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In this paper, we prove some existence theorems for random vector varia-
tional inequalities and an existence theorem for the random noncoopera-
tive vector equilibrium under suitable assumptions.
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1. Introduction and Preliminaries

Random variational inequalities and randorh equilibrium problems are of fundamen-
tal importance in modern random nonlinear analysis. To study the theory and appli-
cations of random variational inequalities and random equilibrium problems will not
only exert a great influence in random nonlinear analysis but also provide forceful
tools for various random equations, random control and abstract economics.

Recently, Tan [16] and Chang, et al. [3-5] considered random variational inequali-
ties for real-valued functions, and gave some existence theorems of random solutions
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for their inequalities.
In this paper, we study random vector variational inequalities and random nonco-

operative vector equilibrium for vector-valued functions.
The paper is organized as follows. Section 2 deals with the existence problems of

random solutions for some kinds of random vector variational inequalities which can
be considered as random generalizations of the vector variational inequalities investi-
gated by Chen and Yang [6]. Section 3 introduces the concept of random noncoopera-
tive vector equilibrium for vector-valued functions, which is a randomized and vector
version of the ordinary noncooperative (scalar) equilibrium for real-valued functions.
By using this concept and under suitable conditions, some existence theorems for the
random noncooperative vector equilibrium are established. As its corollary, an exist-
ence theorem for a random vector saddle point problem is also proved.

For the sake of consistency, we will first give some definitions and preliminary re-
sults which will be needed in the upcoming sections.

Definition 1.1: Let E be a vector space and X be a convex subset of E. Let Y
be a topological vector space with a convex cone K such that int K q) and K Y,
and g: X--Y be a function, where int denotes interior. Then g is said to be K-convex
if for any x,y E X and E [0,1],

g(,x + (1 A)y) g(x)+ (1 ,)g(y)- K.

Let/ be the set of all real numbers and R + {x R: x >_ 0}.
Remark 1.1: When Y- R and K- R +, the K-convexity in Definition 1.1 re-

duces to the usual convexity.
Now we give the definition of Knaster-Kuratowski-Mazurkiewicz map (or KKM

map, for short) and Fan-Knaster-Kuratowski-Mazurkiewicz theorem (or Fan-KKM
theorem, for short) in [7].

Definition 1.2: Let E be a vector space and K be a nonempty subset of E. Then
a set-valued map G:K--2E is called a KKM map if for each finite subset {Xl,...,xn}

n
of K, co{xl,...,xn} C [.J G(xi), where co denotes the convex hull.

i=1
Theorem 1.1" (Fan-KKM theorem). Let E be a topological vector space, K be a

nonempty subset of E and G:K--2E be a KKM map. If for any x K, G(x) is
closed in E and there exists x, G It" such that G(x,) is compact, then G(x) O.

Let (,M) be a measurable space and E be a topological space. We denote by
(E) the a-algebra of all Borel sets of E and by x (E) the collection of all the
subsets of the form of A x B, where A E A and B %(E).

Definition 1.3: A set-valued map F:n---,2E is said to be A, %(E))- measurable
(or just measurable, for short) if for any B %(E),

F-I(B): -{w:F(w) CIB#0}Jt.
Definition 1.4: A Hausdorff topological space E is called Suslin if there exist a

Polish space (i.e., a separable complete metric space) P and a continuous function p
from P to E.

Lemma 1.1: [2]. Let (,.4) be a measurable space, E be a separable metrizable
space, U be a metrizable space and : E--U be a function. If for any fixed x E,
the function w-W(w, x) is measurable and for any fixed w , function x--W(w, x) is
continuous, then is measurable.
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Lemma 1.2: [2]. Let E be a topological space and X be a nonempty subset of E.
Th (X) {B X: B (E)}.

Theorem 1.2: [14, 15]. Let (,t) be a complete measurable space, E be a Suslin
space with the (r-algebra %(E) of all Borel sets of E, and F’--2E be a set-valued
map such that

Graph(F): {(w,x) E X:x F(w)} #t (E).
Then there exists a measurable function : ---X such that (w) F(w) for all w .

Theorem 1.2 is known as the Aumann Theorem.

2. Random Vector Variational Inequalities

Now we give some existence theorems for random vector variational inequalities.
Theorem 2.1: Let E be a Hausdorff topological vector space, %(E) be the -alge-

bra of all Borel sets of E, X be a nonempty separable metrizable compact convex
subset of E, (,A) be a complete measurable space, Y be a complete separable
metrizable topological vector space with a convex cone K such that intK 7 O and
K Y, and %(Y) be r-algebra of all Borel sets of Y. Let 9: x X x X--Y be a

vector-valued function.
If the conditions
(i) for any x X, (w,x,.) is K-convex and continuous;
(ii) for any y X, T(w,., y) is continuous;
(iii) for any x, y X, 9(’, x, y) is measurable;
(iv) (w,x,x) K for any x X and w ,

are satisfied, then there exists a measurable function : --,X such hat

p(w,(w),y) -intK for all y e X and w 12.

Proof: Define a set-valued map G: 12 x X---2X by

G(w, y) {x X: (w, x, y) int K}, (w, y) e 12 X

and define a set-valued map for any fixed y X, Gy" -2X by

Gy(w) {x E X:(w,x,y) -int K}, w.
By Lemma 1.1 and Lemma 1.2, for any fixed y X, (., .,y) is measurable and
hence the graph of Gy is as follows:

e X:

{(w, x) X: (w, x, y) Y\( int K)} E A %(X). (2.1)
Now we prove that for any fixed w , G(w,. )" X-,2x is a KKM map. Indeed,

suppose on the contrary that there exist a finite set {Yl,Y2,’",Yn} X and z-
n n n

E aiYi (E ai--1, ai_>O) suchthat z [J G(w, yi). Then we have
i=1 ,=1 i=1

(w, z, Yi) int K, 1,2,..., n

and hence, by condition (i),
n n

(w, z, z) p(w, z, E aiYi) e E ai(w’ z, Yi) K C_ int K K int K.
i=1 =1
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Since by condition (iv), p(w,z,z)E K, we have that 0 E intK, which contradicts
K : Y. Thus, for any fixed w , G(w,.):X2x is a KKM map. By condition
(ii), for any fixed w , G(w, y) is closed for any y X. Therefore, by Theorem 1.1,

N G(w, y) # 0 for any fixed w E . (2.2)
yEX

Define a set-valued map T:---+2X by

T()- n a(, ), e .
yEX

Then by (2.2), T(w)= for all w E .
Since X is separable, there exists a sequence {yi}i= 1 in X such that closure of
o equals X.{Y/}/= 1 oo
Now we prove that n G(w,y)- n G(w, yi).

yX i=1

it is e that N (,) c N a(,). Suppose that (,)
yX i=1 i=1

G(w,y). Then there exists xo G(w, yi) but xo_ n G(w,y). Hence xo
yX i--1 yX

n G(w, Yi) and there exists Yo X such that xo

_
G(w, Yo), i.e.,

i--1
o(w, Xo, Yo) int K. (2.3)

Furthermore, there exists a subsequence {Yn .}7--1 of {yi}ia=l such that y,.+yo.

Since xo n G(w, y, .), (w, Xo, y .) e Y\( int K). By condition (i), p(w, Xo, Yo)
_i =1 0 3

= lim (w-,Xo, Yn .) e Y( int K) which contradicts (2.3). Hence, we have that

G(w,y) G(w, yi). Moreover, we have
yX i=1

Graph(T)" (, ) e a x X’ e T() G(, i)
i=1

i=1

n Gr(a)e (x) ( (.)).
i=1

By Theorem 1.2, there exists a measurable function ’X such that (w)E
n G(w,y) forallwE. Thus, p(w,(w),y) -intgforallyEXandwE.

y x This completes the proof of Theorem 2.1.
The following lemma is a generalization of Lemma B in Kum [10]. This lemma

has been established in [12], but to make the upcoming results self-contained we
repeat the proof of this lemma again.

Lemma 2.1: Let E,Y be two locally convex Hausdorff topological vector spaces
and X be a bounded subset of E. Let L(E,Y) be the set of all continuous linear

functions from E to Y, equipped with the topology of bounded convergence. Define a

vector-valued function " L(E, Y) XY by (/, x) f(x), f L(E, Y) and x X.
Then is continuous.

Ptf: Denote f(x)- (f,x}, and let (f,,x) be net convergent to (f,x)in
L(E, Y) X. then f,f and x,x. Consider the following equality
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(fu, xu) (f x) (fu f, xu) + (f xu x).
Since L(E, Y) is equipped with the topology of bounded convergence, from the above
equality, we can easily verify that {fu, xu)(f,x). Hence is continuous.

This completes the proof of Lemma 2.1.
Theorem 2.2: Let E be a locally convex Hausdorff topological vector space, %(E)

be the r-algebra of all Borel sets of E, X be a nonempty separable metrizable
compact convex subset of E, (ft,4) be a complete measurable space, Y be a complete
separable metrizable topological vector space with a convex cone K such that
i., # ..d Y, ..d of of Y. L(E, Y)
be the set of all continuous linear functions from E to Y, equipped with the topology
of bounded convergence and f:f x X---L(E,Y) be a vector-valued function satisfying
the conditions

(i) for any w G f, f(w, .) is continuous; and
(ii) for any x G X, f(. ,x) is measurable.
Then there exists a measurable function :f--X such that

(f(w, (w)), y- (w)) -intK for all y G X and w

Proof: Let (w,x,y)= (f(w, x), y x). Then by Lemma 2.1, we can easily see
that satisfies all conditions of Theorem 2.1. Therefore, by Theorem 2.1, there
exists a measurable function :X such that

(f(w, (w)), y- (w)> -int K for all y E X and w E .
This completes the proof of Theorem 2.2.
Remark 2.1: (1) Theorem 2.2 is the vector version of the existence theorem for

random variational inequality, which was investigated by Chang et al. [5]. Therefore
(2.3) in Theorem 2.2 is the randomized and vector version of Hartmann-Stampacchia
variational inequality [9].

(2) Theorem 2.2 is the randomized version of the existence theorem for vector
variational inequality studied by Chen and Yang [6].

3. Random Noncooperative Vector Equilibrium

Here we define the random noncooperative vector equilibrium for vector-valued
functions,

n n
Let X: YI Xi be a nonempty subset of the product space E" I-[ Ei where

i=1 i=1
E is a Hausdorff topological vector space, and X is a nonempty subset of Ei. Let
%(Ei) be the r-algebra of all Borel sets of Ei, (,,,4) be a complete measurable space,
Y be a complete separable metrizable topological vector space with a convex cone K
such that int K # Y and K # Y, and %(Y) be the a-algebra of all Borel sets of Y.

..,xi 1 xi+lLet Gi:f2 x X--Y be a vector-valued function, and x -(xl, xn)

I-I Xj and x(x,xi) I-I xJ xi, 1,...,n, for any x- (xl,...,xn) X.

Definition 3.1: Let (w)= (l(w),...,n(w)):f2-Z be a measurable function.
We say that is a random noncooperative vector equilibrium if for each
{ 1, 2,..., n}, we have
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Gi(w ’ (w), yi) Gi(w , (w), i(w)) int K for any yi E X and w E .
Remark 3.1: Definition 3.1 is a randomized and vector version of the ordinary

noncooperative (scalar) equilibrium in [1, 8, 13].
Now we prove the existence theorem for the random noncooperative vector equili-

brium in the sense of Definition 3.1.
Theorem 3.1: Suppose that the following conditions are satisfied:
(i) for each {1,...,n}, X’ is a nonempty, separable, metrizable, compact

and convex subsct of E;
(ii) for any fixed x I-I xj and w , the function yiHGi(w,x,yi is K-

convex; j

(iii) for any fixed w n, Gi(w is continuous;
(iv) X,

Then there exists a random noncooperative vector equilibrium.
Proof: Define a vector-valued function G: X X-,Y by

G(w, x, y) E [Gi(w, x Yi) Gi(w, xi, xi)], w e and x, y e X.
i--1

Then for all x X, G(w,x,x)-0 g. By the condition (i), X is a nonempty
separable metrizable compact convex subset of a Hausdorff topological vector space
E. By condition (ii), the function yHG(w, x, y) is K-convex. By condition(iii), for
any fixed w , the function x-G(w, x, y) is continuous. By condition(iv), for any
x, y E X, G( -, x, y) is measurable.

By Theorem 2.1, there exists a measurable function : --X such that

G(w, (w), y) -int K for all y X and w Ft.

Let (w) (l(w),..., u(w))., w . Then i: Ft--.X is a measurable function.
each {1,...,n} and any y’ E Xi, let us take y- (i (w),yi). Then from (3.1),

(3.1)
For

G(w, (w), y) E [Gi(w’ i (w), yi) Gi(w i (w), i(w))] int K.
i--1

Therefore, for each {1,..., n}, we have

Gi(w (w), yi) Gi(w (w), i(w)) int K,

for any yi X and w ; that is, is a random noncooperative vector equilibrium.
This completes the proof of Theorem 3.1.
Remark 3.2: (1) The above Theorem 3.1 is a randomized and vector version of

the existence theorem for an ordinary noncooperative (scalar) equilibrium in [1, 8,

(2) The above Theorem 3.1 can be regarded as a randomized version of the
existence theorem for a noncooperative vector equilibrium in Lee et al. [11].

Let E1 and E2 be two Hausdorff topological vector spaces, %(Ei), i- 1, 2, be the
r-algebra of all Borel sets of Ei, i- 1,2, (,A) be a complete measurable space, Y
be a complete separable metrizable topological vector space with a convex cone K
such that int K :/: Y and K :/: Y, and %(Y) be the a-algebra of all Borel sets of Y.
Let X C Ei, 1,2 and F: X1 X2--Y be a vector-valued function.

From Theorem 3.1, we can obtain the following random vector saddle point
theorem.

Theorem 3.2: Suppose that the following conditions are satisfied;
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(i)

(ii)

(iii)
(iv)

X1 and X2 are nonempty, separable, metrizable, compact and convex sub-
sets of E1 and E2, respectively;
for any fixed x1 E X1 and w , the function x2--,F(w, xl,x2) is K-con-
cave, and for any fixed x2 X2 and w , the function xl--F(w, x1, x2) is
K-convex;
o id , F(, .,. cotio;
for any fixed (x1, x2) X1 X2, F.(-, x1, x2) is measurable.

Then there exist measurable functions :--X, i- 1,2, satisfying the following
random vector saddle point problem:

Find measurable functions ’---Xi, i- 1,2 such that

F(w, l(w), X2) F(w, l(w), 2(w)) intg and

F(w, l(w), 2(w)) F(w, x1, 2(w)) int It’,

for any x1G X x2 G X2 and w
Proof: Let Gl(w, x1, x2) F(w, X1, X2), a2(w x1, x2) F(w, x1, X2) and n 2.

Then all the assumptions of Theorem 3.1 are satisfied. Hence, by Theorem 3.1, there
exist measurable functions i:Xi, i- 1, 2 such that

Gl(w,l(w),x2) -Gl(w,l(w),2(w)) -int K and

G:(w, x, (w)) G2(w, (w), (w)) q int K,

for any xI G X2,x2 X2, and w
Hence we have

F(w, l(w), x2) F(w, l(w), 2(w)) int K and

F(w, l(w), 2(w)) F(w, x1, 2(w)) int K,

for any xGX1, x2GX2,andw
This completes the proof of Theorem 3.2.
For Y- R and K- R +, Theorem 3.2 yields the following corollary.
Corollary 3.1: Let X C Ei, i- 1,2 and f: x X1x X2---+R. be a real-valued func-

tion.

If the following conditions are satisfied:
(i) X1 and X2 are nonempty, separable, metrizable, compact and convex sub-

sets of E1 and E2, respectively;
(ii) for any fixed xI G X1 and w G , the function x2--f(w, xl, x2) is concave

(in the usual sense), and for any fixed x2 G X2 and w , the function
lf(, 1,) i conv (i. t .uat n);

(iii) for any fixed w G , f(w, .,.) is continuous;
(i) fo auv fid (1,) e X1 X, f ,) i .aua6,

then there exist measurable functions ’12---X, i-1,2, satisfying the following
random saddle point problem:

Find measurable functions i: __Xi, i- 1,2 such that

f(w, l(w), x2)
_

f(w, (w), 2(w))
_

f(w, X1, 2(W))
for any x1 X1, x2 X2, and w

Pemark 3.3: Chang et al. [5] considered a random saddle point problem for real-
valued functions, and proved an existence theorem of random solutions for random
saddle point problem under the quasiconvexity and quasiconcavity assumptions, and
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some additional ones.

References

[1]

[4]

[10]

[11]

[12]

[15]

[16]

Aubin, J.P., Applied Abstract Analysis, John Wiley, New York, London 1977.
Castaing, C. and Valadier, M., Convex Analysis and Measurable Multifunctions,
Lecture Notes in Mathematics 580, Springer-Verlag, Berlin, New York 1977.
Chang, S.S., Variational Inequality and Complementarity Problem Theory with
Applications, Shanghai Scientific and Technological Literature Publishing
House, Shanghai 1991 (in Chinese).
Chang, S.S. and Zhu, Y.G., On the problems for a class of random variational
inequalities and random quasi-variational inequalities, J. Math. Res. Expos. 9:3
(1989), 385-393 (in Chinese).
Chang, S.S. and Qing, L., Random variational inequalities and random saddle
point theorems, Applied Math. and Mech. (Special issue) (1993), 132-137 (in
Chinese).
Chen, G.Y. and Yang, X.Q., The vector complementarity problem and its equi-
valence with the weak minimal element in ordered sets, J. Math. Anal. Appl.
153 ( 990), 136-158.
Fan, K., A generalization of Tychonoff’s fixed point theorem, Math. Ann. 142
(1961), 305-310.
Fan, K., Applications of a theorem concerning sets with convex sections, Math.
Ann. 163 (1966), 189-203.
Hartmann, P. and Stampacchia, G., On some nonlinear elliptic differential func-
tional equations, Acta Math. 115 (1966), 271-310.
Kum, S., A generalization of generalized quasi-variational inequalities, J. Math.
Anal. Appl. 182 (1994), 158-164.
Lee, G.M., Kim, D.S. and Lee, B.S., On noncooperative vector equilibrium,
Indian J. Pure Appl. Math 27 (1996), 735-739.
Lee, G.M., Lee, B.S. and Chang, S.S., On vector quasivariational inequalities, J.
Math. Anal. Appl. (to appear).
Nash, J., Non-cooperative games, Ann. of Math. 54 (1951), 286-295.
Papageorgiou, N.S., Random fixed point theorems for measurable multifunc-
tions in Banach space, Proc. Amer. Math. Soc. 97 (1986), 507-514.
Saint-Beuve, M., On the existence of Von Neumann-Aumann’s theorem, J.
Funct. Anal. 17 (1974), 112-129.
Tan, N.X., Random variational inequalities, Math. Nachr. 125 (1986), 319-328.


