CONTINUITY PROPERTIES OF SOLUTIONS OF MULTIVALUED EQUATIONS WITH WHITE NOISE PERTURBATION

MARIUSZ MICHTA

Technical University, Institute of Mathematics Podgorna 50, 65-246 Zielona Gora, Poland

(Received April, 1996; Revised November, 1996)

In the paper, we consider a set-valued stochastic equation with stochastic perturbation in a Banach space. We prove first the existence theorem and then study continuity properties of solutions.

Key words: Set-valued Mappings, Aumann's Integral, Convergence in Probability of Random Elements.

AMS subject classifications: 54C65, 54C60.

1. Preliminaries

Problems of existence of solutions to set-valued differential equations were studied by many (see e.g., [3, 8, 9]). In particular, random cases were considered by the author in [11, 12].

In this paper we study the set-valued stochastic equation with white noise drift:

$$DX_t = F(t, X_t)dt + \sigma_t dw_t, t \in I,$$

$$X_0 = U \quad P.1,$$
(I)

where F and U are given random set-valued mappings with values in the space $K_c(E)$, of all nonempty, compact and convex subsets of the separable Banach space (E, || ||), I: = [0, T]; T > 0. We assume also that there is a predictable stochastic process σ with values in E. Finally, $(w_t)_{t \in I}$ denotes a real Wiener process. We interpret the above equation through its integral form as

$$X_{t} = U + \int_{0}^{t} F(s, X_{s}) ds + \int_{0}^{t} \sigma_{s} dw_{s} P.1, t \in I.$$
 (II)

Integrals above are Aumann's integral of F and stochastic (Itô) integral of σ , respectively.

The aim of this work is to study continuity properties of set-valued solutions of

Printed in the U.S.A. ©1997 by North Atlantic Science Publishing Company

(1). First, we recall several notions needed in the sequel. In the space $K_c(E)$ we consider the Hausdorff metric H (see e.g., [5, 7]): $H(A, B) = \max(\overline{H}(A, B), H(B, A))$ for $A, B \in K_c(E)$, where $\overline{H}(A, B) = \sup \inf_{a \in Ab \in B} ||a - b||$. By ||A|| we denote the

distance H(A,0). It can be proved that $(K_c(E),H)$ is a Polish metric space.

By $C_I = C(I, K_c(E))$ we denote the space of all H-continuous set-valued mappings. In this space we consider metric ρ of uniform convergence:

$$\rho(X,Y) \coloneqq \sup_{0 \le t \le T} H(X(t),Y(t)), \text{ for } X,Y \in C_I.$$

Then we have a Polish metric space.

Let $(\Omega, \mathfrak{F}, \mathfrak{F}_t, P)_{t \in I}$ be a given complete filtered probability space satisfying the usual conditions. We recall the notion of a multivalued \mathfrak{F}_t -adapted stochastic process. The family of set-valued mappings $X = (X_t)_{t \in I}$ is said to be a multivalued \mathfrak{F}_t -adapted stochastic process if for every $t \in I$, the mapping $X_t: \Omega \rightarrow K_c(E)$ is \mathfrak{F}_t measurable, i.e., $\{\omega: X_t \cap V \neq \emptyset\} \in \mathfrak{F}_t$, for every open set $V \subset E$ (see e.g., [7]). It can be noted that V can be chosen as a closed or Borel subset. If the mapping $t \to X_t(\omega)$ is H-continuous with probability one (P.1) then we say it has continuous paths. In this case, the set-valued process X can be thought as random element $X: \Omega \to C_I$. Let (X_n) be a sequence of random elements with values in metric space (S, ρ) . Then we say that X_n converges in probability to the random element $X:\Omega \to S$ $(X_n \xrightarrow{P} X)$, of for every $\epsilon > 0$, it holds true that $P(\rho(X_n, X) \ge \epsilon) \rightarrow 0$, as *n* tends to infinity. It is known (see e.g., [13]) that $X_n \xrightarrow{P} X$ if and only if every subsequence of (X_n) has a subsequence converging to X with probability one (P.1).

In the theory of differential equations in Banach space the notion of measure of noncompactness plays one of the central roles (see e.g., [1]). Let B(E) denote a family of all nonempty and bounded subsets in E.

Definition 1: The mapping $\mathcal{N}: B(E) \to [0, \infty)$, defined by $\mathcal{N}(A) = \inf\{\epsilon > 0: A \text{ can}\}$ be covered with a finite number of balls of radii $\leq \epsilon$, is called Hausdorff (ball) measure of noncompactness.

2. A Set-Valued Stochastic Equation and Stochastic Inclusion

We begin with the designation of restrictions imposed on F, U and σ . Let us assume that $F: I \times \Omega \times K_c(E) \to K_c(E), U: \Omega \to K_c(E)$, and $\sigma: I \times \Omega \to E$ have the following properties:

- F is an integrably bounded multifunction i.e. there exists a joint mea-1) surable function $m: I \times \Omega \rightarrow R_+$ such that $\int_0^t m(s, \omega) ds < \infty$ P.1 and $||F(t,\omega,A)|| \leq m(t,\omega) P.1$, t-a.e. $A \in K_c(E)$.
- 2) $F(t, \omega,)$ is H-continuous with P.1, t-a.e.
- 3)F(t, A) is \mathfrak{F}_t -adapted for every $t \in I, A \in K_c(E)$.
- 4) F(,, A) is measurable for every $A \in K_c(E)$.
- 5)U is an \mathfrak{F}_0 -measurable multifunction.
- $\sigma = (\sigma_t)$ is an \mathfrak{F}_t -adapted stochastic process for which $E \int_0^T \|\sigma_s\|^2 ds$ is 6) finite.

Let us notice that under assumptions given above, for every $A \in K_c(E)$, the setvalued process

$$\Phi_t = U + \int_0^t F(s, A) ds + \int_0^t \sigma_s dw_s, t \in I,$$

is \mathfrak{F}_t -adapted with values in $K_c(E)$. It is also clear that Φ has continuous "paths".

We also assume the so-called "Kamke condition" imposed on multifunction F: for every $A_1, A_2, \ldots \in K_c(E)$ one has

$$\mathcal{N}(\bigcup_{n \ge 1} F(t, A_n)) \le k(t, \mathcal{N}(\bigcup_{n \ge 1} A_n)) \text{ with } P.1 \quad t \in I \text{ a.e.}, \tag{*}$$

where $k: I \times \Omega \times R \rightarrow R_{\perp}$ satisfies the following conditions:

a) k(t, x) is \mathfrak{F} -measurable for every $(t, x) \in I \times R_+$,

b) $k(, \omega,)$ is a Kamke function (see e.g., [14]) with P.1.

Definition 2: A multivalued process $X = (X_t)_{t \in I}$ is said to be a solution of (I) if it satisfies multivalued stochastic equation (II).

Let us notice that without stochastic perturbation, equation (II) can be written as:

$$D_H X_t = F(t, X_t) P.1, t-a.e.$$

$$X_0 = U P.1,$$

where D_H denotes the Hukuchara derivative operator ([6]) for multifunctions.

Before stating the existence theorem to equation (II) let us recall its special case.

Theorem 1: ([11]) Let F and U be multivalued mappings satisfying conditions 1)-4) and 5), respectively. Let us also suppose that F satisfies the "Kamke condition." Then the multivalued random differential equation

$$D_H X_t = F(t, X_t)$$
 with P.1 $t \in I$ a.e.
 $X_0 = U$ with P.1

has at least one solution.

Remark: In fact, the existence of solutions to the above initial value problem is based on the fact that under these conditions there exists at least one solution to the multivalued equation $X_t = U + \int_0^t F(s, X_s) ds$ and on well-known connection between Aumann's integral of set-valued mapping and its Hukuchara derivative via Radström Embedding Theorem (see e.g. [14]).

Theorem 2: Let E be a Banach space such that its dual E^* is separable. If F, U and σ have properties 1)-6) and F satisfies the "Kamke condition" then there exists at least one solution of the equation (II).

Proof: Let $\xi_t = \int_0^t \sigma_s dw_s$. Let $X_t := X_t - \xi_t$, where X_t is a solution of (II), and $\hat{X_t}(\omega) = \{x^{\hat{-}} - \xi_t(\omega); x^{\hat{-}} \in X_t(\omega)\}$. The process $X^{\hat{-}}$ satisfies the equation

$$\hat{X_{t}} = U + \int_{0}^{t} \hat{F(s, X_{s})} ds \quad P.1, \ t \in I,$$
(**)

where $F(s, \omega, A) = F(s, \omega, A + \xi_s(\omega))$. The set-valued mapping F meets properties

1)-4).By properties of measure of noncompactness it also satisfies (*) (cf. [1]). Hence, equation (II) has at least one solution if and only if equation (**) has one. By Theorem 1 (via Remark 1) the proof is completed.

Let us suppose now that $\Gamma: I \times \Omega \times E \to K_c(E)$ is a given set-valued mapping. Let us set $F(t, \omega, A) := \overline{\operatorname{co}} \Gamma(t, \omega, A), A \in K_c(E)$, where $\overline{\operatorname{co}} B$ denotes the closed convex hull of the set B. It is noteworthy to observe the connections between solutions of equation (II), with $F = \overline{co}\Gamma$ and solutions of stochastic inclusion

$$x_t - x_s \in \int_s^t \Gamma(u, x_u) du + \int_s^t \sigma_u dw_u \text{ with } P.1, \ 0 \le s \le t \le T$$
 (II')

$$x_0 \in U$$
 with P.1.

We suppose that Γ is an integrable bounded multifunction such that:

- 1' $\Gamma(t,\omega)$ is *H*-continuous with *P*.1, *t*-a.e.,
- 2' $\Gamma(t, x)$ is \mathfrak{F}_{t} -adapted for every $t \in I, x \in E$,
- 3') $\Gamma(,,x)$ is measurable for every $x \in E$,
- 4') $\forall A \subset S_r(U) \colon \mathcal{N}(\Gamma(t,A)) \le k(t,\mathcal{N}(A)) \ P.1, \ t \in I,$

where $S_r(U) = U + rB(0,1)$ and B(0,1) is a closed unit ball in Banach space E, centered at zero.

Theorem 3: Suppose that Γ satisfies conditions 1'-4'. If a multivalued stochastic process $X = (X_t)_{t \in I}$ is a solution of equation (II) with $F = \overline{co}\Gamma$ then there exists stochastic process $x = (x_t)$ being both a solution to stochastic inclusion (II') and the selection of X.

Proof: Similarly, as above, let $\xi_t = \int_{0}^{t} \sigma_s dw_s$, $\Gamma(t, \omega, x) = \Gamma(t, \omega, x + \xi_t(\omega))$ and

 $F(t, \omega, A) := F(t, \omega, A + \xi_t(\omega)).$ Then $F = \overline{co} \Gamma$. Let us notice than F also satisfies 1'-4'. Hence, by Corollary 1 [11], there exists at least one solution of equation

$$X_{t}^{\hat{}} = U + \int_{0}^{t} F^{\hat{}}(s, X_{s}^{\hat{}}) ds \quad P.1, \ t \in I.$$

Taking $X = X^{+} \xi$ we get a solution of equation (II), where $F = \overline{co}\Gamma$. Moreover, by Theorem 4 [11] there exists stochastic process, say $x^{-} = (x_{t}^{-})$, being a selection of X such that: $x_t - x_s \in \int_s^t \Gamma(u, x_u) du$ with $P.1, 0 \le s \le t \le T$, and $x_0 \in U P.1$.

Consequently, there exists stochastic process $x = (x_t)$, as a selection of X, such that: $x_t = x_t - \xi_t$ with P.1. It remains to observe that x is a desired solution of inclusion (II').

3. **Continuity Properties of Solutions**

By $S(I \times \Omega)$ we denote the class of "simple" multivalued processes that can be expressed by: $X = \sum_{i=1}^{n} I_{D_i} C_i$, where the sets D_i , i = 1, 2, ..., n form a measurable partition of $I \times \Omega$ and $C_i \in K_c(E)$, i = 1, 2, ..., n. Lemma 1: If $X = (X_t)_{t \in T}$ is a multivalued stochastic process with continuous

"paths" then there exists a sequence $\{X_n\} \subseteq S(I \times \Omega)$ such that $\forall (t, \omega) \in I \times \Omega$: $\lim_{n \to \infty} H(X(t, \omega), X_n(t, \omega)) = 0.$

Proof: It follows directly from the fact that $K_c(E)$ is a separable metric space and Proposition 1.9 [15].

Let Λ be a metric space. Let us consider the multivalued mapping $F: I \times \Omega \times K_c(E) \times \Lambda \rightarrow K_c(E)$ such that:

- A1. For every fixed $A \in K_c(E)$ and $\lambda \in \Lambda$, $F(, A, \lambda)$ is a measurable and integrably bounded multifunction.
- A2. The mapping $F(t, \omega, \lambda)$ is with P.1 uniformly continuous with respect to $t \in I$ and $\lambda \in \Lambda$.

Definition 2: A multifunction F (with properties A1 and A2) is said to be integrably continuous in probability (icp) at $\lambda_0 \in \Lambda$ with respect to a family $\mathbb{C} \subset K_c(E)$ ($\mathbb{C} \neq \emptyset$) if

$$\forall C \in \mathfrak{C}, \forall t \in I: \quad \int_{0}^{t} F(s, C, \lambda) ds \xrightarrow{P} \int_{0}^{t} F(s, C, \lambda_{0}) ds$$

for $\lambda \rightarrow \lambda_0$.

The results presented below give characterizations of icp multifunctions. We use them to obtain the main theorem.

Lemma 2: If F is an icp multifunction at λ_0 with respect to C then for every $C \in \mathbb{C}$ one has: $\int_{0}^{t} F(s,C,\lambda_n) ds \rightarrow \int_{0}^{t} F(s,C,\lambda_0) ds P.1$ uniformly in $t \in I$, for some sequence (λ_n) convergent to λ_0 .

Proof: Let D be a set of rationals in I, $D = \{t_1, t_2, \ldots\}$ and let (λ_n) be an arbitrary sequence of elements of Λ that converges to λ_0 . Fix $C \in \mathbb{C}$. Then for $t_1 \in D$, there exist a sequence $(\lambda_n(t_1))_n$, convergent to λ_0 and set $\Omega(t_1) \subset \Omega$, $P(\Omega(t_1)) = 1$, such that

$$\forall \omega \in \Omega(t_1): H(\int_0^{t_1} F(s, \omega, C, \lambda_n(t_1)) ds, \int_0^{t_1} F(s, \omega, C, \lambda_0) ds) \rightarrow 0, \text{ for } n \rightarrow \infty.$$

Similarly, for $t_2 \in D$ we can find a sequence $(\lambda_n(t_2))_n$ being a subsequence of $(\lambda_n(t_1))_n$ and $\Omega(t_2) \subset \Omega$, $P(\Omega(t_2)) = 1$ for which a similar convergence holds. Continuing this selection process we obtain the infinite table

By diagonal selection we can find a sequence $(\lambda_n)_n$ being a subsequence of each row of table (1) that converges to λ_0 . Let $\Omega_0 = \bigcap \{\Omega(t_n); n \ge 1\}$. Then $P(\Omega_0) = 1$. Moreover,

$$\forall \omega \in \Omega_0, \forall t \in D: H(\int_0^t F(s, \omega, C, \lambda_n) ds, \int_0^t F(s, \omega, C, \lambda_0) ds) \rightarrow 0, \ n \rightarrow \infty.$$

Since the set-valued process $J_t = \int_0^t F(s, C, \lambda) ds$, $t \in I$ has with P.1 uniformly continuous "paths", we can find Ω'_0 , $P(\Omega'_0) = 1$ such that

$$\forall \omega \in \Omega_0': \sup_{t \in I} H(\int_0^t F(s, \omega, C, \lambda_n) ds, \int_0^t F(s, \omega, C, \lambda_0) ds) \to 0, \text{ if } n \to \infty.$$

This completes the proof.

By \mathbb{B}_I we denote the σ -field of Borel subsets of I.

Lemma 3: A multifunction F is icp at λ_0 with respect to family C if and only if: $\forall C \in \mathfrak{C}, \forall (\lambda_n) \subset \Lambda: \lambda_n \rightarrow \lambda_0, \exists (\lambda'_n) \subset (\lambda_n):$

$$H(\int_{B} F(s, C, \lambda'_{n}) ds, \int_{B} F(s, C, \lambda_{0} ds) \rightarrow 0 \quad P.1$$
(2)

as $n \to \infty$, for every $B \in \mathbb{B}_I$.

Proof: Fix $C \in \mathbb{C}$ and let (λ_n) be an arbitrary sequence convergent to λ_0 . Then by Lemma 2, we can find its subsequence (λ'_n) and $\Omega_0: P(\Omega_0) = 1$ such that for every $\omega \in \Omega_0$ and $0 \le s < t \le T$,

$$\int_{s}^{t} F(u,\omega,C,\lambda'_{n})du \to \int_{s}^{t} F(u,\omega,C,\lambda_{0})du, \text{ as } n \to \infty.$$
(3)

Let $\mathfrak{P}: = \{ \{s, t\} : 0 < s < t < T \}$ and

$$\mathcal{A} \colon = \{\bigcup_{i=1}^{n} R_i \colon R_i \in \mathcal{I}, R_i \cap R_j = \emptyset, i \neq j, i, j = 1, 2, \dots, n, n \geq 1\}.$$

Since $\sigma(\mathcal{I}) = \sigma(\mathcal{A}) = \mathbb{B}_I$ and \mathcal{A} is a ring of subsets of I, then for every $\epsilon > 0$ and $B \in \mathbb{B}_{I}$, there exists $A \in \mathcal{A}$ such that $|B\Delta A| < \epsilon$ (c.f. e.g., Th. 11.4 [2]), where || is Lebesgue measure and $B\Delta A := (B \setminus A) \cup (A \setminus B)$. By integrably boundness of F we get:

$$\begin{split} H(\int_{B} F(s,C,\lambda'_{n})ds, \int_{B} F(s,C,\lambda_{0})ds) &\leq H(\int_{A} F(s,C,\lambda'_{n})ds, \int_{A} F(s,C,\lambda_{0})ds) \\ &+ \int_{B\Delta A} m(s,\omega)ds, \, \text{for every } A \in \mathcal{A}. \end{split}$$

Then by (3), $\limsup_{n \to \infty} H(\int_B F(s, C, \lambda'_n) ds, \int_B F(s, C, \lambda_0) ds) \leq \int_{B\Delta A} m(s, \omega) ds.$ Taking A sufficiently close to B we claim (2). The converse is obvious.

Lemma 4: A multifunction F is icp at λ_0 with respect to $K_c(E)$ if and only if F is icp at λ_0 with respect to $S(I \times \Omega)$.

Proof: Let us assume that F is icp with respect to $K_c(E)$. Let $X \in S(I \times \Omega)$. Then there exist $C_1, C_2, \ldots, C_r \in K_c(E)$ and a measurable partition $\{D_1, D_2, \ldots, D_r\}$ of space $I \times \Omega$ such that $X = \sum_{i=1}^{r} I_{D_i} C_i$. Take C_1 and (λ_n) to be an arbitrary sequence convergent to λ_0 . Next let (λ_{n_k}) be any subsequence of (λ_n) . By Lemma 3 there exists a sequence $(\lambda'_{n,1})$ being a subsequence of (λ_{n_k}) and a subset $\Omega_{0,1} \subseteq \Omega$; $P(\Omega_{0,1}) = 1$ such that:

$$\forall \omega \in \Omega_{0,1}, \forall B \in \mathbb{B}_I: \lim_{n \to \infty} H(\int_B F(s, \omega, C_1, \lambda'_{n,1}) ds, \int_B F(s, \omega, C_1, \lambda_0) ds) = 0.$$

Similarly, for C_2 we can extract a subsequence $(\lambda'_{n,2})$ from $(\lambda'_{n,1})$ and $\Omega_{0,2} \subseteq \Omega$ $P(\Omega_{0,2}) = 1$, with the desired property, and so on. Thus we obtain a sequence $(\lambda'_{n,r})$ which is a subsequence of $(\lambda'_{n,i})$, i = 1, 2, ..., r-1 and $\Omega_{0,r}$, $P(\Omega_{0,r}) = 1$, such that

$$\forall \omega \in \Omega_{0,r}, \forall B \in \mathbb{B}_{I}: \lim_{n \to \infty} (\int_{B} F(s, \omega, C_{r}, \lambda_{n,r}') ds, \int_{B} F(s, \omega, C_{r}, \lambda_{0}) ds) = 0$$

Let $\Omega_0 = \bigcap_{\substack{1 \leq i \leq r \\ i \leq r \\ i = 1}} \Omega_{0,1}$. For any $A \in \mathbb{B}_I \otimes \mathfrak{F}$ and $\omega \in \Omega$, we define the set $(A)_{\omega} := \{t \in I: (t, \omega) \in A\}$. Then $(A)_{\omega} \in \mathbb{B}_I$. Let $\omega \in \Omega_0$. Then $X(\cdot, \omega) = \sum_{i=1}^r I_{(D_i)_{\omega}}(\cdot) C_1$ and $\{(D_i)_{\omega}: i = 1, 2, ..., r\}$ is measurable partition of I. Hence, the following inequality holds:

$$\begin{split} H(\int_{0}^{t}F(s,\omega,X_{s},\lambda_{n,r}')ds,\int_{0}^{t}F(s,\omega,X_{s},\lambda_{0})ds) \\ \leq \sum_{i\,=\,1}^{r}H(\int_{(D_{i})_{\omega}\cap[0,\,t]}F(s,\omega,C_{i},\lambda_{n,r}')ds,\int_{(D_{i})_{\omega}\cap[0,\,t]}F(s,\omega,C_{i},\lambda_{0}ds)) \end{split}$$

It remains to observe that each term of the above sum converges to zero as n tends to infinity.

The converse statement is obvious. It is enough to take $X := I_{I \times \Omega}C$, for $C \in K_c(E)$. This completes the proof.

By X^{λ} we denote a multivalued process being the solution of the equation

$$X_t = U + \int_0^t F(s, X_s, \lambda) ds + \int_0^t \sigma_s dw_s P.1, \ t \in I, \ \lambda \in A. \tag{III}$$

Theorem 3: Let us assume that F is an icp set-valued mapping at $\lambda_0 \in A$ with respect to $K_c(E)$. Then,

i) if
$$X^{\lambda} \xrightarrow{P} X^{\lambda_0}$$
 then $\forall t \in I: \int_{0}^{t} F(s, X_s^{\lambda}, \lambda) ds \xrightarrow{P} \int_{0}^{t} F(s, X_s^{\lambda_0}, \lambda_0) ds, \ \lambda \rightarrow \lambda_0,$

ii) if for every
$$A_1, A_2, \ldots \in K_c(E)$$
 and $(\lambda_n); \lambda_n \rightarrow \lambda_0$ we have

$$\mathcal{N}\left\{\bigcup_{n\geq 1} F(t,A_n,\lambda_n)\right\} \leq k\left(t,\mathcal{N}\left\{\bigcup_{n\geq 1} A_n\right\}\right) \text{ with } P.1 \ t\in I \ a.e., \ then \ X^{\lambda} \xrightarrow{P} X^{\lambda_0}.$$

Proof: (i) Let (λ_n) be an arbitrary sequence convergent to λ_0 . Then its every subsequence contains a further subsequence, say, (λ'_n) , such that $X^{\lambda'_n} \rightarrow X^{\lambda_0}$ with P.1 in C_I . Take ω from an appropriate set (for which this convergence holds). By condition A2, for any $\epsilon > 0$, there exists $\delta > 0$ such that $H(F(t, C, \lambda'_n), F(t, D, \lambda'_n)) < \epsilon/4T$, for $n \in N, C, D \in K_c(E)$ whenever $H(C, D) < \delta$.

Let V_0 be an open neighborhood for λ_0 such that

if
$$\lambda'_n \in V_0$$
 then $\sup_{t \in I} H(X_t^{\lambda'_n}, X^{\lambda_0}) < \delta.$ (4)

Let $(X_k^{\lambda_0})_k$ be a sequence of simple multifunctions (Lemma 1) convergent to X^{λ_0} for every $t \in I$ and $\omega \in \Omega$. Then for every $t \in I$ and $\lambda \in \Lambda$, we have:

$$\lim_{k} H(F(t,\omega,X_{k}^{\lambda_{0}}(t,\omega),\lambda),F(t,\omega,X_{t}^{\lambda_{0}}(\omega),\lambda) = 0 \quad P.1.$$

Next by the Lebesgue Dominated Convergence Theorem (via integrably boundedness of F) we obtain that m

$$\int_{0}^{1} H(F(s, X_{k}^{\lambda_{0}}(s), \lambda), F(s, X_{s}^{\lambda_{0}}, \lambda)) ds \rightarrow 0 P.1$$

for every $\lambda \in \Lambda$. Hence by (4), after standard calculation we see that

$$\begin{split} H&(\int_{0}^{t}F(s,\omega,X_{s}^{\lambda_{n}}(\omega),\lambda_{n}')ds,\int_{0}^{t}F(s,\omega,X_{s}^{\lambda_{0}}(\omega),\lambda_{0})ds)\leq(3/4)\epsilon\\ &+H&(\int_{0}^{t}F(s,\omega,X_{k}^{\lambda_{0}}(s,\omega),\lambda_{n}')ds,\int_{0}^{t}F(s,\omega,X_{k}^{\lambda_{0}}(s,\omega)\lambda_{0})ds), \end{split}$$

for $t \in I$, k sufficiently large and ω taken from an appropriate set of probability one.

By Lemma 4, multifunction F is icp at λ_0 with respect to $S(I \times \Omega)$. Hence there exists a sequence (λ''_n) being a subsequence of (λ'_n) , a subset of Ω of measure one such that for every $\epsilon > 0$ and appropriate ω we can find an open neighborhood V_1 of λ_0 with

$$H(\int_{0}^{t} F(s,\omega, X_{k}^{\lambda_{0}}(s,\omega), \lambda_{n}^{\prime\prime}) ds, \int_{0}^{t} F(s,\omega, X_{k}^{\lambda_{0}}(s,\omega), \lambda_{0}) ds) < \epsilon/4,$$

for $t \in I$ and $\lambda_n'' \in V_1$. Therefore, taking n'' sufficiently large and $\lambda_n'' \in V_0 \cap V_1$ we have:

$$H(\int_{0}^{t} F(s,\omega,X_{s}^{\lambda_{n}^{\prime\prime}}(\omega),\lambda_{n}^{\prime\prime})ds,\int_{0}^{t} F(s,\omega,X_{s}^{\lambda_{0}}(\omega),\lambda_{0})ds)<\epsilon$$

for $t \in I$. This completes the proof of part (i).

Proof of part (ii).

Let (λ_n) be a sequence convergent to λ_0 . Consider its arbitrary subsequence, denoted for simplicity by the same symbol. We define the multivalued mapping $\Pi: \Omega \rightarrow 2^{C_I}$ by

$$\Pi(\omega) = \{ X \in C_I : X^{\lambda'_n} \to X \text{ in } C_I \text{ for some sequence } (\lambda'_n), (\lambda'_n) \subseteq (\lambda_n) \}$$

By the assumption of the integrably boundness of F it follows that

$$\forall n \in N, \forall 0 \le s \le t \le T : H(X_t^{\lambda_n}, X_s^{\lambda_n}) \le \int_s^t m(u) du \text{ with } P.1.$$

Thus the sequence (X^{λ_n}) is equicontinuous in C_I with P.1. Similarly, (compare [14]) by assumption (iii), it can be proved that $\bigcup_{n \ge 1} \{X_t^{\lambda_n}\}$ is a relatively compact subset of E, for every $t \in I$ with P.1. Thus, by Ascoli Theorem we claim that the sequence (X^{n}) is relatively compact (with P.1). Hence the multifunction $\Pi \neq \emptyset$ P.1 and has closed values. Moreover, we claim that Π is measurable. To see this, let $\Omega_0: = \{\omega: \Pi(\omega) \text{ is closed subset of } C_I\}.$ For $X \in C_I$ we consider a mapping $\Omega_0 \ni C_I$ $\begin{array}{l} \omega \rightarrow \operatorname{Dist}(X,\Pi(\omega)), \text{ where } \operatorname{Dist}(X,\Pi(\omega)) = \operatorname{inf}_{Y \in \Pi(\omega)} \rho(X,Y). \text{ Fix } r > 0. \\ \text{Then} \quad \{\omega:\operatorname{Dist}(X,\Pi(\omega)) < r\} = \{\omega:\exists Y \in \Pi(\omega): Y \in B_r(X)\}, \text{ where } B_r(X): = 1 \\ \end{array}$

 $\{Y \in C_I: \rho(X,Y) < r\}$. Let $\{t_k\}$ be a sequence of rationals in I. Then we get:

$$\{\omega: \operatorname{dist}(X, \Pi(\omega)) < r\} = \{\omega: \Pi(\omega) \cap B_r(X) \neq \emptyset\}$$

$$= \bigcup_{m \ge 1} \bigcap_{l \ge 1} \bigcup_{j \ge l} \bigcap_{k \ge 1} \{\omega: X_{t_k}^{\lambda_{n_j}}(\omega) \cap B_{r-1/m}(X) \neq \emptyset\}.$$

Since $X_{t_k}^{h_j}$ is an \mathfrak{F}_{t_k} -measurable multifunction then the last set above belongs to σ field \mathfrak{F} , which yields the \mathfrak{F} -measurability of Π (see, e.g. [4]). Thus, by Kuratowski and Ryll-Nardzewski Selection Theorem [10], there exists a measurable selection Xof II; $X \in \Pi$ P.1. The definition of II implies then that $X^{\lambda'_n} \to X \cap P.1$ in C_I , for some sequence (λ'_n) tending to λ_0 and this yields convergence in probability in C_I . Finally, we claim that X is a solution of (III). Indeed, let us notice that

$$\begin{split} H(X_t, U + \int_0^t F(s, X_s, \lambda_0) ds + \int \sigma_s dw_s) \\ \leq H(X_t, X_t^{\lambda'_n}) + H(\int_0^t F(s, X_s^{\lambda'_n}, \lambda'_n) ds, \int_0^t F(s, X_s, \lambda_0) ds), \end{split}$$

with P.1 and for $t \in I$.

Since the first term above converges to zero then by (i) the second term converges to zero as well. This completes the proof.

References

- [1] Banaś, J. and Goebel, K., Measures of Noncompactness in Banach Spaces, Marcel Dekker 1980.
- [2]Billingsley, P., Probability and Measure, John Wiley, New York 1979.
- [3] De Blasi, F.S. and Iervolino, F., Euler method for differential equation with compact, convex valued solutions, Boll. U.M.I 4:4 (1971), 941-949.
- [4]Himmelberg, C.J., Measurable relations, Fund. Math. 87 (1975), 53-72.
- Himmelberg, C.J. and Van Vleck, F.S., The Hausdorff metric and measurable [5]selections, Topology and its Appl. 20 (1985), 121-133.
- [6]Hukuchara, M., Sur l application semicontinue dont la valeur est un compact convexe, Funkcial. Ekwac. 10 (1967), 43-66.

MARIUSZ MICHTA

- [7] Kisielewicz, M., Differential Inclusions and Optimal Control, Kluwer 1991.
- [8] Kisielewicz, M., Method of averaging for differential equation with compact convex valued solutions, *Rend. di Matem.* **9**:3 (1976), 1-12.
- Kisielewicz, M., Serafin, B. and Sosulski, W., Existence theorem for functionaldifferential equation with compact convex valued solutions, *Demonstratio Math.* IX:2 (1976), 229-237.
- [10] Kuratowski, K. and Ryll-Nardzewski, Cz., A general theorem on selectors, Bull. Acad. Polon. Sci. Ser, Sci Math. Astronom. Phys. 13 (1965), 397-403.
- [11] Michta, M., Set-valued random differential equations in Banach space, Discus. Math. Diff. Inclusions 15:2 (1995), 191-200.
- [12] Michta, M., On weak solutions of set-valued random differential equations, Demonstratio Math. 29:3 (1996), 523-528.
- [13] Parthasarathy, K.R., Probability Measures on Metric Spaces, Acad. Press, New York 1967.
- [14] Tolstonogov, A., Differencjalny je Wkluczenija w Banachowych Prostranstwach, Nauka, Moscow 1986 (Russian).
- [15] Wachanija, N.N., Tarieladze, W.I. and Tshobanian, S.A., Werojatnostnyje Raspredelenija w Banachowych Prostranstwach, Nauka, Moscow 1985 (Russian).