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In this paper we generalize the integral inequality of Gronwall and study
the continuous dependence of the solution of the initial value problem for
nonlinear impulsive integro-differential equations of Volterra type on the
initial conditions.
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1. Introduction

In the present paper analogues of Gronwall’s inequality for piecewise continuous func-
tions are introduced. The results obtained for these inequalities are applied to finding
sufficient conditions for continuous dependence on the initial conditions of the solu-
tions of the initial value problem for nonlinear impulsive integro-differential equa-
tions.

The integral inequalities, established in this paper, can successfully be used in the
qualitative theory of the impulsive differential equations.

Let us note that the present paper generalizes some results obtained in [2-4].

2. Basic Notations. Auxihary Assertions

Let 0 _< to < tI < t2 <... and limk__.ootk cx3.

Denote by PC([to, oC),+) the set of all functions u’[t0, oc)+, which are

piecewise continuous with discontinuity of the first kind at the points tk (k
u(tk + O) u(tk 0) < oc and u(tk) u(tk 0).

Lemma 1: (Theorem 16.4, [1]) Let for t > to the inequality
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u(t) <_ a(t) + i g(t,s)u(s)ds + E k(t)u(tk)’
to o < k <

(1)

hold, where ilk(t) (kElP) are nondecreasing functions for t>_to, a E
PC([to, C),+) is a nondecreasing function, u PC([to, cX), +), and g(t,s) is a
continuous nonnegative function for t, s t0 and nondecreasing with respect to t for
any fixed s tO.

Then, for t to the following inequality is valid:

u(t) a(t) (1 + k(t)) exp g(t,s)ds (2)
o k to

3. Main Results

Theorem 1" Let for t >_ to the inequality

u(t) <_ a(t) + i b(s)u(s)ds,+ ds

O o o

+ i +
to to o < k

o o o

+
to<tk<t

We apply Lemma 1 to inequality (5) for

o o o

hold, where a, u PC([to, o), + ), a is nondecreasing, b C([to, cx), + ), k(t, s)
and h(t,s, 7") are continuous and nonnegative functions for t, s, 7" >_ to and flk >-- 0
(k [) are constants.

Then, the following inequality is valid:

u(t) a(t) (1 + ilk) exp b(s)ds + k(s, r)dvds
0 < k < to to to

(4)
s v

0 0 0
Pf; Denote he right-hand side of lnequaliy (3) by (). The function

PC([to,), + is nondecreasing, v(to) a(to) u(t) J v(t) for t to and it satisfies
the inequality

v(t) a(t) + /_ b(.) + k(., r)dr + h(., v,.)dadr v(s)d.
o
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and obtain inequality (4).
Theorem 2" Let for t >_ to the following inequality hold

u(t) <_ a(t) + / b(t,s)u(s)ds + k(t,s, 9")u(q’)d" ds

o o o

+ E k(t)u(tk)’ (6)
to<tk<t

,a PC([to,),u+), a i oncan, (t,) a (t,,) a coto
and nonnegative functions for t,s,v >_ to and are nondecreasing with respect to t,
(t) ( ) a odcaio t >_ to.

Then, for t >_ to, the following inequality is valid:

u(t) <_ a(t) H (1 + k(t)) exp b(i, s)ds + k(t, s, v)dq’ds (7)
O<tk<:t to to to

Proof: Denote the right-hand side of inequality (6) by v(t). The function v E
PC([to, cx), + is nondecreasing, u(t) <_ v(t) and

v(t) <_ a(t) + /
o

5(t,) + (t,,)d ()d + Z(/)(t).
to o < k <

We apply Lemma 1 to inequality (8) and obtain inequality (7).
Theorem 3: Let for t >_ to the following inequality hold

(8)

u(t) <_ a(t) + ff b(s) u(s) + k(v)u(v)dq" ds + E ku(tk)’
to to o < k <

(9)

where u, a G PC([to,oo), + ), a is nondecreasing, b, k G C([to,c),N
(k G N) are constants.

Then, for t >_ to, the following inequality is valid:

+), >o

u(t) <_ a(t)-- b(s) a(s)-t- k(v)a(v)dv ds -t- E ka(tk
to to o < k <

H (1 +/) exp b(s) 1 + k(v)dr ds
o < k < to to

Proof: Consider the function defined by the equality

(10)

v(t)- ] 5() ()+ ()()d d + Z(t).
to to o < k <

(11)



92 DRUMI D. BAINOV AND SNEZHANA G. HRISTOVA

and

The function v E PC(Ito, cx), + is nondecreasing and satisfies the inequalities

u(t)<_a(t)+v(t) (12)

v(t) <_ f b(s) a(s) h- k(7")a(r)
o o dvlds + E ka(tk

o < k <

+ f ds

o o

+
to<tk<t

From inequality (13) and Theorem 1 we obtain the inequality

v(t) <_ b(s) a(s)-b k(7)a(v)dv ds + E ka(tk
to to o < k <

II
to<tk<t

(1 +flk)exp b(s) 1 + k(r)dr ds

o o

(13)

(14)

Thus, (10) follows from inequalities (12) and (14).
Corollary 1: Let the conditions of Theorem 3 hold for a(t) a const >_ O.
Then, for t >_ to, the following inequality is valid:.

u(t) <_a 1+ b(s) 1+ k(v)dT" ds/ E
to to o < k <

x H (l+flk) exp b(s) 1+ k(v)dv ds
o < k < to to

4. Application

With the aid of the established inequalities we shall analyze the continuous
dependence of the solutions of the initial value problem for impulsive integro-
differential equations on the initial data.

Consider the nonlinear impulsive integro-differential equation

ic f t,x, k(t,s,x(s))ds for t 7 tk, (15)
o
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with initial condition

(16)

X(to)- Xo, (17)

where Ax It tk x(tk + 0)- x(tk- 0).
Theorem 4: Let the following conditions hold:

1. The function f E C([t0, c)x x ,N) and it satisfies the inequality

If(t, Xl’ Yl)-- f(t, x2, Y2) <- g(t) xl x2 + h(t) yl Y2 Xl’ X2’ Yl’ Y2 ’, h e C([t0, ), + ).
The function k G C([t0’ oo)x [to, oo)x N,N) and it satisfies the inequality

](t, 8, Xl)-k(t,s, x2) _< m(t,s) x1-x2 l, Xl,X2 e

w . c([to, oo) [to, oo), + ).
The functions Ik(x)’N--N (k e N) satisfy the inequality

Ik(Xl)--Ik(X2) <_ flklXl--X21, Xl,X2 eN,

where /k const > O.
4. For each point xo e , the initial value problem (15), (16), (17) has a solution

(; to, o) fo t >_ to.
Then, the solutions of equation (15), (16) depend continuously on the initial condi-
tions, i.e., for any number e >0, there exists a number 5 >0 such that for
Xo- Yol < 5 the inequality

(t; to, o) (t; to, yo) <

holds for t [to,T], T const > to, T < oo.
Proof." Let e > 0 be an arbitrary number. Consider the function u(t)-

x(t;to, Xo)- x(t;to, Yo) I, which by the condition of Theorem 4 satisfies the
inequality

(t) _< o yo

I /s+ / ()() + h()
o o

+
to<tk<t

(18)

<- Xo YO I+ / g(s)u(s)ds 4- / h(s)m(s,)u()dTds 4- E #ku(tk)"
to to o < k <

From inequality (18), by Theorem 2 we obtain the inequality
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< I :o- H (1 +/k) exp g(s)ds + h(s)m(s, v)d7ds
tlc < to to

We choose 5 > 0 such that

/0 < 5 <e H (1 +/k) exp g(s)ds +
o < k < T to

h(s)m(s, r)dvds
o

Inequalities (19) and (20) yield the assertion of Theorem 4.

(19)

(20)
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