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In this paper we prove random fixed point theorems in reflexive Banach
spaces for nonexpansive random operators satisfying inward or Leray-
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1. Introduction

Lin [6] proved a random version of an approximation theorem of Fan [3] and obtain-
ed several random fixed point theorems. Recently Xu [12] and Lin [7] obtained some
more random fixed point theorems for self and non-self nonexpansive or condensing
random operators. For other related work we refer the reader to [1, 2, 8, 9, 10, 11,
13]. In this paper we prove random fixed point theorems in reflexive Banach spaces
for nonexpansive random operators, and generalize the results obtained by Lin [6, 7]
and Xu [11]. A random version of best approximation theorem of Fan [3] is also de-
rived.

2. Preliminaries

Throughout this paper, (f,) denotes a measurable space with a sigma algebra of
subsets of f. Let (X,d) be a metric space, 2x be family of all subsets of X, and
WK(X) be family of all nonempty weakly compact subsets of X. A mapping
F:f--2x is called measurable if for any open subset C of X, F-I(C)- {w E f:
F(w) C C }} E . A mapping : a--,X is said to be a measurable selector of a mea-
surable mapping F:ft---,2x if is measurable and for any w ft, ((w) F(w). Let
M be a subset of X. A mapping T: f x M---X is called a random operator if for any
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z E M, T(.,x) is measurable. A measurable mapping :f2---M is called a random
fixed point of a random operator T" f2 x M-X if for every w f2, (w) T(w, (w)).

A mapping T:M---,X is called k-set-Lipschitz (k > 0) if T is continuous and for
any bounded subset B of M, a(T(B))< k a(B), where c(B)- inf{e > 0:B can be
covered by a finite number of sets of diameter < e}. The number a(B) is called the
(set)-measure of noncompactness of B. A k-set-Lipschitz mapping T is a k-set-con-
traction if k < 1. A mapping T"MX is called (set-) condensing if T is continuous
and for each bounded subset C of M with a(C) > 0, a(T(C)) < a(C). Clearly a k-
set-contraction mapping is condensing. A mapping T’M---X is called nonexpansive
if [[T(x)-T(y)[[ < [Ix-Y[[ for all x,yM. A random operator T:f2xMX is
continuous (condensing, nonexpansive, etc.) if for each w e f2, T(w,. )is continuous
(condensing, nonexpansive, etc.) A random operator T:f2xM--,X is said to be
weakly inward if for each w f2, T(w,x) cl IM(X for x E M, where cl denotes
closure and IM(X)-{zx:z-x+a(y-x) for some yM and a>_0}. When M
has a nonempty interior, a random operator T: f2 x M---X is said to satisfy the Leray-
Schauder condition if for each w f2, there exists an element z int(M) (depending
on w)such that

T(w, y)- z 5 a(y- z) (i)

for all y in the boundary of M and a > 1.
A mapping T: M--,X is said to be demiclosed at y X if, for any sequence {Xn}

in M, the conditions xn---x M weakly and T(Xn)--*y strongly imply T(x) y.
Theorem 2.1: [Xu, 12]. Let C be a nonempty closed convex subset of a separable

Banach space X,T:fC---,X be a condensing random operator that is either
(i) weakly inward or (ii) satisfies the Leray-Schauder condition. Suppose, for each
w f, T(w, C) is bounded. Then T has a random fixed point.

lmark 2.2: Theorem 2.1 remains true if C is separable instead of X being separ-
able.

3. The Main Results

Theorem 3.1: Let C be a nonempty closed bounded convex separable subset of a re-

flexive Banach space X and let T: f2 x C---X be a weakly inward nonexpansive ran-
dom operator. Suppose for each w f2, I-T(w,.) is demiclosed at zero. Then T
has a random fixed point.

Proof: Take an element v C and a sequence {kn} of real numbers such that
0 < kn < 1 and kn---*O as n--- oc. For each n, define a mapping fn:X C----X by
fn(W, x) knv + (1 kn)T(w x). Then, fn is a weakly inward (1 kn)-set-contrac-
tion random operator. Hence by Theorem 2.1 (i) and Remark 2.2, there is a random
fixed point n of fn" Since X is a reflexive Banach space, w-cl{i(w)} is weakly
compact.

Let C be a weakly closed and bounded subset of X containing w- cl{i(w)}. For
each n, define Fn:f2--*WK(C by Fn(w --w-cl{i(w):i >_ n}. Let F:f2--WK(C)
be a mapping defined by F(w)- t;’n(w). Then, as in Itoh [5, proof of Theorem

n=l
2.5], F is w-measurable and has a measurable selector . This is the desired ran-
dom fixed point of T. Indeed, fix any w E , then some subsequence {m(W)} of
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{n(W)} converges weakly to (w). On the other hand, we have m(W)-
T(w,(m(W)) kmlv- T(w,(m(W))}. Thus {(m(W) T(w, (re(w))] converges to 0.
Since I- T(w,. )is demiclosed at zero, it follows that ((w)= T(w, (w)).

If T: f x CC then we have the following:
Theorem 3.2: Let C be a nonempty closed bounded convex separable subset of a

reflexive Banach space and let T:fx C--.C be a nonexpansive random operator.
Suppose for each w Eft, I-T(w,.) is demiclosed at zero. Then T has a random
fixed point.

Theorem 3.3: Let C be a nonempty closed bounded convex separable subset of a

reflexive Banach space X and has a nonempty interior. Let T: f x C--X be a nonex-
passive random operator that satisfies the Leray-Schauder condition. Suppose for
each w , I- T(w, .) is demiclosed at zero. Then T has a random fixed point.

Proof: Let z z(w) int(C) satisfy inequality (1). Take a sequence {ks} of real
numbers such that 0 < kn < 1 and knO as n. For each n, define a mapping fn:
n x CX by fn(w, X) knz + (1 kn)T(w x). Then fn is a random (1 kn)-Set-con-
traction operator that satisfies the Leray-Schauder condition. Then, by Theorem 2.1
(ii) and Remark 2.2, fn has a random fixed point n" Define a sequence of mappings
En:WK(C and a mapping E:WK(C) as in the proof of Theorem a.1. Then
F is measurable and has a measurable selector . This is the desired random fixed
point of T.

The following is a special case of Theorem 3.2, which extends the results of Lin
[6, Theorem 3] and Lin [7, Corollary 3.2].

Theorem 3.4: Let C be a nonempty closed bounded convex separable subset of a
Hilber space X and let T:xCX be a nonexpansive random operator. Then
here exists a measurable map :C such lhat

for each w .
Proof: Let P be the proximity map on C, that is, P is a continuous map from X

into C such that for each y X we have

I[ P(Y)- Y II d(y, C).

Since both P and T are nonexpansive, the random operator P o T:f x C--,C is
also nonexpansive. By Theorem 3.2 there ekists a random fixed point of P o T, that
is, there exists a measurable map :f--C such that P o T(w,(w))= (w), for each
w f. Therefore,

11 (w)- T(w, F,(w)) l[ 11 P o T(w, ,(w)) T(w, f,(w)) [[

for each w E f.

(i)

(ii)
(iii)

:d(T(w,((w)),C),

Remark 3.5:
Immediate corollaries to Theorems 3.1 are Lin [6, Theorem 6’(ii)] and Lin [7,
Corollary 4.2 (iii)].
Theorem 3.2 generalizes Lin [6, Lemma 1] and Xu [12, Theorem 1].
The fixed point property of C and strict convexity of X in Xu [12, Theorem
1] are not needed.
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(iv) Theorem 3.3 extends Xu [12, Theorem 4].
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