
Journal of Applied Mathematics and Stochastic Analysis, 10:3 (1997), 239-248.

CONTINUITY PROPERTIES OF SOLUTIONS OF
MULTIVALUED EQUATIONS WITH WHITE

NOISE PERTURBATION

MARIUSZ MICHTA
Technical University, Institute of Mathematics
Podgorna 50, 65-26 Zielona Gora, Poland

(Received April, 1996; Revised November, 1996)

In the paper, we consider a set-valued stochastic equation with stochastic
perturbation in a Banach space. We prove first the existence theorem and
then study continuity properties of solutions.
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1. Preliminaries

Problems of existence of solutions to set-valued differential equations were studied by
many (see e.g., [3, 8, 9]). In particular, random cases were considered by the author
in [11, 12].

In this paper we study the set-valued stochastic equation with white noise drift:

DX F(t, Xt)dt + (tdwt, t I,

Xo U P.1,

where F and U are given random set-valued mappings with values in the space

Kc(E), of all nonempty, compact and convex subsets of the separable Banach space
(E, II II ), I: [0, r]; > 0. We ssume so, that there is a predictable stochastic
process a with values in E. Finally, (wt) E I denotes a real Wiener process. We
interpret the above equation through its integral form as

Xt-U + / F(s, Xs)ds+ /rsdws P.1,
o o

t e I. (II)

Integrals above are Aumann’s integral of F and stochastic (ITS) integral of r, respec-
tively.

The aim of this work is to study continuity properties of set-valued solutions of
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(I). First, we recall several notions needed in the sequel. In the space Kc(E we
consider the nausdorff metric H (see e.g., [5, 7]): H(A,B)- rnax(H(A,B),H(B,A))
for A, Beh’c(E), where H(A,B)-supinf Ila-bll" By IIAII we denote the

aEAbEB
distance H(A, 0). It can be proved that (Kc(E),H) is a Polish metric space.

By CI -C(I, Kc(E)) we denote the space of all H-continuous set-valued mapp-
ings. In this space we consider metric p of uniform convergence:

p(X, Y): sup H(X(t), Y(t)), for X, Y E CI.
0<t<T

Then we have a Polish metric space.
Let (2, , bt, P)t 1 be a given complete filtered probability space satisfying the

usual conditions. We recall the notion of a multivalued bt-adapted stochastic
process. The family of set-valued mappings X (Xt) I is said to be a multivalned
t-adapted stochastic process if for every t E I, the mapping Xt’f2--Kc(E is t-
measurable, i.e., {w: X N V 7 } zJt, for every open set V C E (see e.g., [7]). It can

be noted that V can be chosen as a closed or Borel subset. If the mapping t--,Xt(w
is H-continuous with probability one (P.1) then we say it has continuous paths. In
this case, the set-valued process X can be thought as random element X: ---CI. Let
(Xn) be a sequence of random elements with values in metric space (S,p). Then we
say that Xn converges in probability to the random element X:ft---S (xnP--X), of
for every e > 0, it holds true that P(p(Xn, X > e)--*0, as n tends to infinity. It is
known (see e.g., [13]) that XnP--X if and only if every subsequence of (Xn) has a sub-
sequence converging to X with probability one (P.1).

In the theory of differential equations in Banach space the notion of measure of
noncompactness plays one of the central roles (see e.g., [1]). Let B(E) denote a

family of all nonempty and bounded subsets in E.
Definition 1: The mapping N:B(E)[O, cx3), defined by N(A)- inf{ > O: A can

be covered with a finite number of balls of radii < }, is called Hausdorff (ball) mea-
sure of noncompactness.

2. A Set-Valued Stochastic Equation and Stochastic Inclusion

We begin with the designation of restrictions imposed on F,U and a. Let us assume
that F: I x 2 x Kc(E)--+Kc(E), U: f2gc(E), and a: I x ftE have the following
properties:

1) F is an integrably bounded multifunction i.e. there exists a joint mea-
T

surable function m:Ixf2R+ such that f m(s,w)ds< cx3 P.1 and
0

II F(t, w, A) II < re(t, w) P.1, t-a.e. A Kc(E).
2) F(t,w, )is H-continuous with P.1, t-a.e.
3) F(t, ,A) is bt-adapted for every t I, A Kc(E).
4) F(, ,A)is measurable for every A E gc(E).
5) U is an 50-measurable multifunction. T
6) a (at) is an bt-adapted stochastic process for which E f II as II 2ds is

finite. 0

Let us notice that under assumptions given above, for every A Kc(E), the set-
valued process
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t U + / F(s,A)ds + / rsdws, t E I,
0 0

is iit-adapted with values in Kc(E). It is also clear that has continuous "paths".
We also assume the so-called "Kamke condition" imposed on multifunction F"

for every A1, A2,... Kc(E one has

Jg(U F(t’An)) <- k(t’N(U An)) with P.1 t G I a.e., (,)
n>l n>l

where k" I x 2 x R----R + satisfies the following conditions:
a) k(t,, x) is if-measurable for every (t, x) G I x R +,
b) k(,w, )is a Kamke function (see e.g., [14]) with P.1.
Definition 2: A multivalued process X (Xt) I is said to be a solution of (I)

if it satisfies multivalued stochastic equation (II).
Let us notice that without stochastic perturbation, equation (II) can be written

as"

DHX F(t, Xt) P.1, t-a.e.

Xo U .P.1,

where DH denotes the Hukuchara derivative operator ([6]) for multifunctions.
Before stating the existence theorem to equation (II) let us recall its special case.

Theorem 1: ([11]) Let F and U be multivalued mappings satisfying conditions 1)-
4) and 5), respectively. Let us also suppose that F satisfies the "Karnke condition."
Then the multivalued random differential equation

DHX F(t, Xt) with P.1 t I a.e.

Xo-U withP.1

has at least one solution.
Remark: In fact, the existence of solutions to the above initial value problem is

based on the fact that under these conditions there exists at least one solution to the

multivalued equation X U+ f F(s, Xs)ds and on well-known connection
0

between Aumann’s integral of set-valued mapping and its Hukuchara derivative via
RadstrSm Embedding Theorem (see e.g. [14]).

Theorem 2: Let E be a Banach space such that its dual E* is separable. If F,U
and cr have properties 1)-6) and F satisfies the "Kamke condition" then there exists
at least one solution of the equation (II).

Proof: Let {t f crsdws" Let X X -{t, where X is a solution of (II), and

X (w)- {x -t(w);x Xt(w)}. The process X satisfies the equation

X -U+ ] F (s, Xs)ds P.1, tEI,
0

where F (s, w, A) F(s, w, A + s(W)). The set-valued mapping F meets properties
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1)-4). By properties of measure of noncompactness it also satisfies (,) (cf. [1]).
Hence, equation (II) has at least one solution if and only if equation (**) has one.
By Theorem 1 (via Remark 1) the proof is completed.

Let us suppose now that F:I x ftx EKc(E is a given set-valued mapping. Let
us set F(t, w, A): = --6F(t, w, A), A e gc(E), where -6B denotes the closed convex
hull of the set B. It is noteworthy to observe the connections between solutions of
equation (II), with F = -6F and solutions of stochastic inclusion

xt- xs E /F(u, xu)du + J rudwu with P.l, O <_ s <_ t <_ T
8 8

(II’)

x0 E U with P.1.

We suppose that F is an integrable bounded multifunction such that:
1’) F(t, w, )is H-continuous with P.1, t-a.e.,
2’) F(t, ,x) is t-adapted for every t I, x E,
3’) F(,, x) is measurable for every x e E,
4’) VA c S(U): v(r(t, A)) _< k(t,(A)) P.1, t I,

where Sr(U U+rB(0,1) and B(0,1)is a closed unit ball in nanach space E,
centered at zero.

Theorem 3: Suppose that F satisfies conditions 1’-4’. If a multivalued stochastic
process X (Xt) e I is a solution of equation (II) with F---d-6F then there exists
stochastic process x--(xt) being both a solution to stochastic inclusion (II’) and the
selection of X.

Proof: Similarly, as above, let t- f (rsdws, F (t,w,z): F(t,w,x + t(w)) and
0

F (t,w,A)" -F(t,w,A+t(w)). Then F ---6F Let us notice than F also
satisfies 1’-4’. Hence, by Corollary 1 [11], there exists at least one solution of
equation

X -U+ IF (s,Xs)ds P.1, tI.
0

Taking X- X + we get a solution of equation (II),.. where.. F- -6F. Moreover,
by Theorem 4 [11] there exists stochastic process, say x (xt), being a selection of

X such that" x -xs fF (u, xu)du with P.1, 0 <_ s _< t _< T, and x0 U P.1.
8

Cons..equently, there exists stochastic process x- (xt) as a selection of X, such
that: xt xt-t with P.1. It remains to observe that x is a desired solution of
inclusion (II’).

3. Continuity Properties of Solutions

By S(I x f) we denote the class of "simple" multivalued processes that can be

expressed by" X- ID.Ci, where the sets Di, i-1,2,...,n form a measurable
i=1

partition of I f2 and C Kc(E), i- 1,2,...,n.
Lemma 1: If X- (Xt) E T is a multivalued stochastic process with continuous
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"paths" then there exists a sequence {Xn} CS(Ix) such that V(t,w) GIx:
nlLmooH(X(t, w), Xn(t w)) O.

Proof: It follows directly from the fact that Kc(E is a separable metric 8pace

and Proposition 1.9 [15].
Let A be a metric space. Let u8 consider the multivalued mapping F:I x x

Kc(E x AKc(E such that:
A1. For every fixed A E Kc(E and A E A, F(, ,A,A)is a measurable and inte-

grably bounded multifunction.
A2. The mapping F(t,w, ,A) is with P.1 uniformly continuous with respect to

tIandAA.
Definition 2: A multifunction F (with properties A1 and A2) is said to be

integrably continuous in probability (icp) at o A with respect to a family
C C gc(E (C ) if

VC
0 0

for Ao"
The results presented below give characterizations of icp multifunctions. We use

them to obtain the main theorem.
Lemma 2: If F is an icp muliifunciion at o with respect to then for every

c e c o a: f (, c,)d F(, C, o)d P. uno , fo o
0 0

sequence (An) convergeni to o"
Prf: Let D be a set of rationals in I, D {t,t2,...} and let (An) be an

arbitrary sequence of elements of A that converges to A0" Fix C C. Then for
t1 D, there exist a sequence (An(t))n, convergent to A0 and set (tl) C
P((t)) 1, such that

1 1

e (tl):H(/ F(s,w,e, An(tl))ds, / F(s,w,C, Ao)ds)O, forVw
0 0

Similarly, for t2 D we can find a sequence (An(t2))n being a subsequence of

(1,(tl))n and t2(t2) C P((t2) 1 for which a similar convergence holds.
Continuing this selection process we obtain the infinite table

"1 (tl) ’2(tl) ,n(tl)
(:) :(t:) .(:)

(1)

By diagonal selection we can find a sequence (n)n being a subsequence of each row
of table (1) that converges to o" Let o-{(tn);n>-1}. Then P(o)-1.
Moreover,

Vw E ao, Vt D: H( / F(s, w, C, n)ds, / F(s, w, C, ,o)ds)--O, noo.
0 0
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Since the set-valued process Jr-fF(s,C,A)ds, E I has with P.1 uniformly
0

continuous "paths", we can find f, P(f)- 1 such that

This completes the proof.
By NI we denote the r-field of Borel subsets of I.
Lemma 3: A multifunction F is icp at Ao with respect to family C if and only if:

vc e c, A:

H( f F(s, C, ,)ds, J F(s, C, Aods)--*O P.1

B B

(2)

as n---,o, for every B G I"
Proof: Fix C G and let (An) be an arbitrary sequence convergent to A0. Then

by Lemma 2, we can find its subsequence (A) and ft0" P(f0)- 1 such that for every
w f0 and 0 < s < t < T,

(3)

Let Y" --{[s,t):0<s<t<T}and
n

at: {U Ri:Ri Y’RiflRj O,i j,i,j 1,2,...,n,n >_ 1}.
i=1

Since r(:f)- r(at)- BI and at is a ring of subsets of I, then for every e > 0 and
B BI, there exists A E at such that BAA < e (c.f.e.g., Th. 11.4 [2]), where
is Lebesgue measure and BAA: -(B\A)U (A\B). By integrably boundncss of F we
get:

B B A A

+ ] m(s,w)ds, for every A at.
BAA

Then by (3), limsupH( f F(s, C, A’n)ds f F(s, C, Ao)ds <_ f re(s, w)ds.
n-.o B B BAA

Taking A sufficiently close to B we claim (2). The converse is obvious.
Lemma 4: A multifunction F is icp at Ao with respect to Kc(E if and only if F

is icp at Ao with respect to S(I x ).
Proof: Let us assume that F is icp with respect to Kc(E). Let X S(I x2).

Then there exist C1,C2,...,Cr G Kc(E and a measurable partition {D1,D2,...,Dr}
r

of space I x D such that X-i=lIDiCi" Take C1 and (An) to be an arbitrary

sequence convergent to A0. Next let (An be any subsequence of (An). By Lemma 3
kthere exists a sequence (A,I) being a subsequence of (Ank) and a subset D0,1 C_ f;
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P(f0,1)- 1 such that"

VwE f0,1,VB E Bi:nlrnH / F(s,,cl,n’,l)ds, / F(s,W, Cl, Ao)ds) O.

B B

Similarly, for C2 we can extract a subsequence (A,2) from (A,I) and 0,2
P(f0,2) 1, with the desired property, and so on. Thus we obtain a sequence (An, r)
which is a subsequence of (A,i) i- 1,2,..., r- 1 and f0, r, P(0, r) 1, such that

Vw G 0, r’ VB G [I: n--.lim(J F(s, w, Cr, A’n, r)ds, / F(s, w, Cr, Ao)ds O.

B B

Let ft0 -f 0,1" For any A i (R) and w f, we define the set (A)w:
l<i<r r

{t e I: (t,) A}. Then (A)w e eI. Let w e f0" Then X(., w) -i-lI(Di)w(" C1
and {(Di)’i-1,2,...,r} is measurable partition of I. Hence, the following
inequality holds"

.(f f
0 0

r

_<
-=1 f f

(Dilwn[O,t] (Dilwn[O,t]

It remains to observe that each term of the above sum converges to zero as n tends to
infinity.

The converse statement is obvious. It is enough to take X"- II12C, for
C Kc(E. This completes the proof.

By X" we denote a nultivalued process being the solution of the equation

Xt U + / F(s, Xs, A)ds + J crsdws P.l, t I, A E A.
0 0

(xxx)

Theorem 3: Let us assume that F is an icp set-valued mapping at A0 @ A with
respect to Kc(E). Then,

A AOi) if x)P---XA then Vt
0 0

ii) if for every A1,A2,... Kc(E and (An); An--.&o we have

J{ }-- ( (>lAn)) withP’ltI a’e" thenX’kP---+X)"
n:>

Proof: (i) Let (An) be an arbitrary sequence convergent to Ao. Then its every

subsequence contains a further subsequence, say, (A), such that XP(n---*X with P.1
in CI. Take w from an appropriate set (for which this convergence holds). By
condition A2, for any e > 0, there exists 5 > 0 such that H(F(t, C,A), F(t,D,A’n) <
e/4T, for n N, C,D Kc(E whenever H(C,D) < 5.

Let Vo be an open neighborhood for Ao such that
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if A G V0 then supt G IH(Xtn, X)’) < 6. (4)

Let (Xk)k be a sequence of simple multifunctions (Lemma 1) convergent to X)o for
everyIand. Then for everyIand1A, wehave:

X A) P.1.limkH(F(t,w, Xk(t,w),1),F(t,w (w), 0

Next by the Lebesgue Dominated Convergence Theorem (via integrably boundedness
of F) we obtain that

T

H(F(s, Xk(s),A),F(s, Xs,A))ds---O P.1

0

for every A G A. Hence by (4), after standard calculation we see that

H( F(s,w, Xs"(w),A’n)ds, F(s,w,X(w),Ao)ds < (3/4)e
0 0

+ H( a’n)e ,
0 0

for t G I, k sufficiently large and w taken from an appropriate set of probability one.
By Lemma 4, multifunction F is icp at A0 with respect to S(I ). Hence there

II Iexists a sequence (An) being a subsequence of (n), a subset of of measure one such
that for every c > 0 and appropriate w we can find an open neighborhood V1. of A0
with

/ )’o )d8,/ F(s,w,XO(s,w),Ao)d8)< e/4,H(
0 0

for t G I and A G V1. Therefore, taking n" sufficiently large and A G V0 V V1 we
have:

0 0

for t G I. This completes the proof of part (i).
Proof of part (ii).
Let (An) be a sequence convergent to A0.

denoted for simplicity by the same symbol.
H: 2cI by

Consider its arbitrary subsequence,
We define the multivalued mapping

H(w)- {X G CI: XA’n--X in CI for solne sequence (A), (A) C_ (An) }.

By the assumption of the integrably boundness of F it follows that

Vn e N, VO <_ s <_ t <_ T: It(Xt’,X n) <_ m(u)du with P.1.
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Thus the sequence (Xn) is equicontinuous in CI with P.1. Similarly, (compare [14])
by assumption (iii), it can be proved that {XtAn} is a relatively compact subset

n>l
of , for every t E I with P.1. Thus, by Asli Theorem we claim that the sequence
(X n) is relatively compact (with P.1). Hence the multifunction II : P.1 and has
closed values. Moreover, we claim that II is measurable. To see this, let

0"-{w:II(w) s closed subset of CI}. For X E CI we consider a mapping n0

w---Dist(X, II(w)), where Dist(X, II(w)) infy n()p(X, Y). Fix r > 0.
Then {w:Dist(X, II(w)) < r} {w:3Y II(w):Y G Br(X)} where Br(X):

{Y CI: p(X, Y) < r}. Let {tk} be a sequence of rationals in I. Then we get:

{w:dist(X, II(w)) < r} {w: II(w) B(X) O)

3 is an 5 -measurable multifunction then the last set above belongs to r-Since Xtk k
field 4, which yields the Y-measurability of II (see, e.g. [4]). Thus, by Kuratowsk.i.
and Ryll-Nardzewski Selection Theorem [10], there exists a measurable selection X

of 1I; X^G II P.1. The definition of II implies then that .X’n--X P.1 in Ci, for
some sequence (.) tending to A0 and this yields convergence in probability in CI.
Finally, we claim that X is a solution of (III). Indeed, let us notice that

H(X U + F(s, Xs, Ao)ds + asdws)
0

_< H(X Xt n) + H( F(s, Xs"xn, A)ds, F( Xs, Ao)ds),
0 0

with P.1 and for t E I.
Since the first term above converges to zero then by (i) the second term con-

verges to zero as well. This completes the proof.
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