The value

%5 —2X(x —1) shows the outcome of the “competition” between the rigidity and an
o

“entropy” of the process of creating new particles. In short, the meaning of condition
(1.8) is that the drift suppresses all “entropy factors” presented in the BB motion.

Criterion CD provides a straightforward answer to the question of boundedness in
all cases where the operator ®; may be written in the form (1.9) after a change of
variables. In other words, it means that what matters for boundedness of a BM
process is the behavior of certain expectation values as functions of a space variable.
This covers a variety of examples where, to our knowledge, none of the existing
methods is applicable.

1.3 Another example where the Criterion CD gives a complete answer while other
existing methods do not is the BB motion on IR_‘_. Suppose again that a,0,A and &
are constant, o > 0, and consider the case of a Feller boundary point at 0. The latter
means that the boundary condition at point 0 for operators ® and &,  reads

P O) - 2 0) 4 2o 7O +ar0) ) =0 (1.10)

Here p;, >0, 2 =1,2,3, are constants; p; + py+ p3 =1. The case p; = p3 =0 corres-
ponds to a reflecting and p, = p; =0 an absorbing (or killing) barrier at 0; in the
latter case, process & jumps from 0 to state % and remains there forever. The opera-
tor ®,, is given by the right-hand side of (1.9), by replacing z € R by = > 0.

As before, the general solution to (1.7) (in the case under consideration it means
that f9 satisfies the differential equation and the boundary conditions) has, for z > 0,
the above form. A simple analysis shows that if condition (1.8) is violated, the BB
motion on R, is unbounded for all initial points y >0 and any choice of the
boundary condition of the form (1.10). In other words, if the homogeneous version of
the BB motion on the whole line is unbounded, then its half-line modification is also
unbounded. On the other hand, if (1.8) holds (i.e., the BB motion on R is bounded),
then its half-line version may be either bounded or unbounded: it depends on the
choice of constants p; in (1.10). More precisely, under condition (1.8), the motion is
bounded iff

P12 p2b_ +p3/\("7— 1)- (1.11)

Pictorially speaking, the coefficient p; “helps” to maintain the BB motion on
R+ bounded, while p,, p; “act” in an opposite direction. In particular, in the case of
an absorbing barrier, the BB motion is bounded iff its whole-line version is bounded;
in the case of a reflecting barrier, it is always unbounded. Observe that this
statement is not true in the case where K(-,1) =1 (and hence x = 1). Here, the BB
motion = is reduced to the IM process €. But £ on the half-line, with an absorbing
barrier, is bounded for a = 0, whereas £ on the whole line is not.
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1.4 Feller [8] considered an example of a Markov process & on R 4+» where a particle
moves as in a diffusion process on R, with a boundary point at 0, and in addition
may jump from 0 to (0,00). See also [11], Chapter 5, Section 5.7. The corresponding
BM process = is called a branching diffusion with a jump (BDJ).

Criterion CD (where ®,, is again understood as a second-order differential opera-
tor on R, with specific boundary conditions) is also applicable for the BDJ
processes (see Section 3). As before, it gives a particularly simple answer in the case
where the diffusion on R has constant coefficients, and A and « do not depend on
z €R . More precisely, let a be the drift and o the diffusion coefficients, and the
boundary condition for the diffusion on R ¥ be of the form

PLf(0) ~ pof'(0) + pg(%2f"(0) + af’(0)> = [ saU@-FO). (1)

(0,00)

Here p, >0, 1=1,2,3, and p >0 are constants, p;+py+ps+p =1, and p is a
probability distribution on (0,00). Then the BDJ process Z is bounded iff (1.8) holds
and
P2 pb_ 4= Db [ pldy)(esp (0 _y)- D). (113)
(0,00)

1.5 An interesting class is formed by the branching jump Markov (BJM) processes.
Here, the IM process ¢ is a jump Markov process characterized by the jump intensity
u(x) and the distribution of the jump w(z,dy), =,y €S. In Section 4 we establish
that the condition

There exists a function fO (on S) such that (1.6) holds and

I € D(®,,), 64, fOx) + A@)(x(x) — 1)f(x) = 0 (1.14)

is sufficient for the BJM to be bounded. Here, ®; is an extension of the “global”
generator ® (which is now an integral operator) to its maximal natural domain (see
Section 4).

On the other hand, under some additional assumptions, the condition

There exists a function fO (on S) such that (1.6) holds and

2 € D(Gyy), 6, fO(x) + Mz)(s(x) = 1)f(x) < 0 (1.15)

is necessary for quasiboundedness. The sufficient condition is called SJ and the neces-
sary one NJ. The question of finding a general class of BJM processes for which Con-
dition SJ is necessary for quasiboundedness or boundedness remains open.

Note that in the case of a discrete time/space BJM process (called a branching
random walk), a criterion (i.e., a necessary and sufficient condition) of boundedness
was established in Karpelevich et al. [13, 14]. The space-homogeneous case was in-
vestigated earlier in Karpelevich et al. [12].

1.7 The methods used in this work originate mainly in functional analysis (more pre-
cisely, semi-group theory) and the theory of ordinary second-order differential equa-
tions. [We refer the reader to Dynkin [5], It6 and McKean [11], and Yosida [20] for
the results from semi-group theory, and to Birkhoff and Rota [4], Hartman {10] and
Taira [19] for the results from the theory of second-order ODE’s and their connec-
tions with the theory of diffusion processes.] Probabilistic technique plays a rather
subordinated role in the present paper. Nevertheless, we believe that an adequate
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approach based on probabilistic ideas is possible (and hope it will follow soon). For
example, a process y(t) given by
N(t)
At) =y FOE() (1.16)
k=1
is a martingale iff function f° satisfies (1.7).

2. Abstract Conditions of the Boundedness of a BM Process

2.1 In Sections 2.1 and 2.2 we establish inequalities that give sufficient and necessary
conditions of boundedness and quasiboundedness of a BM process on R. The proofs
are given in Section 2.3. Sufficient inequalities are established in a fairly general
situation and do not require specific assumption about process £&. However, we
assume that A and K satisfy (1.1), (1.2).

We introduce the random variable p( = p,), on probability spaces (2,,P,), des-
cribing the lifetime of the process started at z, when the rate of lifetime spending at
point y is A(y). Our analysis is focused on stochastic equations that are naturally con-
nected with the variables M and M. More precisely, let M and M denote the “ver-

sions” of these variables on (2,,%_). Then
1 iz
M ~ ma. T]z,M( )(P ), E (P ):| (2.1@)
and o~ ~ (1) ~(Jg)
Mw ~ max[l', Mex(px), M (P )] (2.1b)

Here, symbol ~ means equality in distribution. The random variable 7, in the

RHS of (2.1a) gives the value sup €,(t), and j_ in the RHS of (2.1a,b) is the ran-
0<t<p,
dom number of offspring produced in & single act of division (at random plnt £.(PL))-

Furthermore, given that p =y and j_ =j, the random variables M é(o,) and
68 L) t=1,...,7, are (conditionally) independent and have the same distribution

as M and M i respectively. It is easy to check that variables M and Mx, z €S,
give mznzmal solutlons to (2.1a,b), in the sense of stochastic ordermg

Given z €R, let 7% be the time when process ¢ hits [z,00):7* min[ > 0:
£() > z]. Consider the non-negative measures G*(z,dy) on SN (— oo z) given by

G*(2,dy) = P,(p < 7%,&(p) € dy). (2.2)
A convenient way to interpret az(x, dy) is to represent the pair (&, p) in terms of the
time-changed process E Process E is determined by the generator 6= e )(.5 where

® is the generator of £. Consider the map A:Q —Q_, with Aw(t) = w(t'), where t' is
the (unique) solution to the equation

‘- / Aw(s))d

A transforms the pair (£,,p,) into (Ez,p), where p has an exponential distribution
with mean 1 and is independent of process £. In other words, process £ spends its
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lifetime at constant rate 1. The distribution of Z with the starting point z is denoted
by P_. Then
(&)
6Z(x,dy) = / dte~ t§x<t < 'rz,g(t) € dy), z < 2.
0

The above argument shows that we can assume, without loss of generality, that
function A =1; the general case is reduces to this case by passing to the new
generator ®. We therefore omit the symbol = from the notation. Observe that at
this stage we do not assume the IM process & to be strong Markov. Our first
sufficient condition is:

There exists a function fO on S satisfying (1.6) and a monotone sequence
{z,,} CR such that lim z, = oo and

n—o0

P@ 2 P2 T Male) + [ Coladn) () (2.3)

where a(z) = inf fO(y):y > z]. (=o07n)

This condition is called Condition S1.

Theorem 2.1:  Suppose that Condition S1 hold. Then the BM process = 1is
bounded.

Observe that passing formally to the limit z,—oco in (2.3) gives the following
condition called below Condition N:

There exists a function f° on'S satisfying (1.6) such that

) > / 0(z, dy) FO(W)r(y). (2.4)

Here, and below,

G(z,dy) = P,(&(p) € dy). (2.5)

G(z,dy) may be interpreted as a Green measure of process £. N is sufficient for quasi-
boundedness:

Theorem 2.2: If Condition N holds then BM process = is quastbounded.

A slightly more restrictive condition that N is sufficient for the boundedness of a
strong branching Markov process. Namely,

There ezists a function f° on S satisfying (1.6) such that

) = / Oz, dy) FO(W)r(y). (2.6)

This condition is called below Condition S2.

Theorem 2.3: If Condition S2 holds and process & is strong Markov then BM
process = is bounded.

2.2 However, the main role of Condition N is that it in some cases is necessary for
the quasiboundedness (and hence for the boundedness) of a BM process. For this we
need additional assumptions about process £&. More precisely, we again work with
measures §(z,dy). The assumptions are as follows: ‘
(7) There exists a point z; € S such that for each x € S measure §(z,dy) is
absolutely continuous relatively to §(zq, dy).
(i)  The Radon-Nikodym derivative
_ G(=,dy)
58 Y) = Gla, dy)
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is such that either of the following two conditions holds: a) for each bounded interval
J CR with JNS #0, the family {gy(-,y),y € R} of functions = € J NS—gy(z,y) is
uniformly bounded and equicontinuous (and hence compact in C(J NS)); b) for each
€S the function y € S—ygy(x,y) is continuous and has finite limits as y— £ oo
(which may depend on z).
(7é7) lim < sup (G(z,(— oo,z — R])) =0.
R—oo \ €S

We say that the neighborhood of infinity is not accessible from point z € S (in
process &) if there exists z such that P_(7% < c0) = 0.

Theorem 2.4: If ¢ BM process = is quasibounded and the corresponding IM
process obeys (i), (43) and (iii), then Condition N holds. Furthermore, function f°
frguring in Condition N vanishes at any point x €S from which the neighborhood of
infinity is not accessible.

Throughout this section we use the following notation

F(z,2) =% ,(M < z), F‘(m,z) = "ZPz(M <2),Fz,2)=1-F (z,2).

¥(y, - ) denotes the moment-generating function of the number of offspring produced
at point y:9(y,v) = EjK(y,j)vj, y€ER, 0 <v<1. The symbol O is used in the
sequel for marking the end of the proof.

2.3 Proof of Theorem 2.1: Given z € R, function F(-,z) gives the maximal solution
to the nonlinear integral equation

Flo,2) = 1(z < ) / 6%z, dy)¥(y, F(y, 7)),z €, 2.7)

(——oo,z)

in the class U, of functions u on $ bounded by 0 and 1 and satisfying the condition
u(z) = 0 for > 2. Introduce the operator A, that represents the RHS of (2.7),

Mue) =16 <2) [ Gl by u) e,

. (=00,2) . .
and write (2.7) as F(-,z) = (A,F)(-,z).” Operator A, preserves the pointwise inequal-
ity; if u; > u, then A u; > A u,. Hence, it suffices to prove that there exists a se-
quence of functions wug, € ‘Uzn such that Aznuon > ug,, and lim u,,(z) =1 for each

r €S. Here z, is the sequence figuring in Condition S1.
Set 0
_ /(=)
U, (2) = max|:0, 1-— m ,

where fO is the function figuring in Condition S1 (as f(z)—o0 as z—o0, we can

assume that a(z,,) > 0). Observe that 9(y, - ) is convex and «(y) = (0/0u)y(y,u) at
u = 1. This yields

P(y,u) > 1+ (u—1)k(y) (2.8)
and hence

Mton(@) 2 1 < 2,) [ §7(a,d)(1 = r()(1 ~ 1, »))

(_ oo’zn)
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0
> 1z < zn)/ Gz"(x,dy)<1 - &(y)i(iy))).

( — 00, zn)
Thus it suffices to prove the bound

n WY, &
/ g (z, dy( K(Y) == oz ))>1 a(zn)

(—o00,2,)

But from (2.3) we obtain

fO(z) . n )
e EEL XCE )(_/z)g (o) 258 (0)
0
:/ gzn(z,dy)-—/ Qz"(z,y)({l(iy))n(y). O
(—0,2,) (=o0,2,) "

The proof of Theorem 2.2 follows the same idea as the proof for Theorem 2.1,
and we omit it from this paper.
Proof of Theorem 2.3: Set

Gexp(@) = /Q(m,dy)so(y)=Ez( / e_tso(ﬁ(t))dt)-

0

We consider G, as an operator defined on the domain D(G,,) consisting of functions
f, for which the integrals absolutely converge for P_-almost all trajectories and the ex-

pectation exists for each z € S. G, may be considered as an extended Green opera-
tor of process €.

Let 7 be an arbitrary Markov moment. By the strong Markov property of &, for
any ¢ € D(G,),

Gonp(r) = B, ( / e‘*w(s(t»dt+e—ff<s(r>)), (2.9)

0

where f = G, . Choose an arbitrary z and let 7% be, as before, the time when ¢ hits
[z,00). Consider the function ¢,:

p(x) =p(z),if z <z,
= f(z), if z > 2.

Denote again £*(t) = £(t A77). Process £* is now Markov; we can introduce the cor-
responding extended Green operator GZ,. Then

sz%(m):Ez( / e*%omt))dt)

0

=B, | [eeleoire TR | (2.10)

0
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Comparlng (2.10) w1th %2 .9), we obtain that GZ ¢, (z)= G p(z). Take
© = kf9, then by ( (2.8), GL(kf7), = f", where
(£f0),(2) = k(2)fO(z), if z < z,
= %), if z > 2.
As before, let a(z) = inf[f(z):z > z]. Set
h(z) =, (z),if ¢ < 2,
=a(z), if z > 2,

then h < ¢,, so o= GZh. But the RHS coincides with the RHS of (2.3). Hence,
Condition S1 holds. N O
Proof of Theorem 2.4: We assume thatzlergoFc(x,z) = 0. Furthermore,

P = [o@a)d (nFw2)

. (2.11)
= /g(zoa dy)go(£0ay)¢<y7 Fc(yaz))’ x e S) z e R

Here, % (y,v) =1 —¢(y,1 —v),y € R,0 < v < 1; the last equality in (2.11) uses assump-

tion (). Set

Fe(z, 2)

Fe(ag,2)
First, assume that condition (7éa) holds. Then from (iia) it follows that the

family of functions {H(-,z),z € R} is uniformly bounded and equicontinuous on

J NS for any bounded interval J. Thus, there is a sequence of points z,—oco such
that for any z € S there exists the limit

H(z,z) = (2.12)

Aim H(z,z,) = fO(z) > 0. (2.13)

Now assume that condition (:26) holds. Consider the family of measures
{Qz,z € R} on S defined by

_Y @ 2)

§.(dy) =2
Y Fc(xo,z)

g(xo, dy)~

From (2.11) (with z = z;) it follows that fré (dy) = 1. Consider the Banach space E
(= E(S)) of continuous bounded functions f:S—R having finite limits at +oco. Note
that E is separable. Measure (j determines a linear functional Q L) =
f@ dy)go(y), ¢ € E, with norm 1. In view of the weak compactness of the unit
sphere in the dual space E*, there exists a sequence z,,—oo such that §, () con-
verges, as n—oo, for all ¢ € E. According to condition (iib), the function y*-gy(z,y)
belongs to E for each z € S. Therefore, the sequence of values

azn(gO(m’y)) = /go(:c,y) —dig—y,—(yﬁ-—)—)

d 2.14
Foan ) §(zg, dy) (2.14)

converges for all £ €S. But (2.14) coincides with (2.12). Hence, the limit (2.13)
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exists.
Having established (2.13), observe that lir%—},-w (y,v) = k(y). From Fatou’s
v

Lemma we deduce that fO obeys (2.4). By construction, f° vanishes at each point
from which the neighborhood of infinity is not accessible. It remains to check that
lim fO(z) = co. As 1< Ky <k (see (1.1)),

ZT—00

@) 2wy [ o)1) (2.15)
S

As before, set a(z):ir>1f fO(y); clearly, o is a non-decreasing function. Using
yzz

assumption (#74), find R > 0 and r > 1 such that P_({(p) > z— R) > "LO for all z € R.
Now fix an u € R and let £ be > u+ R. According to (2.15),

P@zr [ W)
(z - R,0)
> kga(z — R)P (E(p) > z— R)
> ra(z — R) > ra(u).
Thus, a(u + R) > ra(u). Deduce that kllngoa(u +kR) = oo. O

Remark 2.5: Observe that to establish the relation lim fO(z) = oo it suffices to
use (2.4) and assumption (7).

Remark 2.6: Assumption (i7b) may be replaced by a weaker condition that for
each x € S the function y € S—gy(x,y) is bounded and the family of these functions
(indexed by z € S) forms a separable set in the space of bounded Borel functions on $
with supremum norm.

3. Conditions of Boundedness for the BD

3.1 In Section 3 we deal with a BD, assuming that the IM process € is a diffusion, in
the sense given in It6 and McKean [11]), on a set S, which is either the line R or the
“extended” half-line R+ = {*}U[0,00), with a singular (or boundary) point at 0.
By & we understand here the “global” generator of process £, again in the sense of
[11]; this means that © acts on a subset D(®) C D,. Here D¢ (= Dg(S)) is the space
of bounded functions S—R, left/right continuous at left/right regular points of £ and
with f(%) =0 (see [11], Chapter 3, Section 3.6, from which we borrow our notation).
More precisely, D(®) is the image of D£ under the Green operators

G, f € De"’/ e~ “E_f(£(t))dt,a > 0,

0
associated with ¢, and ® is defined by ® =1 — G ~! where G = G,. An important
role in our analysis is again played by the Green measures G(z,dy) and §*(z,dy) of
process ¢ and its stopped version ¢* and by their generators ® and ®* understood in
the aforementioned sense. Observe that

GI(2) = [ Qe dn) ). S € D
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As in the general case, we start with sufficiency. Assume that function f and
point & € R are such that there exists a neighborhood U of z and a function f; €
D(®) coinciding with f on UNS. We use the locality theorem for the generator ®
(see the theorem from [11], Chapter 3, Section 3.7, p. 100). According to the locality
theorem, value Q’)fU(x) does not depend on the choice of U and fU We will denote
it by ©) f(z). We agree that the domain D(®,,) of operator &, consists of all func-
tions f for which the value ® f(z) is determined, by the above construction, for any
z €S. Furthermore, given a function f:S—R, we say that it has property A (relative
to ®) if for any b large enough, there exists a function fb € D(®) such that f(z) =
fb(r) for  <b, z€S. If f has property A then for any z €S and b >z, b large
enough, the value (ijb(a:) = 6, f(z) is determined in a unique way.

Consider the following condition called Condition S3:

There ezists a function fO on S having property A such that relations (1.6), (1.7)
hold.

Theorem 3.1: For a BD process Z, Condition S3 is sufficient for S1 and there-
fore for boundedness.

Proof: Take z € S large enough, so that for any b > z function fb figuring in
property A exists. Consider the stopped diffusion IM process £*(t) = £(t A 7%), where
7% is the time of hitting point z by process £. Let G* denote the Green operator of £*
which acts on Dﬁz’ the space of functions on $N( — o0, 2] associated with £*. Then

the domain D(®?) of the generator ®* coincides with the image of D ., under G* and
if h=G?f then ®&*h =h— f. (See again [11], Chapter 3, Section % 6.) For any
o€ De y

z

Gele) =P, < pple) + [ O(ad)ely), <= (3.1)

(—00,2)

Take the functions f b b > 2, ﬁgunng in property Aj; their restrictions to ( — oo, z]
coincide with the restriction of f to (—oc,z]. We agree to use here the same symbol
for a function and its restriction to ( — oo, z]; with this agreement f0 and f p belong to

D(®?) and moreover, (szfo(:c) = @sz(x), z < z (see [11], Chapter 3, Section 3.9, p.
103).
Observe that ®%f%(z) = 0. Therefore, by (1.7),

6, f%(x) = &) + (1 = w(2))f(2)1,(x), =<z
where 1 (z) = 1(z = 2). Again by (1.7), f° = 6, f° + £f°. Hence,
Foe) = w(2)%(2) + &% f(z) + (1 = &) f(2)1,(2), = < 2. (3.2)
Applying operator G* to (3.2) yields
G*fO%x) = Gk fO(2) + G767 fOa) + (1 — v(2))F(2)G71 (),

As G*O*f0 = G#f9 - f0 and G*1(z) = P (17 < p),x < z, this gives, after an easy
calculation,

1o(2) = Gk f) + (1= 6(2) AP < p), =<2 (3.3)
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Substituting ¢ equal to xf° (more precisely, the restriction of £f° to ( — oo, 2]) in
(3.1) yields

G7rfoz) = k(2)fO(2)P,(r% < p) + / §%(z, dy)s(y) fO(y),z < z.

(—OO,Z)

Thus,

Poe) = P(r* < p)f(2) + / 6% (2, dy)() (). (3.4)

(—oo,z)

As a(2) < f9(z), (3.4) leads to

2z) > P(r* < palz) + / 6% (2, dy)w(y) ()

(—o00,2)

which is nothing but (2.3). O

3.2 A separate question is how to check property A. We discuss this question for
the two cases: (a) a smooth BD on R without boundary points; and (b) a smooth BD
on R, with a unique Feller boundary point at 0. That is, we assume that the
operator ®,  is a differential operator

o*(2)

61,/ (2) = 52" (@) + alx) (). (3.5)

Here, functions a, o obey a;<a<a,, o0y<0o <0, where a, o, are constants,
agya; €R and oy > 0. We also assume that a,0 € C*(R) in case (a) or C2(R+) in
case (b). In the first case domain D(®, ) = C*(R); in the second, it consists of the
functions f € C?(R 4 ) satisfying (3.6). Furthermore, by using integration by parts, it
is possible to check that in the first case domain D(®) of the global generator ® con-
sists of the bounded functions f € C?(R) for which (3.5) determines a bounded func-
tion on R. [Observe that the space D, in this case coincides with the set of bounded
functions belonging to C°(R).] Similarly, in the second case, D(®) consists of the
bounded functions f on II_Q_*_, for which f(*)=0, f GCz(R+), the RHS of (3.5)
determines a bounded function on R, , and the boundary condition
! 0'(0)2 n !
20— 220+ 2 2L 0) +a0)(0)) =0 (3.6)

holds for some fixed p,, i = 1,2,3, satisfying p, > 0; p; + p, + p3 = 1. The action of
® on D(®) is given by the RHS of (3.5).

We also assume (in addition to (1.1) and (1.2)) that & € CO(R) or CO(R+ )

Theorem 3.2:  Under the above conditions on functions a,o and &, if a function
10 obeys (1.6) and (1.7), then it has property A. Thus, Condition CD implies Cond:-
tion S3.

Proof: Consider the case of a diffusion on R. Suppose that fO satisfies the
assumptions of Theorem 3.2. Observe that, due to the maximum principle, f° can-
not have a local minimum on R; hence, in view of (1.6), it is monotone
nondecreasing, and therefore bounded on any half-line ( —oco,b]. Owing to (1.7), the
function 02(93) . ,

T—— 9 (z) + a(z) O (z)

is also bounded on any half-line ( —o0,b]. It is clear that we can prolong f° from
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(—o0,b] to the whole R so that the resulting function (as before, denoted by ?2)
belongs to C%(R), is bounded and gives rise to the function

T ) 4 ol ()
92 /b b ’

which is also bounded on R. Thus ?2 € D(6®), and £ has property A.
The same argument works for the case of the diffusion on R, . O

3.3 In Sections 3.3-3.6 we prove that Criterion CD, in the case of a BD process, is
necessary for quasiboundedness (and therefore, boundedness). We again assume that
the IM process ¢ is a smooth diffusion, either on R or on R+, with a Feller boundary
point at 0.

Theorem 3.3: Suppose that a quasibounded BD process E satisfies the conditions
of Section 3.2. Then assumptions (i)-(7i¢) of Section 2.2 and Condition CD of
Section 1.1 hold true.

Proof: We begin with the case of a smooth diffusion on R. The first step is to
check that, under the conditions of Theorem 3.3, assumptions (7), (i7) and (i77) hold,
and hence the boundedness (or even the quasiboundedness) implies Condition N. We
will then deduce Criterion CD from Condition N.

Condition (7) is plain: it is well-known that under the assumptions of Theorem
3.3, the Green measure ©(z,dy), z,y € R, is absolutely continuous, and the Radon-
Nikodym derivative g(z,y) = ®(z,dy)/dy is the Green function for operator I —®,.
Function g is strictly positive and continuous in z,y and admits the representation

9(z,y) = Co(y)m(z), =<y,
(3.7)
= (1 (y)ny(z), y <

Here n; and (,, ¢ =1,2, belong to C%[R) and obey 1:Co = 19Cqs 1;(x) >0, z €R,
2
Ny(—00) =ny(c0) =0, and 17, satisfy the differential equation z ;z)n%’(:c)+

a(z)n(z) =n;(x), © €R. Note that these conditions determine functions 7,7,
uniquely, up to constant factors. Functions {,, {5 are given by

2n,
. = -—L y 3-8
Cl O_ZW ( )
where
W =mny—mmny = €R, (3.9)

is the Wronskian. Observe that the above formulas determine function g uniquely.
Furthermore,

(glo)zg(x’y) = g(a:,y) - 6(:’5 - y), T,y € R. (310)

Equation (3.10) is an “extended” differential version of the operator identity G =

G — 1 which follows immediately from the definition of the global generator ©.

[(®),), in the LHS of (3.10) means that operator ®,  is applied to variable z.] Hence,

go(z,y) in assumption (ii) equals ;g((;’—yy)). go is continuous in , y and, in view of
Ov

(3.7), does not depend y when y is outside the interval between z; and . Any of the
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conditions (iza) and (7ib) then follow immediately.

Finally, assumption (ii1) follows from the fact that coefficients a and o are
bounded.

So, by Theorem 2.4, if the BD is quasibounded then Condition N holds. We are
now going to deduce Condition CD from N (in general, functions f9 in Conditions N
and CD will be different). Denote the RHS of (2.4) by f°. Observe that in the case
under consideration, f°(z) >0 on R. Thus, f(z) >0 on R. Applying operator 6,
and using (3.10), we obtain

2
61, 7%(z) = TV 7% (2) + a(@)F(2) = FO(s) - w(2)fO(a). (3.11)

According to (2.4), f°(z)> f(z) [i-e.,, w(2)f°(z)/f%x)> k(z)]. Therefore, f°=

L 6(z,dy)r(y) fP(y) > [G(z,dy)x(y)f°(y).  Thus, _function 7O obeys (2.4). As
assumption (¢4%) is fulfilled, we can deduce thathleréofo(x) = oo (see Remark 2.5).

At this stage, we apply Lemma 3.5 (see below), with I,(z) = &(z)f%(z)/fO(z) — 1
and ly(z) = k(z)—1. According to Lemma 3.5, there exists a positive solution of
Equation (1.7) for which (1.6) holds true. This completes the proof of Theorem 3.3
for the case of a smooth diffusion IM process on R. |

3.4 Lemma 3.5 is an elementary result from the theory of ordinary differential
equations. Despite its transparent character (and short proof), we failed to track
down this result in the available literature. The same is true of Lemmas 3.6 and 3.7
below.

Consider a second-order differential equation

y'(2) + o(2)y'(2) - Bx)y(z) = 0, z € R. (3.12)

Suppose that coefficients o and 8 are C°-functions and 8 > 0.
Lemma 3.4: Under the above conditions, equation (3.12) possesses a solution y,
such that

yolr) > 1, z eR. (3.13)

Proof: If § =0, we can take y,=1. Now suppose that B(zy) >0 for some
zy € R. Consider the solution of the Cauchy problem for (3.12), with the initial condi-
tion

y(zo) = 1, y'(zg) =0, (3.14)

and denote it again by y,. Since F(zy) >0, function y, has a local minimum at
point z3. On the other hand, by the maximum principle, the solution of (3.12) can-
not have a local positive maximum. Hence, y, obeys (3.13). O
Lemma 3.4 is used to prove
Lemma 3.5: Let functions a and o satisfy the conditions of Section 3.2. Assume
that 1, and l, are two CO-functions on R, and ly >1,. Suppose that there exists a
positive solution g, of the equation
2
0(;) g"(z) +a(z)g'(z) = —,(2)g9(z), z€R: (3.15)

Then there exists a solution gy of

o(z)?
(2) 9"(z) +a(z)g'(z) = —Ily(z)g(z), z€R, (3.16)
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with g, > g;.
Proof: We search for a solution g, of the form g,(z) = g,(z)y(x). Then for
function y we have an equation of form (3.12), with

a(z) = i((la(:)j; +2z(z), and B(z) = W’
where z(z) = (log g(z))’. By virtue of Lemma 3.4, y > 1. 0

3.5 The above argument may be extended to the case where the IM process is a
smooth diffusion on R+ = {*}U[0,00), with a Feller boundary point at 0. The
proof of Theorem 3.3 in this case follows the same line. The Green measure §(z,dy),
z >0, may now have an atom at 0, but its restriction to (0,00) is absolutely
continuous, and the Radon-Nikodym derivative g(z,y) = §(z,dy)/dy is positive for z,
y > 0. For any z; > 0, the function

g(x,y)
9(zg,y)'

may be continuously prolonged to R xR (i.e., defined for @, y > 0). We remark
that the function on R, xR, so defined (we again denote it by g,) coincides with
G(l‘,dy)
G(Z‘O,dy).
z,y > 0, the representation (3.7), where functions 7, and ¢, again obey 7,(y = 75(;,
n;(2) >0, >0, pyni(0) = (py + p3)n1(0),7m5(c0) =0, and functions 7; satisfy the

2
differential equation < 2(x)n’l~'(:c) +a(z)ni(x) = n,(x), © > 0. As before, functions 7,7,
are determined by these conditions uniquely, up to constant factors, and functions (;,
¢y are given by (3.8) and (3.9). Function g is again determined by the above
formulas uniquely and obeys (3.10) for z,y > 0.

The above properties enable us to repeat the argument and check assumptions
(7)-(427) of Section 2.2 for the case under consideration. Therefore, Condition N is
again valid, and function f%is >0 on (0,00). What remains is to deduce Condition
CD from N. Denoting, as before, the RHS of (2.4) by 7°, we have f° >0 on (0,00)
and can write (3.11). Observe that, by virtue of Remark 2.5, we again have
Jim [(z) = oo.

go(m,y)z l’,y>0,

the Radon-Nikodym derivative Furthermore, function ¢ admits, for

3.6 At this point, we are going to use Lemmas 3.6 and 3.7 which are modified ver-
sions of Lemmas 3.4 and 3.5, respectively. [The way these lemmas are used differs
for the case p, > 0 and p, = 0, see below.]
Lemma 3.6: Let o and § be CO-functions on (0,00) and B> 0. Given e >0, let
y. denote the solution of Equation (3.12) satisfying y (¢) =1, y.(e) >0. Theny, >1
on [€,00).
Proof: The proof of Lemma 3.6 again follows from the maximum principle.
Lemma 3.7: Let functions a,c and | belong to C’O(IR+). Assume that function
fe CQ(R_l_) is >0 onR, and >0 on (0,00) and satisfies the differential inequality
0-(1:)2 1" ’
TV (@) + () f (2) < Fl@)i(2), @ >0, (3.17)

Then the function g satisfying the equation
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z 2
%)——g"(w) +a(z)g'(z) = g(z)l(z),z > 0, (3.18)

with the initial data g(0) = £(0), ¢'(0) > f'(0), obeys g(x) > f(z), z > 0.

Proof: Substitute g =yf in (3.18). Then for the function y we obtain an
equation similar to (3.12), with «(z) = 2a(z)/o(z)? + 2(log f(z))' and B(z)=
2(f(x)l(z) — h(z))/(o(x)2f(z)), where h(z) denotes the LHS of (3.17). Functions o
and 3 satisfy the conditions of Lemma 3.6 (8(z) >0 by virtue of (3.17)). Take an
€ >0 and construct, on [¢,00), a solution y(z) of (3.12) with initial data y (¢) =1
and y.(e) = (g'(0) — f'(0))/f(¢). The function g (x) =y (x)f(x) gives a solution to
(3.18) on [e,00) with initial data g (¢) = f(¢) and g.(¢) = f'(¢) +4'(0)— f'(0). g,
may be prolonged, as a solution to (3.18), to [0,00). We obtain a solution of (3.18)
with conditions at £ = ¢. Letting ¢—0 and using the continuity of the solution in the
initial condition, we obtain that g (z) converges to g(z), z > 0, as e—0.

According to Lemma 3.6, y (x) > 1 and hence g (z) > f(x), ¢ > €. Thus, g(z) >

(@), z > 0. O
To complete the proof of Theorem 3.3, we take the solution of the equation
o(2)® , ,
ZE) g (x) + a(a)g'(z) = (1 - a(2))g(x), =20, (3.19)

with initial data g(0) = f°(0) and
g'(0) = F%(0), if p, =0,
= 7°(0) + par(0)(£°(0) = 7°(0)) / bz, if £y > 0.

Observe that in the second case ¢'(0) > f*. By Lemma 3.7 (with | =1 — k), g(z) >
?O(m)’ z > 0.

Function ¢ (specified in the preceding paragraph) is an obvious candidate for the
role of function f° figuring in Condition CD. It remains to check that it satisfies the
boundary conditions (3.6), so that the LHS of (3.19) can be treated as & g(z).

If p, =0 then f°(0) =0 (the neighborhood of infinity is not accessible from 0).
Hence g(0) = 0 and the LHS of (3.19) vanishes at £ = 0. Therefore, (3.6) holds if we
substitute f(0) with g(0). If p, > 0 then we use the fact that f° obeys the boundary
condition 0(0)2

270 = 27°0) + 55 (2L 00) + a0)70) )

together with the equality

2
2OV F9(0) + a©)7(0) = 79(0) - x(0)1°(0).
This again leads to (3.6) for f(0) = ¢(0). 0

3.7 In Sections 3.8-3.9 we extend the previous discussion to the case of a BDJ process
= where IM process ¢ is a diffusion on R +» with a boundary point at 0 and a jump
from 0 to (0,00). We retain the assumptions of Section 3.2 on functions a, o and «.
The boundary condition (3.6) is now replaced by

2
1) = 52+ 2 ZL0) + a0} ) = | panuw-soy.

(0,00) (3.20)
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Asin (3.6), p; >0,7=1,2,3, and p > 0 are constants; p; + py + p3+p = L.

The domain D(®) of the “global” generator ® of process { consists the bounded
functions f on R+, for which f(*)=0, f € C*(R + ), the RHS of (3.5) determines a
bounded function on R , , and (3.20) holds. The action of ®, on D(®), is again given
by the RHS of (3.5). The domain D(®,)) of the operator &,  consists of functions
fe C'Z(R ) satisfying (3.20) (with the condition that the integral in the RHS of
(3.20) converges absolutely).

Property A and Condition S3, relative to operator ® defined in the preceding
paragraph, are formulated in exactly the same way as in Section 3.1.

Theorem 3.4: For a BDJ process =, Condition S3 is sufficient for S1 and there-
fore for boundedness.

Proof: Choose z large enough so that for all b > z there exists the function fb
figuring in property A. Set ﬁz = E*(t A77) where 77 is the first time that process £
hits the half-line [z,00). As fb € D(®), we have that fb = G for some ¢ € D,.

Set

e, =¢(z), <z
N (3.21)
= fg(m)) T2z

Then, as proved in Section 2.3, ¢, € Déz and G*p, =Gy :?2. Thus, ?2 € D(6%)

and @z}‘g = ?g —¢,. But then @2’]?2 = Iz@?g = Iz@lofo, where I (z)=1(z < z).
By virtue of (1.7), we obtain that

1f°=1_kf°+G*7).
Applying operator G?, we have that GZszO = Gzszch + Gz?g - ?b' Denote
J(r)= 1-TI,(x)=1(x>2). As szo = Iz?g, we obtain that
70 =G*1 60+ G2 fY. (3.22)

Now calculate function GZJZ?E. First, note that both f®and ?2 satisfy (3.20),
and the LHS of (3.20) for these functions are the same. Therefore,

/ p(dy)J (v)f°(y) = / P(dy)J (1) Fw)- (3.23)
Furthermore, Gz(Jz?g)(x) = E(e_"z']\“g(ﬁ(rz))). For z < z we represent the event
{r% < p} as the disjoint union AyU A,, where A; = {r° < p,£(7*—0) =0} and 4, =

{r* < p,&(r* = 0) = z}.
For the expected value E (e ™" fb(f(rz))) we obtain the decomposition

G*(J (@) = P(A)E, (e~ T T9E(T*)) | Ag)

N (3.24)
+P(A)E (e” T FRE(T) | A,).

For the second term in (3.24), we have

E (™7 FE() | A,) = FU2)E (e ™7 | 4,).
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The first term in (3.24) equals

BTN 1 40) = 1 [ )T )WL Ay).

Taking into account (3.23) yields

E (e~ Fo(E(r) | Ag) = Byl ™ fO(E()) | Ag).

As ?g(z) = f%(z), we have for z < 2
E, (e TUE))) = Eyle ™ FUE())):

This yields the equality G’(Jz?g)(m):Gz(szO)(x), z < z. Then, by virtue of
(3.22),

Pe) = F(x) = GH(LafO)@) + G 1) (&), = < 2.
As Jz(:l:)fo(m) > J (z)a(z), we obtain
fOz) > Gz(IznfO)(x) +a(z)P (" <p)z<z

The same inequality trivially holds for z > z. This yields Condition S1. O

As before, a separate question is when property A may be verified. Under the
above assumptions, the assertion of Theorem 3.2 remains valid also for a BDJ pro-
cess. The proof of this fact follows the same lines as in Section 3.2. Thus, for the
BDJ processes under consideration, Condition CD implies S3 and hence is sufficient
for boundedness.

3.8 In this section we analyze the necessary conditions for boundedness of a BDJ pro-
cess.

Theorem 3.5: Suppose that a quasibounded BDJ process Z satisfies the condi-
tions of Section 3.8. Then assumptions (3), (iib) and (4ii) of Section 2.2 and
Condition CD of Section 1.1 hold true.

Proof: The proof follows the same argument as that of Theorem 3.3, and we
omit some technical detail. The Green measure §(z,dy),z > 0, may have an atom at
0 (if p3 >0 in (3.20)), but is absolutely continuous on (0,00) (even if measure p has
atoms). More precisely,

G(z,dy) = (9(z,y) + b(y)n(z))dy + an(z)éy, = >0, (3.25)

where 6, is the Dirac delta-measure concentrated at 0. Functions g,n and b and con-
stant « are connected to each other via a system of relations described below. Name-
ly, function g admits the representation (3.7), where functions 7,, (;, ¢ = 1,2, belong
to C*R) and obey 7,y =n,Cy, mi(z) >0, >0, pyni(0) = (py + psy+ p)n;(0),

2
Ny(00) =0, and 7, satisfy the differential equation ~ ém)n;’(x) + a(z)ni(z) = n,(z),
z > 0. Functions 7,7, are again determined by these conditions uniquely, up to con-
stant factors, and functions (;, {, are given by (3.8) and (3.9). As before, function ¢

is determined by the above formulas uniquely and obeys (3.10) for z,y > 0.
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Function 7 in (3.25) coincides with n,. Constant « has the form a = p;/d, where

d = (py + p3+ p)ny(0) — pany(0) — p / p(dy)n,(y) (3.26)
(0,00)

(the integral ,uf(oyoo)p(dy)nz(y) is finite and d >0 as function 7, is decreasing).
Finally, function b is given by

b =4 [ pag) (3.27)
(0,00)
Observe that these relations determine the products an and by in a unique way.
Fix z; > 0 and set

9(2,y) +m,()b(y)
g(wo, y)+ 772(1'0)1’(1'/)’
By continuation, prolong function gy on R, xR, . Then gy(z,y) gives the Radon-
g(z‘,dy)
g(l‘o,dy).

We now check (izb). By using (3.8) and (3.9), it is easy to check that both func-
tions g and b are continuous in y. It remains to verify that for each & > 0 there exists
a finite limitJergogO(x,y). According to (3.7), for y > max[z,z,],z > 0,

11 (2)Co(y) + ny(2)b(y)
11(20)Co(y) + ma(z0)b(y)

It is clear that it suffices to establish that there exists the (possibly infinite) limit

yl_)ngo Cb2((y )) Observe that the ratio Z;Ez) ZIEZ; (see (3.8)) is n(ond)ecreasing in y. By
using (3.7), it is easy to deduce that for each z > 0, the ratio e y)
9(z,y) _ 2

ing in y, and hence hm ) - n,(z). Thus the ratio : ((yy)) is nondecreasing, and the
2

9oz, y) = z,y > 0.

Nikodym derivative

This yields assumption (7).

9o(z,y) = (3.28)

is also nondecreas-

above limit exists (and equals 7 Ef 0,00) p(dz)ny(2)).
Assumption (7i), as before, fo&lows from the boundedness of coefficients a and o.
Therefore, if a BDJ process Z is quasibounded, it satisfies Condition N: there
exists a fO obeying (1.6) such that f°> G(kf°). Set = G(kf°). Then f° belongs
to CA(R + ) and satisfies the boundary condition

(py + 1) F(0) = P2 (0) + P38, fO(0) = / p(dy)F(y). (3.29)
(0,00)
In other words, f° e D(®),). As in Section 3.3, Remark 2.5 implies that lim fO = oo.

Applying operator &, yields Q’)bfo fFO—kfO<FO>1 —k).
We now want to check that Condition CD holds. Consider the equation

o(z)?
(2) u'(z) + a(z)u'(z) = (1 — k(z))u(z), z>0. (3.30)

We will show that there exists a solution u to (3.30) satisfying (1.6) such that

(py + 1)u(0) — pou'(0) + p3(1 — (0))u(0) = /1/ p(dy)u(y)- (3.31)
(O’OO)
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In fact, (3.30) has two linearly independent solutions, u; and u,. Clearly, there
exist constants c; and c, such that the linear combination u = ¢ u; 4 cyu, satisfies
(3.31). This means that u € D(®;,). We first check that u(0)# 0. Indeed, if
u(0) = 0 then (3.31) becomes

@) =s [ P (3.32)

(0,00)

Suppose, for definiteness, that u'(0) >0 and write u in the form u = yf9. Then for
function y we have an equation similar to (3.12). As u(0) =0 and v/(0) > 0, we have
that y(0) =0 and y’(0) > 0. Function y cannot have a positive maximum. Thus,
y(z) > 0 and hence u(z) >0, z > 0. We see that the LHS and RHS of (3.32) are of
different signs (the LHS is < 0 whereas the RHS > 0) which yields a contradiction.
Thus, u(0) # 0.

Function u was determined up to a constant factor. Choose it so that u(0) =
72(0).  Set v(z) = u(z) - fOz). As 6,,f°z) < (1-x(z))f°), function v satisfies
the inequality ® v(z) > (1 —&(z))v(z). As v(0) = u(0) — f°(0) = 0, value G, v(0) >
0.

From (3.29) and (3.31) we find that

- pov'(0) + p3G® v(0) = u/p(dy)v(y). (3.33)

If v'(0) > 0 then «/(0) > f°(0). By virtue of Lemma 3.7, u(z) > f%(z), £ > 0. Thus,
u obeys (1.6).

Now suppose that v'(0) < 0. Then v(z) < 0 for z > 0 small enough. On the other
hand, as &, v(0) > 0, the LHS of (3.33) is positive. Therefore, J (0,00) p(dy)v(y) > 0.
Thus, there exists £ >0 with v(z) > 0. Denote by 29 the mlnlmal pos1t1ve point
with v(z%) = 0. At this point v'(°) > 0. Then u(z®) = f%(«°) and w'(z®) > 7%(z?).
Now we use Lemma 3.7, with point 0 replaced by «°. This yields u(z) > fO(z), = >
z%. Therefore, u(z) > 0, = > «°, and lim u(z) = oo. It remains to prove that u(z) > 0
for 0 <z < z% Again write u = yf°. Then y(0) =1 (as u(0) = 7°(0)) and y'(0) < 0
(since v'(0) = u'(O) 7°(0) < 0). Function y satisfies (3.12) and hence cannot have a
negative minimum. At the same tlme, the equality u(z®) = f°(«°) implies that
yo(z°) = 1. Thus, y(z) >0 for 0 <z <z°. We can now conclude that u again satis-
fies (1.6). Thus, Condition CD is fulfilled for fo=u. O

4. Conditions of Boundedness for the BJM Processes

4.1 We again begin with sufficient conditions. A jump Markov process & is
determined by a function u(z), €S, and transition probability measure 7(z,dy),
z,y € S. Throughout Section 4 we assume that

0 <pp<pu(z)<py, z€S,

where g < p; < 0o are constants, and p € C(S). We denote by T'(t), t > 0, the semi-
group of operators corresponding to & which acts in the space B(S) of bounded Borel
functions f on S, with f(*)=0. The generator of the semi-group, ®, is defined on
the whole of B(S) by
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6f(x) =~ u(@)S (@) + (x) [ 7(z, 1) () (4.1)

The extended generator, ®, , is defined on all Borel functions f on S for which the
integral in the RHS of (4.1) exists, and is given again by (4.1). [The notation &,
stresses that (4.1) is an integral operator.] The set of such functions is denoted by
D(@—)in)'

Theorem 4.1: If Condition SJ holds then the BJM process 2 is bounded.

Proof: Set

11f(e) = [ n(e,dy)f(w) (4.2

). Let fO be the function from

Then II is a linear operator with the domain D(®
Condition SJ. Observe that IIf%(z) = (1 —K(x)‘1> fO(z). Thus, If° < cfO where

u(z)
¢ >0 is a constant. Consider the extended Green operator G, of process £ (see
Section 2.3); in this section we denote it by G;,. Operator G, is integral, in Green
measure §(z,du). If 0 € B(S), then &; 0 =0 — G, 1y,
We fist show that fC e D(G,,). Choose a sequence f, € B(S) such that fanO.

Then (SjinfnT@infO =fO—kfO Set 0, =f"—6,,f, Then (pn—m:fo. Since f, €
B(S), G;,¢,, = f,- Passing to the limit, we obtain, by virtue of Fatou’s Lemma, that

o> Ginfcfo, whence f° € D(G,,)-

Now we have ¢, = (14+p)f,—pllf, .  Since IIf < f°%<cf® we have
loy(z)] < clfo(z), z €S, where ¢; >0 is a constant. Thus, by the fact that fle
D(G;,), the functions ¢, are bounded by an integrable in §(z,dy) function clfO.
Therefore, f° :nh_’nc}ofn :nli_)néoGingon = Ginfcfo. Hence, function fO satisfies Condition

S2. |

4.2 The analysis of the necessity conditions for BJM processes starts with the
following intermediate result.

Theorem 4.2: Suppose that IM process & is jump Markov and satisfies assump-
tion (iit) of Section 2.2. Suppose that the corresponding BJM process = satisfies
Condition N. Then Z satisfies Condition NJ.

Proof: If function § € B(S), then

CinGintd = GinOipnt = Gy,0 — 0. (4.3)
Consider an arbitrary nondecreasing sequence of functions f, € B(S) converging to
the function f° figuring in Condition N. As xf% > f°, function f° is integrable in
G(z,dy) for all x €S. Set o, =G kf,. As fanO, sequence ¢, is nondecreasing in
n. Also, ¢ _< Ginfcfo < fY. Thus, sequence ¢, converges. Set ¢ :nli_{rgogon. Then
0, < < f7, and ¢ is integrable in §(z, dy).

As f,, € B(S), we have, by virtue of (4.3) (with § = <f ), that ¢,, € B(S) and

®Son( = ®inson) =¥Pn— Kfn' (4'4)
Thus, — pp, +pllp, = ¢, —kf,, where II is defined in (4.2). Hence, ullp, =

(14 p)p, —kf,, whence ullp <cp,, where ¢>0 is a constant. Furthermore,
T}Lngouﬂgon = (14 p)p—kf. Since II is an integral operator, we obtain, by Fatou’s
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Lemma, that lim pllp,, > pllp. Thus, ¢ is integrable in w(z,dy) for all x € S. Since
©,, <, by Lebesgue’s Dominant Convergence Theorem,nli_)ngo@pn =6, . On the
other hand, by (4.4), lim ®¢,, = ¢ — kf. Therefore, ©; .0 = ¢ —Kkf < — K.

Thus, we have found a nonnegative function that satisfies the inequality in Condi-
tion NJ. It remains to check that ¢(x)—oo as x—oo. To this end, observe that
Gy, (z) = — p(x)p,(z) + p(x)p, (x) (here, as before, ¢, =G;.kf,) Thus,
| ¢, (z)| <cqp(z), where ¢; >0 is a constant. We see that function |®¢, | is
bounded by a function integrable in §(z,dy) for all z € S. Since ¢, € B(S), GGy, =
Gy, — ¢, Letting n—oo, we obtain G; &, ¢ =G, ¢ —¢. On the other hand, as
6,0 <p—kp, we have that G 6, ¢ <G ,p—Gkp. Therefore, G rkp <.
Relation lim ¢(z) = co now follows from Remark 2.5. O

4.3 In this section, we establish the necessity of Condition N for quasiboundedness of
a BJM process on a denumerable phase space S, under assumption (¢:7) of Section 2.2
and the following additional assumption: (iv) there exists a point x, such that any
point €S is accessible from z, by a finite number of jumps with transition
probability 7. That is, there exists a finite sequence z,z;,...,z, = z of points from §
such that 7(z,x; +1}) >0,7=0,...,,s—1.

Theorem 4.3: Suppose that for a BJM process Z, with an IM process € on a de-
numerable set S, assumptions (iit) and (iv) hold. Then if E is quasibounded, Condi-
tion N holds true.

A direct corollary of Theorems 4.2 and 4.3 is the following theorem.

Theorem 4.4: Under the conditions of Theorem 4.3, if E is quasibounded then
Condition NJ holds true.

Proof of Theorem 4.3: For any bounded function ¢:S—R,

/ 6(z,dy)p(v) = Y a(z,v)e(y)- (4.5)
yes
Here ¢(z,y) = [ §(a, du)I(u) and I, is the indicator of the one-point set {y}. Condi-
tion (4v) implies that
9(z,y) >0, y €S. (4.6)

According to (2.11) and (4.5),

Fe(e,2) = Y ae,9)¥ (1, 7y, 2)):
~ yeS
It is easy to see that ¢ (y,v) > v, whence

Fe(e,y) > Y a(e,9)F(y,2). (47)
yeSs

F'C(J:,z)
Fe(zg,2)

We again set
= H(z,z).

Then from (4.7) (with z = ;) and (4.6) we get

H(y,z) < ———
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Thus, there exists a sequence of points z_—oo from § such that for any y € S there

exists the limit Jim H (y,2,). Taking fd1(y) equal to this limit leads, as in Section
2.4, to the conclusion of Theorem 4.3. O
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