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1. Preliminaries

Problems of existence of solutions to set-valued differential equations were studied by
many (see e.g., [3, 8, 9]). In particular, random cases were considered by the author
in 11, 12].

In this paper we study the set-valued stochastic equation with white noise drift:

DX, = F(t,X,)dt + o dw, t € 1,

(I
X,=U P.1,

where F' and U are given random set-valued mappings with values in the space
K (E), of all nonempty, compact and convex subsets of the separable Banach space
(E, || I|)y I: =[0,T]; T >0. We assume also that there is a predictable stochastic
process o with values in E. Finally, (w;); ¢ ; denotes a real Wiener process. We
interpret the above equation through its integral form as

t t
X, =U+ / F(s, X ,)ds + / o, dw, P.1, tel. (I1)
0 0

Integrals above are Aumann’s integral of F' and stochastic (Ito) integral of o, respec-
tively.
The aim of this work is to study continuity properties of set-valued solutions of
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(I). First, we recall several notions needed in the sequel. In the space K (E) we

consider the Hausdorff metric H (see e.g., [5, 7]): H(A, B) = max(H(A,B), H(B A))

for A,Be K_FE), where H(A,B)=supinf |la—b||. By |[A]|l we denote the
a€ AbeB

distance H(A,0). It can be proved that (K _(E), H) is a Polish metric space.
By C;=C(I,K_(FE)) we denote the space of all H-continuous set-valued mapp-
ings. In this space we consider metric p of uniform convergence:

p(X,Y): =sup H(X(t),Y(t)), for X,Y € Cy.
0<t<T

Then we have a Polish metric space.

Let (2,%,%,, P), ¢ 1 be a given complete filtered probability space satisfying the
usual conditions. ~We recall the notion of a multivalued ¥,-adapted stochastic
process. The family of set-valued mappings X = (X,), ¢ ; is said to be a multivalued
F,-adapted stochastic process if for every t € I, the mapping X,:Q—K_(E) is F,-
measurable, i.e., {w: X, NV # 0} € F,, for every open set V C E (see e.g., [7]). It can
be noted that V' can be chosen as a closed or Borel subset. If the mapping t—X,(w)
is H-continuous with probability one (P.1) then we say it has continuous paths. In
this case, the set-valued process X can be thought as random element X:Q—C';. Let
(X,,) be a sequence of random elements with values in metric space (S, p). Then we
say that X, converges in probability to the random element X:Q—S (X n1—3>X ), of
for every € >0, it holds true that P(p(X,,X) > ¢)—0, as n tends to infinity. It is
known (see e.g., [13]) that X n—I:X if and only if every subsequence of (X,,) has a sub-
sequence converging to X with probability one (P.1).

In the theory of differential equations in Banach space the notion of measure of
noncompactness plays one of the central roles (see e.g., [1]). Let B(E) denote a
family of all nonempty and bounded subsets in E.

Definition 1: The mapping N: B(E)—[0,00), defined by N(A) = inf{e > 0: A can
be covered with a finite number of balls of radii < €}, is called Hausdorff (ball) mea-
sure of noncompactness.

2. A Set-Valued Stochastic Equation and Stochastic Inclusion

We begin with the designation of restrictions imposed on F,U and o. Let us assume
that F:IxQx K _(E)—-K_(FE), U:Q—K/FE), and ¢:1xQ—FE have the following
properties:
1) F is an integrably bounded multifunction i.e. there exists a joint mea-
T
surable function m:IxQ—R_ such that [m(s,w)ds<oo P.1 and
0
|| F(t,w,A) || <m(t,w) P.1, t-a.e. A€ K (E).
2) F(t,w, ) is H-continuous with P.1, t-a.e.

3) F(t,,A)is F-adapted for every t € I, A € K _(E).
4) F(,,A) is measurable for every A € K _(E).

5) U is an ¥Fy-measurable multifunction.
6) o = (0,) is an F,-adapted stochastic process for which E f | o, || 2ds is
finite.

Let us notice that under assumptions given above, for every A € K (F), the set-
valued process
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t t
¢, =U+ / F(s,A)ds + / o dw,tel,
0

is ¥,-adapted with values in K _(FE). It is also clear that ® has continuous “paths”.
We also assume the so-called “Kamke condition” imposed on multifunction F':
for every A,, A,,... € K (F) one has

N F(t,4,) <k(t,N(|J 4,)) with P.1 t€T ae., (%)
n>1 n>1

where k: I xQx R—R | satisfies the following conditions:

a) k(t, ,z) is F-measurable for every (t,z) € IXR ,

b) k(,w, ) is a Kamke function (see e.g., [14]) with P.1.

Definition 2: A multivalued process X = (X,), ¢ ; is said to be a solution of (I)
if it satisfies multivalued stochastic equation (ITI).

Let us notice that without stochastic perturbation, equation (II) can be written
as:

DyX,=F(tX,) P.1, ta.e.
Xy=U P1,

where Dy denotes the Hukuchara derivative operator ([6]) for multifunctions.
Before stating the existence theorem to equation (II) let us recall its special case.
Theorem 1: ([11]) Let F and U be multivalued mappings satisfying conditions 1)-
4) and b5), respectively. Let us also suppose that F' satisfies the “Kamke condition.”
Then the multivalued random differential equation

DyX,=F(t,X,) with P1 tel a.e.
Xo=U with P.1

has at least one solution.
Remark: In fact, the existence of solutions to the above initial value problem is
based on the fact that under these conditions there exists at least one solution to the

t
multivalued equation X,=U+ [F(s,X s)ds and on well-known connection
0

between Aumann’s integral of set-valued mapping and its Hukuchara derivative via
Radstrom Embedding Theorem (see e.g. [14]).

Theorem 2: Let E be a Banach space such that its dual E* is separable. If F,U
and o have properties 1)-6) and F satisfies the “Kamke condition” then there exists
at least one solution of the equation (II).

Proof: Let £, = _tfasdws. Let XtA: = X, —&,, where X, is a solution of (IT), and
X;(w) ={z - §t(w);(:)cA € X,(w)}. The process X satisfies the equation
t
X::U—}-/ FA(S,X:)dS Pl,tel, (%)
0
where FA(s,w, A) = F(s,w,A+¢,(w)). The set-valued mapping F~ meets properties
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1)-4). By properties of measure of noncompactness it also satisfies () (cf. [1]).
Hence, equation (II) has at least one solution if and only if equation (*) has one.
By Theorem 1 (via Remark 1) the proof is completed.

Let us suppose now that I':I xQx E—K (F) is a given set-valued mapping. Let
us set F(t,w,A): =col'(t,w,A), A€ K (F), where coB denotes the closed convex
hull of the set B. It is noteworthy to observe the connections between solutions of
equation (II), with F' = oI’ and solutions of stochastic inclusion

t t
T, —z, € / I(u,z,)du + /audwu with P.1,0<s<t<T (Ir)
S S

zy € U with P.1.

We suppose that I' is an integrable bounded multifunction such that:

1) I'(¢,w, ) is H-continuous with P.1, t-a.e.,

2" I'(t, ,z) is F,-adapted for every t € I, z € E,

31 T'(, ,z) is measurable for every z € E,

4" VACS, (U):N(T(t,A)) <k(t,N(A)) P1,tel,
where S (U)=U +rB(0,1) and B(0,1) is a closed unit ball in Banach space F,
centered at zero.

Theorem 3: Suppose that ' satisfies conditions 1'-4’. If a multivalued stochastic
process X = (X;), ¢ 1 is a solution of equation (II) with F =Tol' then there exists
stochastic process x = (x,) being both a solution to stochastic inclusion (II') and the
selection of X.

Proof: Similarly, as above, let £, = fcr dw, FA(t,w, z): =T'(t,w,z + £,(w)) and

Fﬁ(t,w,A): =F(t,w,A+£,(w)). Then F =tol'. Let us notice than F  also
satisfies 1’-4’. Hence, by Corollary 1 [11], there exists at least one solution of
equation

t

X, =U+ / F'(s,X,)ds P., tel.
~ 0
Taking X = X + ¢ we get a solution of equation (II), where F'=col. Moreover,
by Theorem 4 [11] there exists stochastic process, say * = (z, ), being a selection of
~ ~ ~ t . ~ ~
X such that: z, —z, € [T (u,z,)du with P.1,0<s<¢<T, and 2z, €U P.1.
8

Consequently, there exists stochastic process z = (z,), as a selection of X, such

that: =, =z, —¢, with P.1. It remains to observe that z is a desired solution of
inclusion (I1').

Continuity Properties of Solutions

By S(Ix%) we denote the class of “simple” multivalued processes that can be
expressed by: X = Z ID C;, where the sets D;, i=1,2,...,n form a measurable

partition of I x and C €EK (E)i=12,.
Lemma 1: If X = ( t)teT is a multzvalued stochastic process with continuous
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“paths” then there ezists a sequence {X [} C S(IxQ) such that V(t,w)e€IxQ:
lim H(X(t,w), X, (t,w)) =0.
n—0o0

Proof: It follows directly from the fact that K (F) is a separable metric space
and Proposition 1.9 [15].
Let A be a metric space. Let us consider the multivalued mapping F:I xQx
K (FE)x A—K (F) such that:
Al.  For every fixed A € K (F) and XA € A, F(,,A,]) is a measurable and inte-
grably bounded multifunction.
A2. The mapping F(t,w,,A) is with P.1 uniformly continuous with respect to
tel and A € A.
Definition 2: A multifunction F' (with properties Al and A2) is said to be

integrably continuous in probability (icp) at Ay € A with respect to a family
CCK_(E)(C#0)if

t t
VCeeCVtel: / F(s,C,N)ds5 / F(s,C,\)ds
0

0
for A—A,.

The results presented below give characterizations of icp multifunctions. We use
them to obtain the main theorem.
Lemma 2: If F is an icp multifunction at A\, with respect to C then for every

¢ t
C €C one has: [F(s,C,)\,)ds— [ F(s,C,\y)ds P.1 uniformly in t €I, for some
0 0

sequence (),) convergent to A,

Proof: Let D be a set of rationals in I, D = {ty,t5,...} and let (A ) be an
arbitrary sequence of elements of A that converges to A;. Fix C €C. Then for
t, € D, there exist a sequence (A, (%y)),, convergent to A; and set Q(t;)CQ,
P(Q(ty)) = 1, such that

t t1

1
Ywe Q(tl):H(/ F(s,w,C, A, (t)))ds, / F(s,w,C,Xy)ds)—0, for n—oo.
0 0

Similarly, for t, € D we can find a sequence (A,(t,)), being a subsequence of
(A(ty)),, and Q(t) CQ, P(Q(ty)) =1 for which a similar convergence holds.
Continuing this selection process we obtain the infinite table

A(ty) Ag(ty) oo An(ty)
A(tg) Ag(ty) oo AL(ty)

: : : (1)
A(t) A(t,) o AL(t,)

By diagonal selection we can find a sequence (A, ),, being a subsequence of each row

of table (1) that converges to A, Let Qy= [{Q(¢,);n >1}. Then P(Qy) =1.
Moreover,
t

t
Ywe Q,,Vt e D:H(/ F(s,w,C, ), )ds, / F(s,w,C,Ay)ds)—0, n—oo.
0 0
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t
Since the set-valued process J, = [F(s,C,\)ds, t €I has with P.1 uniformly
0

continuous “paths”, we can find Qj, P(€) = 1 such that

t ¢
Vw e Qy sup; ¢ IH(/ F(s,w,C,A,)ds, / F(s,w,C,Xy)ds)—0, if n—oo.
0 0

This completes the proof.
By B; we denote the o-field of Borel subsets of I.

Lemma 3: A multifunction F is icp at Ay with respect to family C if and only if:
VC €€, V() CA: X =X, 3(N) C(A,):

H( / F(s,C, \.)ds, / F(s,C, Agds)—0 P.1 2)
B B

as n—oo, for every B € B;.

Proof: Fix C € C and let (A,,) be an arbitrary sequence convergent to A,. Then
by Lemma 2, we can find its subsequence (A]) and Qy: P(€),) = 1 such that for every
weNyand 0<s<t<T,

t t
/ F(u,w,C, /\’n)du—>/ F(u,w,C, Ay)du, as n—oo. 3)
S s

Let ¥: = {[s,t):0<s<t<T} and

n
A ={|J RiR; €9, R,NR;=0,i # j,i,j=1,2,..,n,n > 1}.
i=1
Since o(¥) = o(A) =B; and A is a ring of subsets of I, then for every ¢ >0 and
B € By, there exists A € A such that | BAA| <€ (c.f. e.g., Th. 11.4 [2]), where | |

is Lebesgue measure and BAA: = (B\A)U (A\B). By integrably boundness of F we
get:

H(/F(s,C, A)ds, /F(S,C,)\O)ds) SH(/F(S,C,/\'n)dS, /F(S,C,)\o)ds)
B B A A
+ / m(s,w)ds, for every A € A.
BAA

Then by (3), limsupH( [ F(s,C,\,)ds, [ F(s,C,Ay)ds) < [ m(s,w)ds.
n—oo B B

Taking A sufficiently close to B we claim (2). The converse is obvious.
Lemma 4: A multifunction F is icp at Ay with respect to K (F) if and only if F
is icp at Ay with respect to S(I x Q).
Proof: Let us assume that F is icp with respect to K (E). Let X € S(IxQ).
Then there exist Cy,C,,...,C, € K (FE) and a measurable partition {D,,D,,...,D,}
T

of space Ix such that X = 3 I C,. Take C; and (A,) to be an arbitrary
=D

1=
sequence convergent to Ay. Next let (A, ) be any subsequence of (A). By Lemma 3
there exists a sequence (’\In,l) being a subsequence of ()\nk) and a subset QO’I CcQ
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P(§ 1) = 1 such that:

VweQ,,,VBE [Bl-:nli_)ngoH(/F(s,w, Cl,/\’n’l)ds, /F(s,w, C1yAg)ds) = 0.
B B

Similarly, for C; we can extract a subsequence ()], ;) from (X}, ;) and Q, , CQ
P(Q0 o) = 1, with the desired property, and so on. Thus we obtain a sequence (/\ )
which is a subsequence of (An,)»i=12,..,r—1and Qy ., P(Q ,) =1, such that’

VwEQO’,,,‘V’BEBI:JLII&(/F(S,w,CT,An »)ds / F(s,w,C,,Ay)ds) = 0.
B B
Let Qo_ ﬂ QO 1+ For any A€cB;®%F and weQ, we define the set (A),: =
T
{tel: (t w)EA} Then (A),€B;. Let we Q,. Then X(-,w)= ) Iipy (+) Cy
1=1 Tw

and {(D;),:i=1,2,..,r} is measurable partition of I. Hence,_ the following
inequality holds:

t
H(/ F(s,w, X,, n r)ds,/F(s w, X, Ap)ds)
0

.
< Z H( / F(s,w,C;, Ay, ,)ds, / F(s,w,C};, Ayds)).
r=1 (D,),n(0,1] (D,),, n0,t]
It remains to observe that each term of the above sum converges to zero as n tends to
infinity.

The converse statement is obvious. It is enough to take X: =1, oC, for
CeK[( 2 This completes the proof.

By X* we denote a multivalued process being the solution of the equation
t t
Xt:U+/F(s,Xs,/\)ds+/asdwsP.l,tEI,)\eA. (I11)
0 0

Theorem 3: Let us assume that F is an icp set-valued mapping at Ay € A with
respect to K (E). Then,

t

iy if X2BxM then vt € It [ F(s, X, \)dsD fF(s X230 30)ds, A=)y,
0

it)  if for every Ay, Ay,... € K (E) and (X,); ), —>,\ we have

N{ U F(t,An,An)} < Ic(t, N{ U An}) with Pt €T a.c., then X B x™0
n>1 n>1

Proof: (i) Let (),) be an arbitrary sequence convergent to Aj. Then its every

1
subsequence contains a further subsequence, say, (A]), such that X A x %o with P.1
in C;. Take w from an appropriate set (for which this convergence holds). By
condition A2, for any € > 0, there exists § > 0 such that H(F(t,C,\.), F(t,D,)})) <
€/4T, for n € N, C,D € K (F) whenever H(C,D) < 6.
Let V3 be an open neighborhood for Aj such that
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if A/, € V then sup, ¢ (H(X}™, X0) < 6. (4)

Let (X zo)k be a sequence of simple multifunctions (Lemma 1) convergent to X 20 for
every t € I and w € 2. Then for every t € I and A € A, we have:

lim H (F (£, w, X 30(t,w), X), F(t, w, X)0(w),\) = 0 P.1.

Next by the Lebesgue Dominated Convergence Theorem (via integrably boundedness
of F') we obtain that

T
/ H(F(s, X29(s), A), F(s, X9, A))ds—0 P.1
0
for every A € A. Hence by (4), after standard calculation we see that

t t
H( / F(s,w, X,n(w), X! )ds, / F(s,w, X20(w), \g)ds) < (3/4)e
0 0

t t
+H(/F(s,w,X;c\o(s,w),Xn)ds,/F(s,w,X;c\o(s,w))\o)ds),
0 0

for t € I, k sufficiently large and w taken from an appropriate set of probability one.
By Lemma 4, multifunction F is icp at Ay with respect to S(I x2). Hence there
exists a sequence () being a subsequence of (A} ), a subset of Q2 of measure one such

that for every ¢ > 0 and appropriate w we can find an open neighborhood V' of A,
with ‘

t t
H( / F(s,w, X30(s,w), \")ds, / F(s,w, X3%(s,w),\g)ds) < /4,
0 0

for t €I and A € V,. Therefore, taking n” sufficiently large and A, € V NV, we
have:

t t
"
H(/ F(s,w,X;\“(w),)\;;)ds,/ F(s,w,X;\O(w),)\O)ds)<e
0 0

for t € I. This completes the proof of part (z).
Proof of part (iz).
Let (A,,) be a sequence convergent to A,. Consider its arbitrary subsequence,

denoted Cfor simplicity by the same symbol. We define the multivalued mapping
I:Q—2 1 by

Mw)y={XeC X X in C for some sequence (A]),(A;) C (A,)}-
By the assumption of the integrably boundness of F' it follows that

t
Vne N,V0<s<t<T:H(X)n X0m) < / m(u)du with P.1.
S
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Thus the sequence (X )‘") is equicontinuous in C; with P.1. Similarly, (compare [14])
by assumption (ii¢), it can be proved that |J {X ;\"} is a relatively compact subset
n>1

of F, for every t € I with P.1. Thus, by Ascoli Theorem we claim that the sequence
(X"n) is relatively compact (with P.1). Hence the multifunction IT # @ P.1 and has
closed values. Moreover, we claim that II is measurable. To see this, let
Qp: = {w:T(w) is closed subset of C;}. For X € C; we consider a mapping €, 3
w—Dist(X, II(w)), where Dist(X, II(w)) = infy . M(w p(X,Y). Fixr > 0.

Then {w:Dist(X,I(w)) <7} ={w:3Y € H(w):)Y € B,(X)}, where B (X): =
{Y € Cp:p(X,Y) <r}. Let {t;} be a sequence of rationals in I. Then we get:

{w:dist(X,II(w)) < 7} = {w:I(w) N B,(X) # 0}

A
n .
=U N U Nitwx, J@)nB, _y (%) #0}.
m>11>1 551 k>1
A .
Since X t:] is an G.Ftk—mea,surable multifunction then the last set above belongs to o-

field ¥, which yields the F-measurability of II (see, e.g. [4]). Thus, by Kuratowski
and Ryll-Nardzewski Selection Theorem [10], there exists a measurable selection X

of I; X" €T P.1. The definition of IT implies then that X**—X" P.1 in C, for
some sequence (A7) tending to Ay and this yields convergence in probability in C;.
Finally, we claim that X is a solution of (I1I). Indeed, let us notice that

t
H(X:,U-}—/F(s,X:,)\O)ds+/asdws)
0

n

t t
~ ! ! ~
< H(X,,X)n)+ H( / F(s, X0, M Yds, / F(s, X0, 2)ds),
0 0

with P.1 and for t € I.

Since the first term above converges to zero then by (i) the second term con-
verges to zero as well. This completes the proof.
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