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Consider the problem

y'(t) = f(t,y(t),A), teJ =[0,b],
y(0) = ko,
G(y,A) = 0.

Employing the method of upper and lower solutions and the monotone
iterative technique, existence of extremal solutions for the above equation
are proved.

Key words: Monotone Iterations, Differential Equations, Monotone
Iterative Technique.
AMS subject classifications: 34A45, 34B99.

1. Preliminaries

Consider the following differential equation

2'(t) = f(t,2(t),A), ted= (0,0] (1a)

with the boundary conditions
2(0) = ky,  2(b) = ky, (16)

where f € C(J x Rx R,R) and ky,k; € R are given. The corresponding solution of
(1) yields a pair of (z,A) € C}(J,R)x R for which problem (1) is satisfied. Problem
(1) is called a problem with a parameter.

Conditions on f which guarantee the existence of solutions to (1) are important
analysis theorems. Such theorems can be formulated under the assumption that f
satisfies the Lipschitz condition with respect to the last two variables with suitable
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Lipschitz constants or Lipschitz functions [1-3, 5].

This paper applies the method of lower and upper solutions for proving existence
results [4]. Using this technique, we construct monotone sequences, giving sufficient
conditions under which they are convergent. Moreover, this method gives a problem
solution in a closed set.

Note that z(b) in condition (1b) may appear in a nonlinear way, so it is a reason
that we consider the following problem in the place of (1):

y'(t) = f(ty(2),N), teJ =[0,b],
y(O) = koa (2)
G(y,A)=0.

where f e C(JxRXxR,R), G € C(RxR,R).

2. Main Results

A pair (v,&) € C1(J,R) x R is said to be a lower solution of (2) if:
v'(t) < f(t,v(2), @), tel,
v(0) < ko,
0 < G(v,a),

and an upper solution of (2) if the inequalities are reversed.
Theorem 1: Assume that f € C(J X RXxR,R), G € C(Rx R,R), and:
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Yor 20 € CY(J,R), Ao»Yo € R, such that (yg,Ay), (20,79) are lower and
upper solutions of problem (2) such that yy(t) < zy(t),t € J and, Ay < 7y;

f is nondecreasing with respect to the last two variables;

G is nondecreasing with respect to the first variable;

Gy, ) =Gy, B) S N(B—A) for yo(t) <y(t) < zo(t), LEJ, Ag<A< P
<o with N > 0.

Then there exist monotone sequences {y,,\.}, {z,;7,} such that y (t)—y(t),
z,(t)—z(t), teJ; A\,—A, v,—7 as n—oo; and this convergence is uniformly and
monotonically on J. Moreover, (y,A), (z,7) are minimal and mazimal solutions of
problem (2), respectively.

Proof: From the above assumptions, it is known that:

Yo(t) < F(1,9o(1) Ao)s  Yo(0) < kg, z5(t) > F(t,20()s10)s  20(0) > ko,
0 < G(yo) 2o)s 0> G(zp,70)s

and yo(t) < zy(t), t € J, Ag <7y Let (yq,21), (24,7,) be the solutions of:

and

¥1(t) = F(t,yo0(1), Ao)s y1(0) = kg,
0= G(ypsA0) = N(A; — Ag)s

z1(t) = f(t, 29(1), 7o)y #1(0) = ko,
0= G(29,70) = N(71 = 7o),
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respectively.
Put p = Ay — A, so:

0= G(YpAo) = N(Ay—Ag) 2 = N(A =) = N,
thus p <0 and Ay <)A;. Now let p=2X; —v,. In view of 3° and 4°, we have:
0 = G(yg, 20) = N(A; = Ag) = G(y0: o) — G(20:70) = NV (A; — Ag) + N (71— 70)
< G20y 2g) = G20y 70) = N(Ay = Xg) + N (71— 7o)
SN(o—20) =Ny =)+ N(r1—79) = = Np.
Hence A; < v;. Set p =7, — 7, so that:
0=G(20,70) = N(11=7) < —=N(11—70) = = Np,
and thus v; < 7,. As a result, we have:
<M <1<
We shall show that
Yo(t) Sy1(t) < 2(t) < 2(1), ted. 3)
Let p(t) = yo(t) —yy(t), t € J, so:
P() = U(t) ~ 14(8) < £ va(1), o) — F(L (1), Xo) = 0,

and p(0) = yo(0) —y;(0) <0. This shows that p(t) <0, t € J. Therefore yy(t) <
y1(t), t € J. Put p(t) = y;(t) — z(t), t € J. In view of 2°, we have

pl(t) = yll(t) - le(t) = f(t»y()(t)v’\o) - f(t’zo(t)v')b)
< f(t29(1),70) — F(t, 20(2), 70) = 0,

and p(0) =0, so p(t) <0, t€J, and y,(t) < z(t), t€J. Put p(t) = z(t) — zy(t),
t€J. We obtain:

p'(t) = 21(t) = 26(t) < (8, 20(1), 7o) = f (2, 20(1), 70) = 0,

so p(t) €0, t € J, and hence z;(t) < zy(t), t € J. This shows that (3) is satisfied.
Note that:

¥1(1) = F(t,90(2)s Xo) < F(1,y1(2): A1), 41 (0) = kg,
and
21(t) = f(t, 20()s70) = f(t,21(2),71), 21(0) = k.
Moreover, in view of 3° and 4 °, we have:
0 = G(ygAg) = N(A; = Ag) £ G(y1:Ag) = N(Ay = Ag)
=Gy, Ag) — Gy, M) + Gy, M) —N(A = Ag)
< N(Ap = 2g) + Gy, M) = N(Ap = Ag) = Gyps Ap)s
and
0 = G(20:70) = N (71 = 70) 2 G(21,70) = N (71 = 7o)
= G(21,79) — G(21,71) + G(21,71) = N(v1 = 70)
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> - N(’Yl - ’)’0) + G(zl,'yl) - N('Yl - 70) = G(zl,*yl).

Consequently, (y;,4,), (21,7;) are lower and upper solutions of problem (2).
Let us assume that

S S S S o1 S S S
Yo(t) Syp(t) <o Sy 1(8) Syp(t) S 24(t) < zg (1) <o <2y (8) < 2(2),
teld

and

Yi() < F(&ye(0), Ar),  yi(0) = kg, 2 (1) 2 f(t 2i(2)vk), 21(0) = ko,
0 S G(yk’ ’\k), 0 Z G(Zk’ 7k)

for some k > 1. We shall prove that:

(4)

A<M 41 < Y +1 S e
{ Ye(t) Sy 41(1) Sz 14 (8) S 24(1), teJ,
and
Yie+1(0) ST ye 4 1(8), Ak 1) i 41(0) = kg,
0<GWk 410 %+ 1)

2e 4 1(0) 2 ft 2 1Yk 1)y 2k 41(0) = kg,
0 ZG(zk+1’7k+1)’

where
Yk + 1(8) = F(& (), M)y v + 1(0) = kg,
0=G(yp, M) = N(Ap 41— )

zy, + 1) = f(t 2 (s 7k)s 2k + 1(0) = kg,
0=G(zr,76) = N7k 41— V)

Put p=Ap—Ap 4, s0:
0=G(yp )~ N y1-2) = =N 41— A) = Np,
and hence Ay <Ay . Let p=2X; 1 —7; ;- Inviewof 3° and 4°, we see that:
0=GYpAp) = N(Ap 41— )
= G(Y M) = G2k Te) = Nk 41— 2 + N (Ve 15 70)
SG(zp M) = G2 7)) = N (A 41 = M) + N (1~ V%)
SN =A) Ny 1= M)+ N 41— 7) = — Np.
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Hence we have Ay 1 <74, 1. Now,let p =1y, . ;— 7 Then:

0=G(2, 7)) ~N(Vk 41— ") < — Np,

SO Yk 41 < V> Which shows that the first inequality of (4) is satisfied.
As before, we set p(t) = yp(t) —yj 4 1(t), t € J. Then:

pl(t) = ylk(t) - ylk + 1(t) < f(ta yk(t)a ’\k) - f(t1 yk(t)’ )‘k) =0,

and p(0) =0, so y,(t) <y ,(t), t€J. We observe that for p(t) =y, (t)—
zp, 4 1(t), t € J, we have

p'(t) = y;c + 1(t) -z}, + 1(t) - f(t, yk(t), ’\k) i zk(t), ')’k)
S F(t 251y 18) = F(t 25 (8),75) = 0

which proves that yp , 1(t) <z (1), t€J. Put p(t) =2, 1(t) —2(t), tel.
Then we have:

P'(t) = 2 4 1(2) — 2(t) < f( 24 (1), 7E) — F(E, 25 (1), 1) = O,
80 2j 4 1(t) < 24(t), t € J. Therefore:
Yi(t) Sy 41(1) Sz 1 4(1) S 2(2), tEJ.

It is simple to show that (yy 4 1,A; 4 1)s (2 4+ 1,7k 4 1) are lower and upper solu-
tions of problem (2).
Hence, by induction, we have:

ML S, S S e
Yo(t) Sy1(1) <. <y, (1) <z, (1) < ... <z () < z9(t), t €T

for all n. Employing standard techniques [4], it can be shown that the sequences
{¥p A} {27} converge uniformly and monotonically to (y,A), (z,7), respectively.
Indeed, (y,A) and (z,7) are solutions of problem (2) in view of the continuity of f
and G, and the definitions of the above sequences.

We have to show that if (u, ) is any solution of problem (2) such that:

Yo(t) < u(t) < zo(t), t €J, and Ag < B < g,
then:
yo(t) < y(t) S u(t) < 2(t) < zg(t), t€J,and Ag <A< B <y <o
To show this, we suppose that:
Ye(t) Su(t) < z(t), t€J, and A, < B <y
for some k. Put f = A, ;— . Then, in view of 3° and 4°, we have
0=G(¥Ur ) =Ny 1= ) SG(,2) = N(Ap 1= Ap)
= G(u, M) = G(u, ) = N(Ap 41— Ag)
SNB=2A) =Ny 1 -M) = —Np,
so p <0, and hence Ay . <B. Let p=p§— Yk +1- Then we obtain:
0 = G(u,8) < G(24 B) = Glzo ) — Glzpo1) + N(vp 41— 72)
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SN(7k_,8)+N(7k+1_7k): —Np,

and hence p <0, so 8 <7y 4. This shows that:

My1<P<Tegr

As before, we set p(t) =y, 1(t) —u(t), t € J. In view of 2°, we obtain:

P'(t) = Yk 41— v(t) = FGy(t), ) — f(t,u(t), B)
< f(ta U(t),ﬂ) - f(ta U(t),ﬁ) =05

hence p(t) <0, t€J, and y; . 4(t) <wu(?), t€J. Now let p(t) =u(t) -z, (%),
te J. We see that:

p’(t) = u’(t) - Z;c + 1(t) = f(ta u(t)a ﬂ) - f(t’ Zk(t)) 7k)
< f(2i(t), vi) = (8 24(8), 7)) = 0,

and p(t) <0, t € J, 50 u(t) <24 4(t), t €J. This shows that:

Y +1(8) Su(t) <z 4(2), ted.

By induction, this proves that the inequalities:

are satisfied for all n. Taking the limit as n—o0, we conclude that:

y(t) Su(t) < 2(t), t€ J, and A< P < 7.

Therefore, (y,),(z,7) are minimal and maximal solutions of (2). The proof is com-

plete.
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