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A general model of a branching Markov process on N is considered.
Sufficient and necessary conditions are given for the random variable

M sup max ..k(t)
t>0 l<_k<_N(t)

to be finite. Here Ek(t is the position of the kth particle, and N(t) is the
size of the population at time t. For some classes of processes (smooth
branching diffusions with Feller-type boundary points), this results in a

() ,,,criterion stated in terms of the linear ODE 2 (x)+a(x)Z’(x)-
,(x)(1-(x))f(x). Here or(x) and a(x) are the diffusion coefficient and
the drift of the one-particle diffusion, respectively, and ,(x) and (x) the
intensity of branching and the expected number of offspring at point x, res-

pectively. Similarly, for branching jump Markov processes the conditions
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are expressed in terms of the relations between the integral
It(x) frr(x, dy)(f(y)- f(x)) and the product A(x)(1 tc(x))f(x), where
A(x) and g(x) are as before, It(x)is the intensity of jumping at point x,
and rr(x, dy) is the distribution of the jump from x to y.

Key words: Branching Markov Process, Branching Diffusion, Branch-
ing Jump Markov Process, Boundedness, Green Measure, Green Operator,
Generator.

AMS subject classifications: 60K35, 60J80.

1. Introduction and Comments

1.1 In this paper, the term branching Markov (BM) process is used for a continuous
time Markov-type evolution of a system of randomly moving particles on the line N.
Particles may create new offspring; the rate of creation and the offspring number dis-
tribution depend only on the position of the parent particle. Each new particle starts
moving from the point where it was created, in accordance with a fixed Markov
process of individual motion (IM), which is not supposed to be space-homogeneous.

For the formal construction of a BM process and its basic properties we refer to
Athreya and Ney [1]; some more recent works are discussed, e.g., in the review by
Oynkin [6]. In particular, the reader is referred to Dynkin et al. [7], where general
construction and properties of a measure-valued branching Markov process arc discuss-
ed. Specific problems arising in the non-homogeneous and non-Euclidean cases are

discussed in Lalley and Sellke [16] (see also the references therein) and Lalley and
Sellke [17]. In this paper, we use the standard facts about the BD without going into
detail. The IM Markov process is denoted by (= (t),t>_ 0). The distribution of
process , given that it starts at point x E N, is denoted by Px, and the expectation in

Px is denoted by Ex. The rate (intensity) of the branching of the particle positioned
at x is denoted by (x), and the distribution of the number of offspring by K(x,. ).
We agree to think that a particle "dies" at the moment of branching, therefore it is
not counted afterwards. By n(x) we denote the expected number of offspring produc-
ed at point x:n(x)- y’K(x,j)j. Throughout the paper we assume that , E C(R)
and

0 < "0 -- ) -- 1 < (:x:), 1 < n0 <_ g _< gl < Cx:), (1.1)
where hi, ai are constants, 1, 2. [Here, and below, Ci(N) denotes the space of func-
tions on N which are of class C at each point x N (without any assumption of
boundedness); a similar notation is used when the line N is replaced by its subset.]
We also assume that

K(.,0) 0, (1.2)
which means that the particles always produce at least one offspring.

A number of interesting examples are incorporated if we assume that the IM pro-
cess may have an "absorbing" state, -k, such that remains at once it reaches it.
We agree to think of " as a "point at -co", meaning formally that < oc and,
moreover, -it oc, x) for any x R. The "extended" line {’} U N is denoted by

It is convenient to fix a phase space of the process (i.e., a subset C_ N such that
ex(t gVt > 0)- 1 for each x E N). In the sequel, we work within without
mentioning this fact explicitly every time. It is assumed that fl N is a Borel set
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which contains a sequence zn with lim z..- oo. It is also assumed that, for each

x E S, Px is concentrated on the set 0x of the right-continuous trajectories
w: [0, c)S with w(O)- x. Finally, we suppose that is a Feller process on (in the
topology induced by the standard Euclid topology on ); i.e., the corresponding semi-
group {Tt: t >_ 0} given by Ttf(x Ex/((t)) takes space C() of the bounded con-

tinuous functions 5N to itself and is strongly continuous there. Thus, is deter-
mined by a generator 5 which is a densely defined operator inC(). While dealing
with some particular types of processes (a smooth diffusion on N or on N+
{’} U [0,) with a boundary point at 0), it is convenient to treat ffi as an operator
in the space D(- D(N)or D(N+ )). See Section 3 below.

The BM process is denoted by E(t), and its sample space and probability distribu-
tion, given that the starting point is x, by x and Px, respectively. Given t >_ 0, let
Ek(t), k- 1,...,N(t), denote the random positions of particles by time t, where N(t)
is the total number of particles in the population. We are interested in the quantity

i sup Y(t) sup y(t), (1.3a)
where _> 0 _> 0

Y(t) max Sk(t), r(t) sup r(s). (1.3b)
_k<_N(t) 0<s<t

Here, the random variable Y(t) (y(t)) gives the maximal position of the particles in
the BM process at time t (respectively, on the time interval [0, t]) and M the overall
supremum of the positions. The question is whether the random variable M is pro-
per, i.e.,

2u(M < cx) 1, y e . (1.4)
A BM is called bounded (in a positive direction) if the variable M is proper.

A similar question arises about the quantity

]r sup (n) sup (n), (1.5)
n>0 n>0

where (n) (p(n)) gives the maximum of the position of the particles of the nth
generation (respectively, the generations 0, 1,..., n) in the BM process, at the times of
their divisions T1,...,T(n); N(n) is the number of particles of the nth generation.

[The nthgeneration is formed by particles that have precisely n ancestors.] By de-
finition, Y (0)- p(0)_ x. We saZ that a BM process is quasibounded (in a positive
direction) if the random variable M is proper.

It is clear that if a BM process is bounded, it is quasibounded. We show that if
the IM process is a smooth diffusion (possibly with a boundary point), the converse
is also true.

Intuitively, the answer to both questions depends on the outcome of a "competi-
tion" between several factors" the "drift" and "volatility" of the law of process and
the parameters , and K of the branching mechanism. In Section 2 we give general
sufficient and necessary conditions for boundedness and quasiboundedness of a BM
process under quite general assumptions on . These conditions are stated in the
form of inequalities involving the so-called Green measures of process and its
stopped version. [The conditions on imposed in the necessity part are more restric-
tive than in the sufficiency part.]

An interesting example of the BM process is the branching diffusion (BD), where
is a diffusion process. We consider the case where is a "smooth" diffusion on
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S-- or +, where + -{*}tD+ and + -[0, cx3). In the latter case we
assume that 0 is a Feller-type boundary point. In Section 3 we establish a criterion
(i.e., a necessary and sufficient condition) which is quite unexpectedly short: let
denote the "local" generator of process , with a domain D(lo). "Local" means that
no assumption is made about the behavior of functions f E D(5io as x ; all
conditions are stated in terms of their properties in some neighborhoods of the points
x E S. In other words, 1o is merely a second order differential operator, with the
diffusion coefficient a2(x) and drift a(x), completed, when necessary, with the
corresponding boundary condition. Formally, 51o is an extension of the "global"
generator 5. [The precise meaning is given in Section 3.] Then there is the following
necessary and sufficient condition, called below Condition (or Criterion) CD for the
BD process to be bounded (and hence, quasibounded).

There exists a function f0 (on [ or + such that

fo >_ O, xli_,Inf(x) oc, (1.6)
and

f0 D(tlo), lof0(x)+ .X(x)((x)- 1)f(x) 0. (1.7)

Thus, Criterion CD reduces a rather intricate probability-type question about a
BD process to a problem concerning a spectral property of a linear differential opera-
tor. In Sections 1.2-1.5 we comment on the applicability of Criterion CD, and show
that in a number of interesting examples it leads to a straightforward answer.

The problem of boundedness (or, more generally, of an asymptotical behavior) of
a BM process was first discussed, in a somewhat different setting, by Hammersley [9]
and Kingman [15]; later it was actively investigated by Biggins and co-authors (see
[2, 3] and the references therein). However, the above papers considered the case of a

space-homogeneous IM process , constant ,, and fixed probability distribution K. A
general model of a discrete-time and one-dimensional discrete-space non-homogeneous
BM process was recently discussed by Karpelevich and Suhov (see [14] and the refer-
ences therein), where a "discrete" analog of Condition CD was derived.

1.2 We start our comments on Criterion CD with the case of a space-homogeneous
BD process, where has a constant drift and diffusion coefficients a N and r > 0,
and , and K (and hence ) do not depend on xE[. In this case, we speak of a

branching Brownian (BB) motion. Then, if s > 1, a necessary and sufficient
condition of boundedness is:

a2a < O, - _> 2A(- 1). (1.8)

Bound (1.8) follows from results of McKean [18]. See also Karpelevich et al. [12].
[Earlier, it was established in Biggins [2] that under (1.8), the space-homogeneous BB
motion is quasibounded; the fact that (1.8) is necessary for quasiboundedness also
may be derived from results of [2].]

It is easy to check that (1.8) is equivalent to Condition CD. [Of course, the BB
motion will then be unbounded in a negative direction.] In fact, in this case I1o is a
second-order differential operator on N with constant coefficients

(blof(X) ff--f"(x) -4- af’(x), x e [. (1.9)
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The general solution to the linear ODE (1.7) is of the form c+exp(b+x)+

(a2 2"k(-1))
1/2

c_exp(b_x), xEN, where c+ are constants, and b+ a+ 4 2

which immediately leads to (1.8). Note that under (1.8), b + >_ b_ > 0.
Pictorially speaking, the ratio a2/r2 in (1.8) measures the "rigidity" of a BM"

the greater it is, the less "random" the motion looks at large times. The value
2a 2,(-1) shows the outcome of the "competition" between the rigidity and an2

"entropy" of the process of creating new particles. In short, the meaning of condition
(1.8) is that the drift suppresses all "entropy factors" presented in the BB motion.

Criterion CD provides a straightforward answer to the question of boundedness in
all cases where the operator 1o may be written in the form (1.9) after a change of
variables. In other words, it means that what matters for boundedness of a BM
process is the behavior of certain expectation values as functions of a space variable.
This covers a variety of examples where, to our knowledge, none of the existing
methods is applicable.

1.3 Another example where the Criterion CD gives a complete answer while other
existing methods do not is the BB motion on N+. Suppose again that a,r,, and
are constant, a > 0, and consider the case of a Feller boundary point at 0. The latter
means that the boundary condition at point 0 for operators and 51o reads

pl/(0)- p2f (0) + Pa -f (0) + af’(O) O. (1.10)

Here Pi>-O, i- 1,2,3, are constants; Pl +p2+p3-1" The case Pl-P3-0 corres-

ponds to a reflecting and p:- P3- 0 an absorbing (or killing) barrier at 0; in the
latter case, process jumps from 0 to state and remains there forever. The opera-
tor 51o is given by the right-hand side of (1.9), by replacing x E N by x _> 0.

As before, the general solution to (1.7) (in the case under consideration it means
that f0 satisfies the differential equation and the boundary conditions) has, for x _> 0,
the above form. A simple analysis shows that if condition (1.8) is violated, the BB
motion on N+ is unbounded for all initial points y > 0 and any choice of the
boundary condition of the form (1.10). In other words, if the homogeneous version of
the BB motion on the whole line is unbounded, then its half-line modification is also
unbounded. On the other hand, if (1.8) holds (i.e., the BB motion on N is bounded),
then its half-line version may be either bounded or unbounded: it depends on the
choice of constants Pi in (1.10). More precisely, under condition (1.8), the motion is
bounded iff

Pl >- P2b- + P3/(t- 1). (1.11)
Pictorially speaking, the coefficient Pl "helps" to maintain the BB motion on

N+ bounded, while P2, Pa "act" in an opposite direction. In particular, in the case of
an absorbing barrier, the BB motion is bounded iff its whole-line version is bounded;
in the case of a reflecting barrier, it is always unbounded. Observe that this
statement is not true in the case where It’(., 1)= 1 (and hence 1). Here, the BB
motion is reduced to the IM process . But on the half-line, with an absorbing
barrier, is bounded for a 0, whereas on the whole line is not.
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1.4 Feller [8] considered an example of a Markov process on N+, where a particle
moves as in a diffusion process on Ot+, with a boundary point at 0, and in addition
may jump from 0 to (0, c). See also [11], Chapter 5, Section. 5.7. The corresponding
BM process E is called a branching diffusion with a jump (BDJ).

Criterion CD (where 11o is again understood as a second-order differential opera-
tor on +, with specific boundary conditions) is also applicable for the BDJ
processes (see Section 3). As before, it gives a particularly simple answer in the case

where the diffusion on N+ has constant coefficients, and , and do not depend on

x E N+. More precisely, let a be the drift_ and r the diffusion coefficients, and the
boundary condition for the diffusion on N + be of the form

/Pl/(0) P2f’(0) + Pa + af’(0) # p(dy)(f(y)- f(0)) (1.12)

Here Pi>-O, i-1,2,3, and #>_0 are constants, Pl +p2 +p3+#-l, and p is a

probability distribution on (0, c). Then the BDJ process F. is bounded iff (1.8) holds
and

Pl >- P2b- + PaA(t- 1) + # / p(dy)(exp(b_y)- 1). (1.13)
(o, o)

1.5 An interesting class is formed by the branching jump Markov (BJM) processes.
Here, the IM process is a jump Markov process characterized by the jump intensity
#(x) and the distribution of the jump r(x, dy), x,y 3. In Section 4 we establish
that the condition

There exists a function fo (on ) such that (1.6) holds and

f’ G D(lbin), linf(x)+ A(x)(m(x)- 1)f(x) 0 (1.14)
is sufficient for the BJM to be bounded. Here, tin is an extension of the "global"
generator I (which is now an integral operator) to its maximal natural domain (see
Section 4).

On the other hand, under some additional assumptions, the condition
There exists a function fo (on ) such that (1.6) holds and

fo D(lbin), {binfO(x)+ )(x)(m(x)- 1)f(x) _< 0 (1.15)
is necessary for quasiboundedness. The sufficient condition is called SJ and the neces-

sary one NJ. The question of finding a general class of BJM processes for which Con-
dition SJ is necessary for quasiboundedness or boundedness remains open.

Note that in the case of a discrete time/space BJM process (called a branching
random walk), a criterion (i.e., a necessary and sufficient condition) of boundedness
was established in Karpelevich et al. [13, 14]. The space-homogeneous case was in-
vestigated earlier in Karpelevich et al. [12].

1.7 The methods used in this work originate mainly in functional analysis (more pre-
cisely, semi-group theory) and the theory of ordinary second-order differential equa-
tions. [We refer the reader to Dynkin [5], It6 and McKean [11]; and Yosida [20] for
the results from semi-group theory, and to Birkhoff and Rota [4], Hartman [10] and
Taira [19] for the results from the theory of second-order ODE’s and their connec-
tions with the theory of diffusion processes.] Probabilistic technique plays a rather
subordinated role in the present paper. Nevertheless, we believe that an adequate
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approach based on probabilistic ideas is possible (and hope it will follow soon). For
example, a process 7(t) given by

N(t)
7(t)- f(Zt(t)) (1.16)

k=l

is a martingale iff function fo satisfies (1.7).

2. Abstract Conditions of the Boundedness of a BM Process

2.1 In Sections 2.1 and 2.2 we establish inequalities that give sufficient and necessary
conditions of boundedness and quasiboundedness of a BM process on N. The proofs
are given in Section 2.3. Sufficient inequalities are established in a fairly general
situation and do not require specific assumption about process . However, we

assume that , and K satisfy (1.1), (1.2).
We introduce the random variable p(- p), on probability spaces (a,p), des-

cribing the lifetime of the process started at x, when the rate of lifetime spending at
point y is $(y). Our analysis is focused on stochastic equations that are naturally con-
netted with the variables M and M. More precisely, let Mx and Mx denote the "ver-
sions" of these variables on (fix, z)" Then

M(1) M(Jx)Mx max rlx z(pz),..., x(px)j, (2.1a)

and

=(,=)

Here, symbol means equality in distribution. The random variable qx in the
RHS of (2.1a) gives the value sup =(t), and j= in the RHS of (2.1a, b) is the ran-

oto
dom number of offspring single act of division (t rnndom pint. (p)).
Furthermore, given that px-y and ix-J, the rnndom vribles M’()_._ nd

[) i-1 j re (conditionally) independent nd hve the same distribution
px)

as M and M, respectively. It is easy to check that variables Mz and Mz, x ,
give minimal solutions to (2.1a, b), in the sense of stochastic ordering.

Given z , let r be the time when pocess hits [z,)’rz- min[2 0"
() z]. Consider the non-negative measures =(z, dg)on (-,z) given by

O(x, dy) Pz(P < rz, (P) dy). (2.2)
a convenient way to interpret OZ(x, dy) is to represent the pair (, p) in terms of the

time-changed process . Process is determined by the generator ()
where

is the generator of . Consider the map :, with w(t)- w(t’), where t’ is
the (unique) solution to the equation

t- / a(()).
0

a transforms the pair (,Px) into (,), Khere has an exponential distribution
with mean 1 and is independent of process . In other words, process spends its
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lifetime at constant rate 1. The distribution of with the starting point x is denoted
by Px. Then

0
The above argument shows that we can assume, without loss of generality, that

function 1; the general case is reduces to this case by passing to the new

generator . We therefore omit the symbol from the notation. Observe that at
this stage we do not assume the IM process to be strong Markov. Our first
sufficient condition is:

There exists a function fo on satisfying (1.6) and a monotone sequence

{Zn} such that %zn- and

Px(P rZn)a(Zn) + [ oZn(x, dy)f(Y)(Y) (2.3)f(x)

where (z) inf[/(y): y z].
This condition is called Condition S1.
Theorem 2.1: Suppose that Condition S1 hold. Then he BM process is

bounded.
Observe that passing formally to the limit zn in (2.3) gives the following

condition called below Condition N:
There exists a function fo on S satisfying (1.6) such that

f(x) >_ / (x, dy)f(y)(y). (2.4)

Here, and below,
O(x, dy) Px((P) E dy).

(x, dy) may be interpreted as a Green measure of process (. N is sufficient for quasi-
boundedness:

Theorem 2.2: If Condition N holds then BM process .=. is quasibounded.
A slightly more restrictive condition that N is sufficient for the boundedness of a

strong branching Markov process. Namely,
There exists a function fo on S satisfying (1.6) such that

f(x) J (x, dy)f(y)(y).

This condition is called below Condition $2.

Theorem 2.3: If Condition $2 holds and process is strong Markov then BM
process is bounded.

2.2 However, the main role of Condition N is that it in some cases is necessary for
the quasiboundedness (and hence for the boundedness) of a BM process. For this we
need additional assumptions about process . More precisely, we again work with
measures O(x, dy). The assumptions are as follows:

(i) There exists a point x0 E S such that for each x measure (x, dy) is
absolutely continuous relatively to (xo, dy).

(ii) The Radon-Nikodym derivative



Boundedness of One-Dimensional Branching Markov Processes 315

is such that either of the following two conditions holds: a) for each bounded interval
J C N with J N 7 , the family {go(’, Y), Y E R} of functions x J C go(x, y) is
uniformly bounded and equicontinuous (and hence compact in C(J n ;)); b) for each
x G the function y N-,go(x,y) is continuous and has finite limits as y-- +
(which may depend on x).

(iii) lim { sup (O(x, (- oe, x R])’ 0.
R-oo ,xE

We say that the neighborhood of infinity is not accessible from point x (in
process ) if there exists z such that Px(-z < ec) 0.

Theorem 2.4: If a BM process is quasiboundecl and the corresponding IM
process obeys (i), (ii) and (iii), then Condition N holds. Furthermore, function fo
figuring in Condition N vanishes at any point x from which the neighborhood of
infinity is not accessible.

Throughout this section we use the following notation

F(x, z) x(M < z), F (x, z) 2x(M < z), FC(x, z) 1 F (x, z).
(y,. denotes the moment-gener.ating function of the number of offspring produced
at point y’(y,v)- ,jK(y,j)v3, yE, 0<v<l. The symbol Yl is used in the
sequel for marking the end of the proof.

2.3 Proof of Theorem 2.1: Given z N, function F(. ,z) gives the maximal solution
to the nonlinear integral equation

F(x, z) l(x < z) ] z(x, dy)(y, F(y, z)), x G (2.7)

in the class qIz of functions u on bounded by 0 and 1 and satisfying the condition

u(x)- 0 for x >_ z. Introduce the operator Az that represents the RHS of (2.7),
f

< z)/ dv)(v, e Uz,

and write (2.7) as F(. ,z) -(AF ,z). Operator A preserves the pointwise inequal-
ity; if u u then AzU Azu. Hence, it suffices to prove that there exists a se-

quence of functions u0n G z such that A u0 > non and lim u (x- 1 for each
n

x G S. Here zn is the sequence figuring in Condition S1.
Set

Uo(X max 0, 1

where f0 is the function figuring in Condition $1 (as f(x) as x, we can

assume that a(z)> 0). Observe that (y,. )is convex and g(y)- (O/Ou)(y, u) at
u- 1. This yields

and hence
(y, u) >_ 1 + (u- 1)(y)

f
Azuo(X > l(x < z) ] z’(x, dy)(1 a(y)(1 Uo(y))

(2.s)
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f
> l(x < Zn)/

Thus it suffices to prove the bound

But from (2.a) we obtain

1 (,f0(y)) fO(x
Y)c(zn) >-1 a(zn)"

oo, ,, oo, ,

The proof of Theorem 2.2 follows the same idea as the proof for Theorem 2.1,
and we omit it from this paper.

Proof of Theorem 2.3: Set

aex(X) J (x, dy)(y) Ex e t((t))dt
0

We consider Gex as an operator defined on the domain D(Gex consisting of functions
f, for which the integrals absolutely converge for Px-almost all trajectories and the ex-

pectation exists for each x E . Gex may be considered as an extended Green opera-
tor of process .

Let - be an arbitrary Markov moment. By the strong Markov property of , for
any 7) E D(Gex),

Gex(X) Ex e- t((t))dt + e rf(((r)) (2.9)
0

where f- Gexg. Choose an arbitrary z and let .z be, as before, the time when ( hits
[z,o). Consider the function z:

z(X) (x), if x < z,

f(x), if x _> z.

Denote again z(t) (t A vz). Process z is now Markov; we can introduce the cor-

responding extended Green operator GeZx Then

)a2xz(X) Ex e -tpz(z(t))dt
0

Ex e- t((t))dt + e- rzf((’2)) (2.10)
0
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Comparing (2.10)with .2.9), we obtain that GxPz(x)-Gex(X).
p- tcf, then by (2.8), Gx(tCJU)z- fo, where

(nI)z(X) n(x)Z(x), if x < z,

f(x), if x _> z.

As before, let a(z)- inf[f(x)’x z]. Set

h(x) z(X), if x < z,

a(z), if x z,

then h z, so f0_ a2xh" But the RHS coincides with the RHS of (2.3).
Condition $1 holds.

Proof of Theorem 2.4: We assume that lim FC(x, z) O. Furthermore

Take

Hence,

Here, (y, v) 1 (y, 1 v), y R, 0 S v 1; the last equality in (2.11) uses assump-
tion (i). Set

IS(x, z) FC(x’ z). (2.12)
rC(o,Z)

First, assume that condition (iia) holds. Then from (iia) it follows that the
family of functions {tI(.,z),z } is uniformly bounded and equicontinuous on

J for any bounded interval J. Thus, there is a sequence of points zn such
that for any x there exists the limit

lim H(x zn) f(x) > O. (2.13)

Now assume that condition (iib) holds. Consider the family of measures

{(Jz, z E [} on 5; defined by

r(o,Z)

From (2.11) (with x- x0)it follows that z(dy)- 1. Consider the Banach space E
(- E(g)) of continuous bounded functions f:g---N having finite limits at -t-oo. Note
that E is separable. Measure Oz determines a linear functional z()-
fz(dy)(y), E, with norm 1. In view of the weak compactness of the unit
sphere in the dual space E*, there exists a sequence zn such that z () con-

verges, as n, %r all E. According to condition (iib), the function n

belongs to E %r each x N. Therefore, the sequence of values

(go(x, y)) --j go(x, y) (y, YC(y, z)) O(Xo, dy) (2.14)gz
r(0, z)

converges for all x G . But (2.14) coincides with (2.12). Itence, the limit (2.13)
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exists.
Having established (2.13), observe that lnlv (y,v) (y). From Fatou’s

Lemma we deduce that f0 obeys (2.4). By construction, f0 vanishes at each point
from which the neighborhood of infinity is not accessible. It remains to check that

lLmf(x . As 1 < no _< (see (1.1)),

f(x) > o J" O(x, dy)f(y). (2.15)

As before, set a(z)= i.nf f0(y); clearly, ct is a non-decreasing function. Using
y_z

rassumption (iii), find R > 0 and r > 1 such that Px((P) > x- R)> -d for all x E .
Now fix anuEandlet xbe >u+R. According to (2.15),

ff(x) (x, dy)f(y)>- o/
(x-n,)

> noa(X- R)Px(((p)> x- R)

Thus, a(u + R) >_ ra(u). Deduce that lim

Remark 2.5: Observe that to establish the relationltnf(x)-c it suffices to
use (2.4) and assumption (gig).

Remark 2.6: Assumption (iib) may be replaced by a weaker condition that for
each x 5 the function y 5go(x,y is bounded and the family of these functions
(indexed by x 5) forms a separable set in the space of bounded Borel functions on

with supremum norm.

3. Conditions of Boundedness for the BD

3.1 In Section 3 we deal with a BD, assuming that the IM process is a diffusion, in
the sense given in It6 and McKean [11]), on a set 5, which is either the line N or the
"extended" half-line N+- {*} U[0, c), with a singular (or boundary) point at 0.
By ffi we understand here the "global" generator of process , again in the sense of
[11]; this means that acts on a subset D(ffi)C D. Here D (- D(5))is the space
of bounded functions 5R, left/right continuous at left/right regular points of and
with f(*)-0 (see [1.1], Chapter 3, Section 3.6, from which we borrow our notation).
More precisely, D(ffi) is the image of D under the Green operators

Ga: f D(--/ e-atExf((t))dt, a > O,
0

associated with (, and 5 is defined by {b- I- G-1 where G- G1. An important
role in our analysis is again played by the Green measures O(x, dy) and Z(x, dy) of
process and its stopped version z and by their generators {b and 5z understood in
the aforementioned sense. Observe that

Gf(x) J (x, dy)f(y), f D.
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As in the general case, we start with sufficiency. Assume that function f~ and
point x E N are such that there exists a neighborhood U of x and a function fu
D(5) coinciding with f on U fl 5;. We use the locality theorem for the generator 5
(see the theorem from [11], Chapter 3, Section 3.7, p. 100). Ace%cling to the locality
theorem, value fg(x) does not depend on the choice of U and fg" We will denote
it by {blof(: ). We agree that the domain D(51o of operator 51o consists of all func-
tions f for which the value {blof(x is determined, by the above construction, for any
x G 5;. Furthermore, given a function f: 5;--, we say that it has property A (relative
to 5) if for any b large enough, there exists a function Ib D(Ib) such that f(x)-
fb(x) for x _< b, x G. If f has property A then for any x G 5; and b > x, b large
enough, the value {bfb(x {blof(X is determined in a unique way.

Consider the following condition called Condition $3"

There exists a function fo on 5; having property A such that relations (1.6), (1.7)
hold.

Theorem 3.1" For a BD process , Condition $3 is sufficient for S1 and there-

fore for boundedness.
Proof: Take z E 5; large enough, so that for any b > z function figuring in

property A exists. Consider the stopped diffusion IM process z(t) (t A _z), where
_z is the time of hitting point z by process . Let Gz denote the Green operator of z
which acts on Dz, the space of functions on 5; A (- cx,z] associated with z. Then

the domain D(z) of the generator 5z coincides with the image of Dz under Gz and
if h-GZf then {bZh-h-f. (See again [11], Chapter 3, Section 3.6.) For any
a Dz

GZ(x) Px(z < p)(z) + / bZ(x, dy)(y), x < z. (3.1)

Take the functions , b > z, figuring in property A; their restrictions to (-ee, z]
coincide with the restriction of f0 to (- (x, z]. We agree to use here the same symbol
for a function and its restriction to (-c, z]; with this agreement f0 and belong to

D(z) and moreover, bzf(x)- bz(x), x < z (see [11], Chapter 3, Section 3.9, p.
103).

Observe that zf(z)- O. Therefore, by (1.7),

{Dlof(x) zf(x) + (1 (z))f(z)lz(x), x <_ z,

where lz(x l(x z). Again by (1.7), f0 {blof0 + nf0. Hence,

f(x) (x)f(x) + zf(x) + (1 c))f(z)lz(x), x <_ z.

Applying operator Gz to (3.2) yields

Gzf(x) GZxf(x) + GZCbZf(x) + (1 x(z))f(z)GZlz(x), x < z.

As GZCbZf GZf- fo and GZl(x) Pz(’rz < p),x <_ z, this gives, after an easy
calculation,

f(x) GZcf(x) + (1 c(z))f(Z)Px(Zz <_ p), x <_ z. (3.3)
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Substituting W equal to gf0 (more precisely, the restriction of gf0 to (-oc, z]) in

(3.1) yields

Thus,

f
GZgf(x) g(z)f(z)Px(z < p)+ / OZ(x, dy)(y)f(y),x < z.

f
f(z) Px(rz -< P)f(z) + l Z(x’ dy)g(y)f(y).

As c(z) _< f(z), (3.4) leads to

(3.4)

f(x) >_ Px(7z <_ p)o(z) + / OZ(x, dy)g(y)f(y)

which is nothing but (2.3).

3.2 A separate question is how to check property A. We discuss this question for
the two cases: (a) a smooth BD on R without boundary points; and (b) a smooth BD
on R+ with a unique Feller boundary point at 0. That is, we assume that the
operator 51o is a differential operator

lf(x) 2(x) + a(x)f’(x). (3.5)

Here, functions a, r obey a0 _< a _< al, r0 _< r _< rl, where ai, r are constants,
ao, a1 E N and r0 > 0. We also assume that a,r E C2(R) in case (a) or C2(R+) in
case (b). In the first case domain D(51o -C2(R); in the second, it consists of the
functions f C2(R +) satisfying (3.6). Furthermore, by using integration by parts, it
is possible to check that in the first case domain D(ffi) of the global generator 5 con-

sists of the bounded functions f C2(R) for which (3.5) determines a bounded func-
tion on R. [Observe that the space D in this case coincides with the set of bounded
functions belonging to C(R).] Similarly, in the second case, D(ffi) consists of the
bounded functions f on +, for which f()- 0, f C2(R+), the RHS of (3.5)
determines a bounded function on R+, and the boundary condition

((0)2fplf(0) p/’(0) + Pa, 2 ’(0) + a(0)f’(0) 0 (3.6)

holds for some fixed Pi, 1,2,3, satisfying Pi >-0; Pl + P2-t-P3-- 1. The action of
ffi on D(5)is given by the RHS of (3.5).

We also assume (in addition to (1.1) and (1.2)) that g e C(R) or C(R + ).
Theorem 3.2: Under the above conditions on functions a,(r and , if a function

fo obeys (1.6) and (1.7), then it has property A. Thus, Condition CD implies Condi-
tion $3.

Proof: Consider the case of a diffusion on . Suppose that f0 satisfies the
assumptions of Theorem 3.2. Observe that, due to the maximum principle, f0 can-
not have a local minimum on R; hence, in view of (1.6), it is monotone
nondecreasing, and therefore bounded on any half-line (-oc, b].- Owing to (1.7), the
function r2(x) -0"x--f (x) -t- a(x)f’(x)
is also bounded on any half-line (-oc, b]. It is clear that we can prolong f0 from
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(-oc, b] to the whole so that the resulting function (as before, denoted by 7)
belongs to C2(ff), is bounded and gives rise to the function

~0’x 2 fb (x) + a(x)fb (x),

which is also bounded on . Thus E D(ff)), and f0 has property A.
The same argument works for the case of the diffusion on +. VI

3.3 In Sections 3.3-3.6 we prove that Criterion CD, in the case of a BD process, is
necessary for quasiboundedness (and therefore, boundedness). We again assume that
the IM process is a smooth diffusion, either on N or on N +, with a Feller boundary
point at 0.

Theorem 3.3: Suppose that a quasibounded BD process .. satisfies the conditions

of Section 3.2. Then assumptions (i)-(iii) of Section 2.2 and Condition CD of
Section 1.1 hold true.

Proof: We begin with the case of a smooth diffusion on N. The first step is to
check that, under the conditions of Theorem 3.3, assumptions (i), (ii) and (iii) hold,
and hence the boundedness (or even the quasiboundedness) implies Condition N. We
will then deduce Criterion CD from Condition N.

Condition (i) is plain: it is well-known that under the assumptions of Theorem
3.3, the Green measure (x, dy), x,y fie, is absolutely continuous, and the Radon-
Nikodym derivative g(x,y)= (x, dy)/dy is the Green function for operator I-
Function g is strictly positive and continuous in x, y and admits the representation

g(x,y) 2(y)rIl(X), x<_y,

1(y)’/2(2:), y (_ X.

(3.7)

Here r/i and i, i-1,2, belong to C2(N) and obey r]12- 21, r]i(2:) > 0, 2: [,

2(x) ,,,
r/1(-)- ()- 0, and i satisfy the differential equation .. ix)+
a(x)(x)-i(x), x e N. Note that these conditions determine functions 1,
uniquely, up to constant factors. Functions 1, 2 are given by

2 (3.8)

where
(3.9)

is the Wronskian.
Furthermore,

Observe that the above formulas determine function g uniquely.

((blo)xg(X y) g(x, y) 5(x y), x, y e . (3.10)

Equation (3.10) is an "extended" differential version of the operator identity (R)G-

G-I which follows immediately from the definition of the global generator .
[(51o)x in the LHS of (3.10) means that operator Iblo is applied to variable x.] Hence,

go(2:,Y) in assumption (ii) equals g(x,y)
g(z0,y)" go is continuous in x, y and, in view of

(3.7), does not depend y when y is outside the interval between x0 and x. Any of the
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conditions (iia) and (iib) then follow immediately.
Finally, assumption (iii) follows from the fact that coefficients a and r are

bounded.
So, by Theorem 2.4, if the BD is quasibounded then Condition N holds. We are

now going to deduce Condition CD from N (in general, functions f0 in Conditions N
and CD will be different). Denote the RHS of (2.4) by ]0. Observe that in the case
under consideration, f(x)> 0 on N. Thus, ](x)> 0 on N. Applying operator 81o
and using (3.10), we obtain

{bl](x) 2 "(x) + a(x)’(x) (x) (x)f(x)" (3.11)

According to (2.4), f(x) >_ (x) [i.e., (x)f(x)/](x) >_ (x)]. Therefore, ]0=
f(x, dy)(y)f(y) >_ f(x, dy)(y)(y). Thus, function 0 obeys (2.4). As
assumption (gig)is fulfilled, we can deduce thatxlirn(x c (see Remark 2.5).

At this stage, we apply Lemma 3.5 (see below), with /2(x)- (x)f(x)/](x)- 1
and 12(x -(x)-1. According to Lemma 3.5, there exists a positive solution of
Equation (1.7) for which (1.6) holds true. This completes the proof of Theorem 3.3
for the case of a smooth diffusion IM process on

3.4 Lemma 3.5 is an elementary result from the theory of ordinary differential
equations. Despite its transparent character (and short proof), we failed to track
down this result in the available literature. The same is true of Lemmas 3.6 and 3.7
below.

Consider a second-order differential equation

y"(x) + c(x)y’(x) /(x)y(x) O, x e . (3.12)
Suppose that coefficients c and are C-functions and >_ O.

Lemma 3.4: Under the above conditions, equation (3.12) possesses a solution Yo
such that

yo(x) >_ 1, x e . (3.13)
Proof: If /3- 0, we can take Y0- 1. Now suppose that /3(x0)> 0 for some

x0 E N. Consider the solution of the Cauchy problem for (3.12), with the initial condi-
tion

Y(Xo)- 1, y’(xo)- O, (3.14)
and denote it again by Y0" Since /3(x0)> 0, function Y0 has a local minimum at
point x0. On the other hand, by the maximum principle, the solution of (3.12) can-
not have a local positive maximum. Hence, Y0 obeys (3.13).

Lemma 3.4 is used to prove
Lemma 3.5: Let functions a and cr satisfy the conditions of Section 3.2. Assume

that 11 and 12 are two C-functions on , and 11 >_ 2. Suppose that there exists a
positive solution gl of the equation

2 ’(x) + a(x)g’(x) -ll(x)g(x), x : (3.15)
Then there exists a solution g2 of

2 .g"(x) + a(x)g’(x) -12(x)g(x), x , (3.16)



Boundedness of One-Dimensional Branching Markov Processes 323

with g2 >- gl"
Proof: We search for a solution g2 of the form g2(x)- gl(x)y(x).

function y we have an equation of form (3.12), with

ct(x) 2a(x) 2(/1(x -/2(x))
r(x)2 + 2z(x), and fl(x)- or(x)2

where z(x) (log g(x))’. By virtue of Lemma 3.4, y > 1.

Then for

3.5 The above argument may be extended to the case where the IM process is a

smooth diffusion on +- {} U[0, c), with a Feller boundary point at 0. The
proof of Theorem 3.3 in this case follows the same line. The Green measure (x, dy),
x >_ 0, may now have an atom at 0, but its restriction to (0, cx) is absolutely
continuous, and the Radon-Nikodym derivative g(x,y)- (x, dy)/dy is positive for x,
y > 0. For any x0 > 0, the function

x, > 0,

may be continuously prolonged to N+ x N+ (i.e., defined for x, y >_ 0). We remark
that the function on [+ x N+ so defined (we again denote it by go) coincides with

the Radon-Nikodym derivative (x, du)
O(xo, dY ). Furthermore, function g admits, for

x,y > 0, the representation (3.7), where functions r/1 and i again obey r/12- r/21
rli(x) > 0, x > 0, p2q(0)- (Pl + P3)r/l(0),r/2() -0, and functions r/i satisfy the

2(x) ,,,
differential equation 2 r]iix) + a(x)r(x) r]i(x), x > 0. As before, functions 11, 2
are determined by these conditions uniquely, up to constant factors, and functions 1,
2 are given by (3.8) and (3.9). Function g is again determined by the above
formulas uniquely and obeys (3.10) for x, y > 0.

The above properties enable us to repeat the argument and check assumptions
(i)-(iii) of Section 2.2 for the case under consideration. Therefore, Condition N is
again valid, and function f0 is > 0 on (0, cx). What remains is to deduce Condition
CD from N. Denoting, as before, the RHS of (2.4) by 0, we have 0> 0 on (0, cx)
and can write (3.11). Observe that, by virtue of Remark 2.5, we again have

3.6 At this point, we are going to use Lemmas 3.6 and 3.7 which are modified ver-
sions of Lemmas 3.4 and 3.5, respectively. [The way these lemmas are used differs
for the case P2 > 0 and P2 0, see below.]

Lemma 3.6" Let and fl be C-functions on (O, cx) and fl >_ O. Given > O, let
ye denote the solution of Equation (3.12) satisfying ye(e) 1, y’e() > O. Then ye >_ 1

Proof: The proof of Lemma 3.6 again follows from the maximum principle.
Lemma 3.7: Let functions a,r and belong to C(N + ). Assume that function

f G C2(N +) is >_ 0 on N + and > 0 on (O,oc) and satisfies the differential inequality

2 .f"(x)+ a(x)f’(x) <_ f(x)l(x), x >_ O. (3.17)

Then the function g satisfying the equation



324 F.I. KARPELEVICH and YU.M. SUHOV

2 g"(x)+ a(x)g’(x)- g(x)l(x),x >_ O, (3.18)

with the initial data g(O) f(O), g’(O) f’(O), obeys g(x) f(x), x O.
Proof: Substitute g-yf in (3.18). Then for the function y we obtain an

equation similar to (3.12), with a(x)-2a(x)/(x)2+2(logf(x)) and /(x)-
2(f(x)l(x)-h(x))/(a(x)2f(x)), where h(x) denotes the LHS of (3.17). Functions a

and fl satisfy the conditions of Lemma 3.6 (/(x) _> 0 by virtue of (3.17)). Take an

> 0 and construct, on [,c), a solution y(x) of (3.12) with initial data y()- 1
and y’(e) (g’(0)- f’(O))/f(). The function g(x) y(x)f(x) gives a solution to
(3.18) on [e,c) with initial data g()- f()and g’(e)- f’()+ g’(O)- f’(O), g
may be prolonged, as a solution to (3.18), to [O,c). We obtain a solution of (3.18)
with conditions at x- e. Letting --0 and using the continuity of the solution in the
initial condition, we obtain that g((x) converges to g(x), x >_ O, as e--O.

According to Lemma 3.6, y(x) >_ 1 and hence g(x) >_ f(x), x >_ . Thus, g(x) >_
f(x), x >_ O. [:l

To complete the proof of Theorem 3.3, we take the solution of the equation

r(x)2

2 .g"(x) + a(x)g’(x) (1 g(x))g(x), x >_ O, (3.19)

with initial data g(0)- ?(0) and

g’(0) ?’(0), if P2- 0,

]’(0) - P3t(0)(f(0) ](0))/P2, if P2 > 0.

Observe that in the second case g’(0)>_ ?0,. By Lemma 3.7 (with/= 1- a), g(x)>_
> 0.

Function g (specified in the preceding paragraph) is an obvious candidate for the
role of function f0 figuring in Condition CD. It remains to check that it satisfies the
boundary conditions (3.6), so that the LHS of (3.19) can be treated as hlog(X).

If P2 0 then ](0)= 0 (the neighborhood of infinity is not accessible from 0).
Hence g(0)= 0 and the LHS of (3.19) vanishes at x 0. Therefore, (3.6) holds if we
substitute f(0) with g(0). If P2 > 0 then we use the fact that ]0 obeys the boundary
condition

p2]0’(0) pl?0(0) + P3

together with the equality

2 ?"(0) + a(0)?’(0) ?(0) (0)f(0)"
This again leads to (3.6) for f(0)- g(0).

3.7 In Sections 3.8-3.9 we extend the previous discussion to the case of a BDJ process
where IM process is a diffusion on +, with a boundary point at 0 and a jump

from 0 to (0, c). We retain the assumptions of Section 3.2 on functions a, r and .
The boundary condition (3.6) is now replaced by

pf(O)- p2f’(O) + P3 2 f"(O) + a(O)f’(O) # p(dy)(f(y) f(O)).
(0, ) (3.20)
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As in (3.6), Pi - 0, 1, 2, 3, and # > 0 are constants; Pl + P2 + P3 + t 1.
The domain D({) of the "global" generator 5 of process consists the bounded

functions f on +, for which f(*)- 0, f e C2(N+), the RHS of (3.5) determines a

bounded function on N+, and (3.20) holds. The action of 5, on D(5), is again given
by the RHS of (3.5). The domain D(blo of the operator 51o consists of functions

f 6 C2(N+) satisfying (3.20) (with the condition that the integral in the RHS of
(3.20) converges absolutely).

Property A and Condition $3, relative to operator {D defined in the preceding
paragraph, are formulated in exactly the same way as in Section 3.1.

Theorem 3.4: For a BDJ process , Condition S3 is sufficient for S1 and there-

fore for bouudedness.
Proof: Choose z large enough so that for all b > z there exists the function

figuring in property A. Set~tz z(t A rz) where 7
z is the first time that process

hits the half-line [z, cx). As f e D(5), we’have that G for some e D.
Set

(z), < z,

>_ z.

Then, as proved in Section 2.3, Pz Dz and GZpz- G- 7. Thus, 7 D((R)z)
and bz- -Pz" But then ffz_ iz iz{DlofO, where Iz(x -l(x < z).
By virtue of (1.7), we obtain that

Izf Izxf + {DzT.
Applying operator Gz we have that z o G:]G Izf GZlzxf + -]b"
Jz(x) 1 Iz(x l(x > z) As Izf ~oIzfb, we obtain that

Denote

z] GZIznf + G Jzfb" (3.22)

Now calculate function G Jzfb" First, note that both fand fb satisfy (3.20),
and the LHS of (3.20) for these functions are the same. Therefore,

p(dy)Jz(y)f(y) / p(dy)Jz(y)7(y). (3.23)

7-ZNoFurthermore, Gz(J :x- E(e fb((-z))). For x < z we represent the eventz b],

{7z <_ p} as the disjoint union go t2 Az, where Ao {rz < p, (7z 0) 0} and Az
< z}.

7-z0For the expected value Ex(e fb((r))) we obtain the decomposition

GZ(JzT)(x)- Px(A0)Ez(e-
.z"0+ Px(Az)Ex(e fb((Tz))]Az).

(3.24)

For the second term in (3.24), we have

Ex(e- -7((.)) A) 7(z)Ex(e- -lAz)"
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The first term in (3.24) equals

Ex(e- rz((-Z)) Ao) # / p(dy)Jz(Y)(Y)Ex(e--z A0)"

Taking into account (3.23) yields

7.z"O T
z

E(e fb((T’)) Ao) E(e fO(5(T’)) Ao).
As 7(z)- f(z), we have for x < z

Ex(e- r’7((Tz)) Ex(e-

This yields the equality GZ(gz)(x)-GZ(gzf)(x), x < z. Then, by virtue of

(3.22),

f(x) 7(x) GZ(Izgf)(x) + GZ(Jzf)(x), x < z.

As Jz(X)f(x) >_ Jz(x)(z), we obtain

f(x) >_ GZ(Izgf)(x)+ c(z)Px(7z _< p), x < z.

The same inequality trivially holds for x _> z. This yields Condition S1.
As before, a separate question is when property A may be verified. Under the

above assumptions, the assertion of Theorem 3.2 remains valid also for a BDJ pro-
cess. The proof of this fact follows the same lines as in Section 3.2. Thus, for the
BDJ processes under consideration, Condition CD implies $3 and hence is sufficient
for boundedness.

3.8 In this section we analyze the necessary conditions for boundedness of a BDJ pro-
cess.

Theorem 3.5: Suppose that a quasibounded BDJ process .. satisfies the condi-
tions of Section 3.8. Then assumptions (i), (iib) and (iii) of Section 2.2 and
Condition CD of Section 1.1 hold true.

Proof: The proof follows the same argument as that of Theorem 3.3, and we

omit some technical detail. The Green measure (x, dy),x >_ O, may have an atom at
0 (if P3 > 0 in (3.20)), but is absolutely continuous on (0,) (even if measure p has
atoms). More precisely,

dr) v) + + -> O, (3.25)

where 60 is the Dirac delta-measure concentrated at 0. Functions g,] and b and con-
stant c are connected to each other via a system of relations described below. Name-
ly, function g admits the representation (3.7), where functions rii i, 1,2, belong
to C2() and obey r]12 r]21 i(x) > O, x > O, p2r](O) (Pl +/)3 -4- #)r]l(O ),

72(cx)--0 and r/i satisfy the differential equation r2(x)-"(x)+a(x)rl(x) rli(x2 ’qi
x > 0. Functions r]l r]2 are again determined by these conditions uniquely, up to con-
stant factors, and functions 1, 2 are given by (3.8) and (3.9). As before, function g
is determined by the above formulas uniquely and obeys (3.10) for x,y > O.
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Function r/in (3.25) coincides with r/2. Constant a has the form a- p3/d, where

(/91 q- P3 -}- #)r}2(0)- P2(0) # / p(dy)}2(Y) (3.26)d

(0, oo)

(the integral #f (o, oo)p(dy)rl2(y) is finite and d > 0 as function r/ is decreasing).

Finally, function b is given by

()

Observe that these relations determine the products and b in a unique way.
Fix xo > 0 and set

(, v) + ,()(v)o(, v) (o, v) + ,:(o)(v)’ ’ v > 0.

By continuation, prolong function g0 on + x +. Then 9o(x,y) gives the Radon-
(,u)

ioym riwtiw qG:;)" Tis yis ssumvtion (i).

We now check (lib). By using (3.8) and (3.9), it is easy to check that both func-
tions g and b are continuous in y. It remains to verify that for each x 0 there exists
a finite limit0Lgo(x, y). According to (3.7), for y > max[x, xo],X O,

o(,v) ,l()4:(v) + :()(v)
l(O):(v) + :(0)(v)" (.28)

It is clear that it suffices to establish that there exists the (possibly infinite) limit

lira b(v).. Observe that the ratio (u)_ Ul(U) (see (3 8)) is nondecreasing in y. By

using (3.7), it is easy to deduce that for each x 0, the ratio
g(x, u) is also nondecreas-

ing in y, and hence lira
g(x,v)

v 2(v) l(X)" Thus the ratio 2(y is nondecreasing, and the

above limit exists (and equals f (o,)p(dZ)l(Z)).
Assumption (iii), as before, follows from the boundedness of coefficients a and
Therefore, if a BDJ process is quasibounded, it satisfies Condition N" there

exists a fo obeying (1.6) such that fo G(afo). Set ]o G(fo). Then 7 belongs
to C2(+ and satisfies the boundary condition

(Vl + ,)7(0)- v:?’(0) + vo?(0) -,/ v(v)?(v). (.29)
(o,)

In other words, 70 G D(lo)" As in Section 3.3, Remark 2.5 implies thati]
Applying operator lo yields 1o7- ]o_ gf0 7o(1_ g).

We now want to check that Condition CD holds. Consider the equation

():"() + a()’() (1 ())(), 0. (.0)

We will show that there exists a solution u to (3.30) satisfying (1.6) such that

(Pl -}- #)t(0)- p2’(0) q- p3(1 (0))u(0) # / p(dy)u(y).
(0, oo)

(3.31)
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In fact, (3.30) has two linearly independent solutions, U1 and u2. Clearly, there
exist constants c1 and c2 such that the linear combination u- ClU1 + C2U2 satisfies
(3.31). This means that u e D(tlo). We first check that u(0)=/= 0. Indeed, if
u(0)- 0 then (3.31) becomes

[
(0, o)

Suppose, for definiteness, that u’(0)> 0 and write u in the form u- y]0. Then for
function y we have an equation similar to (3.12). As u(0)-0 and u’(0) > 0, we have
that y(0)- 0 and y’(0)> 0. Function y cannot have a positive maximum. Thus,
y(x)>O and hence u(x)>O, x>0. We see that the LHS and RHS of (3.32) are of
different signs (the LHS is _< 0 whereas the RHS > 0) which yields a contradiction.
Thus, u(0) :/: 0.

Function u was determined up to a constant factor. Choose it so that u(0)-
?(0). Set <  un tio s tisn  
the inequality {loV(X) > (1 n(x))v(x). As v(0) u(0)- ](0) 0, value OloV(0) >_
0.

From (3.29)and (3.31) we find that

+ /
If v’(0) > 0 then u’(0) > ](0). By virtue of Lemma 3.7, u(x) > ](x), x >_ O. Thus,
u obeys (1.6).

Now suppose that v’(0) < 0. Then v(x) < 0 for x > 0 small enough. On the other
hand, as bloV(0 > 0, the LHS of (3.33) is positive. Therefore, f to,p(dy)v(y) > O.
Thus, there exist x > 0 with ov(x) > 0. Denote by x the minimal positive point

0 0 0 0 0 O 0with v(x)=0. At this point v(x )>0. Then u(x )= (x) and u(x )> (x).
Now we use Lemma 3.7, with point 0 replaced by x. This yields u(x) >_ ](x), x >_
x. Therefore, u(x) > O, x > x, and lim u(x) cx. It remains to prove that u(x) > 0

for 0<z<x. Again write u-y?. Then y(0)-i (as u(0)-](0)) and y’(0)<0
(since v’(0)- u’(0)- ](0)< 0). Function y satisfies (3.12) and hence cannot have a

negative minimum. At the same time, the equality u(x) -](x) implies that
yo(x) 1. Thus, y(x) > 0 for 0 < x < x. We can now conclude that u again satis-
fies (1.6). Thus, Condition CD is fulfilled for fo u.

4. Conditions of Boundedness for the BJM Processes

4.1 We again begin with sufficient conditions. A jump Markov process is
determined by a function #(x), x E S, and transition probability measure 7r(x, dy),
x, y E S. Throughout Section 4 we assume that

0 < 0--< #(X) < 1’ X ,
where/to </tl < cx3 are constants, and /t G C(5;). We denote by T(t), t >_ O, the semi-
group of operators corresponding to which acts in the space B($) of bounded Borel
functions f on 5, with f(r)= 0. The generator of the semi-group, ffi, is defined on
the whole of B(S) by
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f
(bf(x) #(x)f(x) + #(x) ] 7r(x, dy)f(y). (4.1)

The extended generator, (bin is defined on all Borel functions f on for which the
integral in the RHS of (4.1) exists, and is given again by (4.1). [The notation (bin
stresses that (4.1) is an integral operator.] The set of such functions is denoted by
D((bin).

Theorem 4.1: If Condition SJ holds then the BJM process .. is bounded.
Proof: Set

IIf(x) J r(x, dy)f(y). (4.2)

Then H is a linear operator with the domain D(:n). Let f0 be the function from.

Condition SJ. Observe that nf()= 1- f (). Thus, fo cio where

c > 0 is a constant. Consider the extended Green operator Gex of process (see
Section 2.g); in this section we denote it by Gin. Operator Gin is integral, in Green
measure (, d). If 0 e B(g), then in0 0- Gi 10.

We nst how that f0 e D(Gin). Choose a sequence f e B() such that II.
Then infninf fo fO. Set n fn infn Then f0. Since fn
B(g), Ginn fn" Passing to the limit, we obtain, by virtue of atou’s Lemma, that

fo GinfO, whence f0 D(Gin)"
Now we have n-(l+#)fn-Hfn. Since HfnHfcf, we have

(x) clf(x), x G 5, where cI > 0 is a constant. Thus, by the fact that fog
D(Gin), the functions Pn are bounded by an integrable in (x, dy) function cf.
Therefore, f0 =kf =kGin- Ginaf. Hence, function f0 satisfies Condition
$2.

4.2 The analysis of the necessity conditions for BJM processes starts with the
following intermediate result.

Theorem 4.2: Suppose that IM process is jump Markov and satisfies assump-
tion (iii) of Section 2.2. Suppose that the corresponding BJM process E satisfies
Condition N. Then .. satisfies Condition NJ.

Proof: If function 0 E B(S), then

(binGin0 Gin(bin0 Gin0 -O. (4.3)

Consider an arbitrary nondecreasing sequence of functions fn B(5) converging to
the function f0 figuring in Condition N. As xf>_ f0, function f0 is integrable in
(x, dy) for all x G 5. Set (fn- GintCfn As fnTf, sequence (fn is nondecreasing in

0 0n. Also, 6 _< GintCf <_ f Thus, sequence (fn converges. Set (f lira (f_. Then
(f _< (f _< and (f is integrable in (x, dy).

n-,o

As fn B(), we have, by virtue of (4.3) (with 0- gfn), that (fn B() and

(b(fn( (bin(fn) (fn xfn (4.4)

Thus, #(fn + #II(fn (fn- nfn, where II is defined in (4.2). Hence, #II(fn
(1 + #)(f-xfn whence #II(fn < c(fn, where c > 0 is a constant. Furthermore,

.Lm un  - + SinCe n n integral operator, we obtain, by Fatou’s
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Lemma, that lim #H99n > #II99. Thus, 99 is integrable in r(x dy) for all x E 5 Since

99n < 99, by Lebesgue’s Dominant Convergence Theorem, 2im-in" On the

other hand, by (4.4),nli__,rn599n 99 f. Therefore, Iin99 99- f < 99 n99.

Thus, we have found a nonnegative function that satisfies the inequality in Condi-
tion NJ. It remains to check that 99(x)--oe as x-oe. To this end, observe that

l99n(X #(X)99n(X + #(x)II99n(X (here, as before, 99n Gintfn) Thus,
]99n(X) _< c199(x), where cI > 0 is a constant. We see that function ]599n is
bounded by a function integrable in O(x, dy) for all x E 5. Since 99 B(5), G99n

G99n-99n. Letting ncx, we obtain Ginlin99- Gin99-99. On the other hand, as

{Din99 <_ 99- t99, we have that Ginlin99 _< Gin99- Ginn99. Therefore, Ginn99 <_ 99.
Relation lim 99(x) cx now follows from Remark 2.5. V1

x--o

4.3 In this section, we establish the necessity of Condition N for quasiboundedness of
a BJM process on a denumerable phase space 5, under assumption (iii) of Section 2.2
and the following additional assumption: (iv) there exists a point x0 such that any
point x G 5 is accessible from x0 by a finite number of jumps with transition
probability 7r. That is, there exists a finite sequence x0, xl,... x x of points from 5
such that r(xixi

_
1}) > O, 0,..., s 1.

Theorem 4.3: Suppose that for a BJM process , with an IM process on a de-
numerable set 5, assumptions (iii) and (iv) hold. Then if .. is quasibounded, Condi-
tion N holds true.

A direct corollary of Theorems 4.2 and 4.3 is the following theorem.
Theorem 4.4: Under the conditions of Theorem 4.3, if is quasibounded then

Condition NJ holds true.
Proof of Theorem 4.3: For any bounded function 99: 5R,

/O(,e)() (,)().

Here q(x, y)- f (x, du)Iy(u) and Iy is the indicator of the one-point set {y}.
tion (iv) implies that

q(xo, y) > O, y 5.

(4.5)

Condi-

(4.)

According to (2.11) and (4.5),

(, z) q(,) (,(, z)).

It is easy to see that (y, v) >_ v, whence

We again set

c(, ) > (,)(, z).

rC(x’z) =H(x,z).
F(0, )

(4.7)

Then from (4.7) (with x x0) and (4.6) we get

1H(, z) < q’o, )’ "
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Thus, there exists a sequence of points z_-(x from 5 such that for any y G there
exists the limit lmH(y,z). Taking fdiy equal to this limit leads, as in Section

2.4, to the conclusion of Theorem 4.3. Vi
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