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1. Introduction

In this paper we study initial and boundary value problems for a class of semilinear,
abstract functional differential equations. This class is characterized by the fact that
the associated homogeneous, linear differential equation generates a strongly contin-
uous linear evolution system of compact operators.

More precisely, we consider the nonlinear Volterra integral equation

x(t)-W(t,)x(O)+ / W(t,s)f(S, xs)ds, t[O,b (1.1)
0

together with an initial condition

o (.2)

or with a linear boundary condition

Lx=a. (1.3)

Our notations follow that of Hale [5] and Travis and Webb [12]. X denotes a Banach
space. C C([- r, 0], X) is the Banach space of continuous X-valued functions with
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supremum norm [[ [[, i.e,. II [[ sup{ (0) [" r

_
0

_
0}. If u is a continuous

function from an interval [-r, b], b > 0 to X, then for t E [0, b], u is the element of C
given by ut(O u(t + 0), 0 E r, 0].f" [0, b] x CX is a function. Also {W(t, s):
0 s

_
t

_
b} is a strongly continuous family of evolution operators on X. Finally, L

is a bounded linear operator from C([- r, b],X) into X and a X is given.
If the evolution system W(t, s) is generated by a family of densely defined linear

operators A(t), then equation (1.1) is an integral form of the abstract functional dif-
ferential equation

x’(t) A(t)x(t) + f(t, xt) 0 <_ t <_ b (1.4)

Initial value problems for partial functional differential equations have been studied
by Travis and Webb [12, 13], Fitzgibbon [2] and aankin [11].

When r--0, i.e., in the case of ordinary differential equations, the boundary
value problem (1.1)-(1.2) has been studied by Ward [15]. Also, Rankin [10] consider-
ed boundary value problems for partial functional differential equations, with A(t)
A, independent of t, the infinitesimal generator of a strongly continuous semigroup
T(t) and the boundary condition (1.3) in the case where n has the more specific form
Lx Mx0 + NXb, with M and N bounded linear operators from C into C.

In this paper we prove existence results for initial and boundary value problems
by using the "Topological Transversality Method" of Granas [1]. This method re-

duces the problem of the existence of solutions of an initial or boundary value pro-
blem to the establishment of suitable a priori bounds for solutions of these problems.

The advantage of this method for initial value problems (at least in the case of
ordinary differential equations) is that this yields simultaneously the existence of
solutions and the maximal interval of existence.

Many recent papers deal with this method and the interested reader is referred to
[4, 7, 9, 14] and the references given therein.

As a model for the class of partial functional differential equations we study, one

may take the equation

wt(x t) Wxx(X, t) + f(t, w(x, t r)), 0 x b, t 0

t) t) o, t > o

t) t), 0 < z < b, < t < 0,

(see [2, 11-13].)
The paper is organized as follows: In Section 2, we present some preliminaries

and facts about the evolution system W(t,s) and the linear operator L. In Section 3
we consider initial value problems and we extend the above-mentioned method of
Topological Transversality of Granas to the partial functional differential equations.
We prove the basic existence theorem (Theorem 3.1) by assuming a priori bounds on

solutions. It is well known (see e.g., [16]) that only the continuity of f is not suffi-
cient to assure local existence of solutions, even when X is a Hilbert space.
Therefore, one has to restrict either the function f or the evolution system. In most
of the previous works further restrictions on f are imposed. The function f is as-
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sumed to be locally Lipschitz or monotone or completely continuous. Fitzgibbon [2]
assumed that the function f is continuous while the evolution operator compact.
Here we assume, following Ward [14], that the function f satisfies Caratheodory-type
conditions, which does not imply that f is completely continuous, and that the evolu-
tion operator is compact. In order to apply this basic existence theorem to obtain
global existence of solutions, we establish the desired a priori bounds for solutions in
Theorem 3.2.

In Section 4 we study boundary value problems. Finally, an application of a par-
tial functional differential equation of Sobolev type, is given in Section 5.

2. Preliminaries

Throughout this paper we shall make the following assumptions on the evolution
system W(t, s):

(W1) W(t,s)E L(X), the space of bounded linear transformations on X, when-
ever 0

_
s

_
t

_
b and for each x e X the mapping (t,s)W(t,s)x is con-

tinuous.
0 < < < <

(W3) W(t, t)- I, the identity operator on X.
(W4) W(t, 8) is a compact operator whenever t-s > O.

Sufficient conditions for (W1)-(W4) to hold may be found in Friedman [3]. In what
follows, W(t, 0) is extended to [-r, 0] by the identity operator.

The operar L in (3.1) is a continuous linear operator from C([ r, b], X) into
X. We define L L(X) by

L x L[W(., 0)x] (2.1)

for all x G X. We will assume in the sequel that the operator L has a bounded
inverse - 1.

Before stating our basic existence theorems we need the following lemma which is
referred to as the "Leray-Schauder alternative", [1, p. 61].

Lemma 2.1: Let B be a convex subset of a normed linear space E and assume

0 B. Let F’B--,B be a completely continuous operator, i.e., it is continuous and
the image of any bounded set is included in a compact set, and let

g(F) {x B:x AFx for some O < A < l}.

Then either g(F) is unbounded or F has a fixed point.

3. Initial Value Problems

In this section we give our basic existence result for the initial value problem (IVP)
(1.1)-(1.2). We assume, following Ward [15], that the function f satisfies the follow-
ing Caratheodory-type conditions:

(C1) For each t E [0, b], the function f(t,.):C-X is continuous, and for each
x G C, the function f(., x): [0, b]X is strongly measurable.

(C2) For every positive integer k there exists gk G Ll([0, b]) such that for a.a.
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, z [0. ]

sup f(t,x) <_ gk(t).

Theorem 3.1: Let {W(t,s)’O <_ s <_ t <_ b) satisfy (W1)-(W4) and/:[0, b] C---,X
a function satisfying (C1) and (C2).

Assume that there exists a constant K such that

II . ll u .(t) < K.
-r<t<b

for each solution z of

() a(, o)(o) + a ] w(, lI(, )e, e [o, ]
0

(1.1)

for any E (0, 1).
Then the IVP (1.1)-(1.2) has at least one solution on [-r,b].
Proof: We will rewrite (1.1) as follows. For E C define Cb, Cb

C([ r, b], X) by

(t)
(t), <_ t < o

w(t. 0)(0). 0 < t < b.

If x(t) y(t) + (t), t [- r, b] it is easy to see that y satisfies

Yo--0

(t) w(t. )f(. + )d
0

if and only if x satisfies (1.1) and xo .
0 0Define F: Cb--Cb, C {y Cb: YO O} by

O
(Fy)(t)

f toW(t s)f(s, Ys + s)ds,

-r<t<O

O<t<b.

It will now be shown that F is a completely continuous operator.
Let Bk-{yeC: IlYll -<k} for some k>_l. We first show that F maps Bk

into an equicontinuous family. Let y Bk and tl,t2 [0, b] and e > 0. Then if
O<e<tl<t2<_b

(Fy)(tl)- (Fy)(t2)

W(tl,s)f(s, ys + s)ds-
0 0

W(t2, s)f(s, ys+s)ds
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[W(tl, 8) W(t2, s)]f(s, y, / )ds

1

w(,:, v, +
1 e

2

W(t2, s)f(s, Ys + Cs)ds
1

where

W(tl, s)- W(t2, s) lgk,(S)ds

I 2

I I

(3.2)

N-sup{lW(t,s) l.0 s t b}. (3.3)

We remark that N is finite, by the principle of uniform boundedness, since W(t,s) is
strongly continuous on the compact triangle 0 < s < t < b.

The right-hand side of (3.2) is independent of y E Bk and tends to zero as t2
tl---+0 and c sufficiently small, since the fact of compactness of W(t, s) for t- s > 0,
implies the continuity of W(t, s) in the operator norm.

Thus F maps Bk into an equicontinuous family of functions. It is easy to see
that the family Bk is uniform bounded.

Notice that we considered here only the case 0 < ta < t2, since the other cases
t1 < t2 < 0 or t1 < 0 < t2 are very simple.

Since we have shown FBk is an equicontinuous collection, it suffices by the
Arzela-Ascoli theorem to show that F maps Bk into a precompact set in X.

Let 0<t<_b be fixed and c a real number satisfying 0<<t.. For yEBk we
define

(Fey)(t) W(t, s)f(s, Ys q- Cs)ds
0

W(t, t ) W(t , s)f(s, Ys + Cs)ds"
0
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Since W(t, t-e) is a compact operator, the set Ye(t)- {(Fey)(t): y Bk} is precom-
pact in X, for every e, 0 < e < t. Moreover, for every y Bk we have

(Fy)(t) (FeY)(t)l < W(t, s)f(s, Ys + ts) ds
t--e_

< N f gk(s)ds.

Therefore, there are precompact sets arbitrary close to the set {(Fy)(t):y E Bk}.
Hence, the set [(Fy)(t): y Bk} is precompact in X.

It remains to show that F: 0 0Cb--*Cb is continuous. Let {Un}0 C_ C with un+u in

C. Then there is an integer M such that u.(t) < M for all n and t G [0, b], so
un BM and u BM.~By (C1) f(t,(t)+s)--.f(t,u(t)+s for each t G[0, b],
and since If(t, Un(t + ts) f(t, u(t) + ts) < 2gM’(t),M’ M + ]1 I] we have by
dominated convergence

fII F II sup w(t, s)[f(s, un(s + ts) f(s, u(s) + ts)]ds
[o,t,]

0

b

< N If(s, Un(S) + ts) f(s, u(s) + ) ds-0.
0

Thus F is continuous. This completes the proof that F is completely continuous.
Finally, we shall prove that the set $(F)- {y E C’y $Fy,$ (0,1)} is

bounded. Indeed, for every solution y in C of (3.1) the function x-y-4- is a
solution of (1.1).x. Thus, by hypothesis we have

IlYlIb< K+ I1"
ConsEquently by Lemma 2.1, the operator F has a fixed point y* in C. Then x*
y* -4- is a solution of the initial value problem (1.1)-(1.2). The proof of the theorem
is now complete. I"1

The applicability of Theorem 3.1 depends upon the existence of a priori bounds
for the solutions of the IVP (1.1).x-(1.2), which are independent of $, $ e (0, 1).

In the next theorem we give conditions under which a solution of the IVP (1.1)-
(1.2) exists on the interval[-r,b].

Theorem 3.2: Let {W(t,s):0 < s < t < b} satisfy (Wl)-(W4) and f’[0, b] C---,X
a function satisfying (el) and (62). Assume that"

(Hf) There exists an integrable function m:[O,b]R + such that

If(t, )1 _< m(t)f2( II II D, 0 t b, C,

1 locally inte-where " [0, cx3)--+(0, cx3) is a nondecreasing function with
grable on [0,

Then the IVP (1.1)-(1.2) has at least one solution on [-r,b] provided that
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b

0 II II

ds ax{1 N}.f2(s),N- m

where N was defined in (3.3).
Proof: To prove the existence of a solution of the IVP (1.1)-(1.2) we apply

Theorem 3.1. In order to apply this theorem we must establish the a priori bounds
for the solutions of the IVP (1.1).x-(1.2), e (0, 1).

Let x be a solution of the IVP (1.1),x-(1.2). Then we have

(t) _< N II II + N / m(s)S2( II xs II )d, 0 _< t _< b.

0
We consider the function given by

e(t) sup{ x(s) r < s _< t}, 0 _< t _< b.

Let t* e[-r, t] be such that /(t).- x(t*) I. If t* [0, t], by the previous inequality
we have

t*

e(t) x(t*)l < N l) II + g / m(s)a( II , II )d
0

_< N II II / N / m(s)f2(g(s))ds
0

< N II II + N m(s)a(e(s))ds, 0 t b.

0

If t* E [- r, O] then e(t) II II and the previous inequality obviously holds.
Denoting by u(t) the right-hand side of the above inequality we have

u(0) N II II, e(t) _< (t), o _< t _< b,

and

u’(t) Nm(t)ft(e(t)) < Nm(t)f2(u(t)), 0 <_ t <_ b.

Then

f(u(t)) <- Nm(t), 0 <_ t <_ b

or
,(t) , oo

f(s)
< N m(s)ds < ,0 < t < b.

,(o) o ,(o)

This inequality implies that there is a constant K such that u(t)< K, t [0, b] ,and

hence e(t) < K, t [0, b]. Since for every t [0, b], II xt II < e(t), we have
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where K depends only on b and the functions m and f2. Hence our proof is completer-1

4, Boundary Value Problems

Consider in this section, the BVP (1.1)-(1.3).
Theorem 4.1" Lel {W(t,s)’O <_ s <_ t <_ b) satis (Wl)-(W4) and f:[0, b] x C---,X

a function satisfying (C1) and (62). Assume that L defined by (2.1) has a bounded
inverse L-1. Furthermore, assume that there exists a constant K such that

II II b-- sup I (t) < K
-r<t<b

for each solution x of

x(t) AT(t, O)x(O) -t- A / W(t, s)f(s, xs)ds, t e [0, b]
0

(1.1),X

for any A E (0, 1).
Then the BVP (1.1)-(1.3) has at least one solution on [-r,b].
Proof: Following Kaminogo [6], define S: Cb+: Cb, "Cb C([ r, b], X) by

Sx Pz + Qz (4.1)

where

Px W(t, 0)Z-I(C- L(Qx(O))),x Cb (4.2)

and

O, --r<_t<_O
(Qx)(t)

f toW(t s)f(s, xs)ds 0 < t < b.
(4.3)

Since the mapping x--W(., O)x is bounded and linear from X into Cb the operator P
is continuous and compact. The operator Q is completely continuous as has been
proved in Theorem 3.1. Also, the set associated with the operator P is precompact
because of the complete continuity of Q, Hence S- P + Q is a completely contin-
uous operator.

Also, the set g(S)- {x Cb:X-- ASx, A (0,1)} is bounded by hypothesis.
Thus, by Lemma 2.1, the operator S has a fixed point x* in Cb. Hence x* is
solution of the BVP (1.1)-(1.3) and this completes the proof.

Theorem 4.2: Let {W(t,s):O <_ s <_ t <_ b} satisfy (Wl)-(W4) and f’[0, b] x C---,X
a function satisfying (C1) (C2) and hypothess (Hf) of Theorem 3.2. Also assume
that defined by (2.1) has a bounded inverse L-.

Then if
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the BVP (1.1)-(1.3) had at least one solution on [-r,b].
Proof: We apply Theorem 4.1. In order to apply this theorem, we must esta-

blish the a priori bounds for the solutions of the BVP (1.1)-(1.3). Let x be a solu-
tion of the BVP (1.1)-(1.3). Then

x(t) ,{W(t, 0) 1(o L(Qx(O))) / (Qx)(t)}

with Q defined by (4.3). From this we get

ix(t) < N IZ- 1 I -t- LIN m(s)fl( II . II )d
0

+ N i m(s)f2( II . II)
0

d8

<NIZ-ll (11 +N(NI-ll ILl +1
0

or

g(t)_</l,-ll(li-J-N(/I-I ILl +l)f
0

with as defined in the proof of Theorem 3.2.

.()(())d

Denotingv v(t) the right-hand side of thebabove inequality, we obtain

i d8 "-1 l)i m(8)d8 S d8
O(s) <- N(NIL ILl + < o(s)’

0 <_ t <_ b,

,(0) o

from which we get

II II _< K,

and the proof is now complete.

5. An Application

As an application, we consider the Cauchy problem for the partial functional differen-
tial equation of Sobolev type

(Bx(t))’ + Ax(t) f(t, xt) 0 < t < b (5.1)

(t)- (t),- <_ t <_ 0 (5.2)

where f satisfies (C1) (C2) and A and B are closed linear operators with domains
contained in a Banach space X and ranges in a Banach space Y, D(B)C D(A), B is
bijective and B-1. Y-,D(B) is compact. This problem has been studied by J. Light-
bourne III and S. Rankin III in [8] by considering the related integral equation
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y(t)- T(t)B(O)+ / T(t- s)f(s,B- lys)ds 0 <_ t <_ b

0

y(t)- Be(t),- r _< t _< 0 (5.4)

where T(t), t >_ 0 is the semigroup of bounded linear operators generated by
AB- 1, satisfying

T(t) <_ Mewt

for some M >_ 1 and w E R. It is obvious that if x(t) solves (5.1)-(5.2) then y(t)-
Bx(t) solves (5.3)-(5.4).

By using the results of the previous sections we obtain the following result.
Theorem 5.1: Suppose that the above-mentioned conditions for A and B are

satisfied and the function f satisfies (C1) (C2) and the condition (Hf). Moreover,
assume that T(t), t > 0 is compact and

b oo

B-l / (s)ds < f ds
+ ()

0 c

where (t) max{Mm(t), } and c B-1 MB II I1"
(5.1)-(5.2) has at least one solution on [-r,b].

Proof: We apply Theorem 3.1. Let y be n solution of

Then the problem

y(t) AT(t)B(O) + f T(t s)f(s, B lys)ds 0 <_ t <_ b
(t)-(t),- _< t _< 0.

Then we have

Y(t) - MeWt[ B II [[ + eWt/ Me- WSm(s)f([B- 1] [[ Ys [[ )ds
0

or

e-t(t) <_ M IBI I[ [I + / Me-Sm(s)gt(IB-1 (s))ds
0

with t as defined in the proof of Theorem 3.2.
Denoting by u(t) the right-hand side of the above inequality we obtain

u(O) M B II l[ (t)

_
eWtu(t), O

_
t

_
b

u’(t) Metm(t)f2( g-1 (t))

<_ MeWtm(t)ft( B-1 etu(t)), 0 <_ t <_ b.
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From this, we obtain

,[IB- 1 ewt(t)], < Mm(t)a( B 1 ewtt(t)) + (I B-I ’(t))

<_ N(t)[fl( B 1 ewtt(t))
__

B- 1

or
B- 1 ewtu(t) b

,+a(,) -<IB <(,)d,
B- I(0) o

Therefore, we have

< / ds O<t <b.
+a()’

and consequently,
II y II b K,

where K is a constant, independent of ,, and the result follows.
lemark 5.2: In the special case, as in [8], where m L and a(t) t + k we find

K BI{MIBI II II / MLkw-1}exp[(MLlB-1 + w)b].
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