MEAN NUMBER OF REAL ZEROS OF A RANDOM TRIGONOMETRIC POLYNOMIAL IV

J. ERNEST WILKINS, JR.
Clark Atlanta University, School of Arts and Science
Atlanta, GA 30314, USA

(Received September, 1995; Revised May, 1996)

If $a_{j}(j=1,2, \ldots, n)$ are independent, normally distributed random variables with mean 0 and variance 1 , if p is one half of any odd positive integer except one, and if $\nu_{n p}$ is the mean number of zeros on $(0,2 \pi)$ of the trigonometric polynomial $a_{1} \cos x+2^{p} a_{2} \cos 2 x+\ldots+n^{p} a_{n} \cos n x$, then $\nu_{n p}=\mu_{p}\left\{(2 n+1)+D_{1 p}+(2 n+1)^{-1} D_{2 p}+(2 n+1)^{-2} D_{3 p}\right\}+O\{(2 n+$ $\left.1)^{-3}\right\}$, in which $\mu_{p}=\{(2 p+1) /(2 p+3)\}^{1 / 2}$, and $D_{1 p}, D_{2 p}$ and $D_{3 p}$ are explicitly stated constants.

Key words: Random Polynomials, Real Zeros.
AMS subject classifications: 60G99.

1. Introduction

Suppose that $a_{j}(j=1,2, \ldots, n)$ are independent, normally distributed random variables with mean 0 and variance 1 , and that $\nu_{n p}$ is the mean value of the number of zeros on the interval $(0,2 \pi)$ of the random trigonometric polynomial

$$
\begin{equation*}
\sum_{j=1}^{n} j^{p} a_{j} \cos j x \tag{1.1}
\end{equation*}
$$

in which p is a nonnegative real number. Das [1] has shown that, for large n,

$$
\begin{equation*}
\nu_{n p}=2 \mu_{p} n+O\left(n^{1 / 2}\right), \mu_{p}=\{(2 p+1) /(2 p+3)\}^{1 / 2} \tag{1.2}
\end{equation*}
$$

When $p=0$, the author [2] has shown that the error term $O\left(n^{1 / 2}\right)$ is actually $O(1)$. Moreover, the error term is also $O(1)$ when p is a positive integer [3]. In fact, if p is a nonnegative integer, there exist constants $D_{0 p}=1, D_{1 p}, D_{2 p}$ and $D_{3 p}$ such that

$$
\begin{equation*}
\nu_{n p}=(2 n+1) \mu_{p} \sum_{r=0}^{3}(2 n+1)^{-r} D_{r p}+O\left\{(2 n+1)^{-3}\right\} \tag{1.3}
\end{equation*}
$$

The author and Souter [4] have also derived a relation of the form (1.3) when $p=1 / 2$.

In this paper we show that (1.3) remains valid when $p=(2 s+1) / 2$, in which s is a positive integer. In combination with the earlier results, this implies that a relation of the form (1.3) is valid when $2 p$ is any nonnegative integer, although we have not been able to construct a unified derivation that covers the various cases in [2], [3], [4]
and this paper. We have also not been able to extend our techniques to the case in which $2 p$ is not a nonnegative integer.

The logical organization of our analysis is identical to that in [3], although the algebraic details are occasionally different. For this reason we rely heavily on the contents of [3], recording in Section 2 only those portions of the analysis that are essentially new.

2. Derivation of (1.3)

Exactly as in [3], we find that
when $n \geq 2$, in which

$$
\begin{gather*}
\text { that } \tag{2.1}\\
\qquad \begin{array}{c}
\nu_{n p}=4 \pi^{-1} \int_{0}^{\pi / 2} F_{n p}(x) d x \\
F_{n p}=A_{n p}^{-1}\left(A_{n p} C_{n p}-B_{n p}^{2}\right)^{1 / 2} \\
A_{n p}=\sum_{j=1}^{n} j^{2 p} \cos ^{2} j x \\
B_{n p}=\sum_{j=1}^{n} j^{2 p+1} \sin j x \cos j x \\
C_{n p}=\sum_{j=1}^{n} j^{2 p+2} \sin ^{2} j x
\end{array} \tag{2.2}
\end{gather*}
$$

If we define the constant $S_{n p}$ so that

$$
\begin{equation*}
2 S_{n p}=\sum_{j=1}^{n} j^{2 p} \tag{2.6}
\end{equation*}
$$

and assume that $2 p=2 s+1$, in which s is a positive integer, it is then clear that

$$
\begin{equation*}
A_{n p}=S_{n p}+(-4)^{-s} d^{2 s} A_{n, 1 / 2} / d x^{2 s} \tag{2.7}
\end{equation*}
$$

It is known [4, Eqs. (2.4), (2.7), (2.8) and (2.9)] that

$$
\begin{equation*}
8 A_{n, 1 / 2}=(2 n+1)^{2} g_{0}(z)+(2 n+1) g_{1}+g_{2} \tag{2.8}
\end{equation*}
$$

in which

$$
\begin{gather*}
z=\left(2 n+1 x, f(x)=c s c x-x^{-1}, \varphi(x)=f^{2}(x)+2 x^{-1} f(x)=c s c^{2} x-x^{-2}\right. \tag{2.9}\\
g_{0}(z)=(1 / 2)+z^{-1} \sin z-z^{-2}(1-\cos z), g_{1}=f(x) \sin z \tag{2.10}\\
g_{2}=-\left\{(1 / 2)+\varphi(x)+f^{\prime}(x) \cos z\right\} \tag{2.11}
\end{gather*}
$$

Lemma 1: If the constants $\gamma_{r p} \quad(p-1 / 2=0,1, \ldots ; r=0,1, \ldots, p+1 / 2)$ are defined so that

$$
\begin{gather*}
\gamma_{0 p}=(2 p+1)^{-1}, \gamma_{r p}={ }_{2 p} C_{2 r-1} f^{(2 r-1)}(0) \quad(r=1,2, \ldots, s) \tag{2.12}\\
\gamma_{s+1, p}=\varphi^{(2 s)}(0)+f^{(2 s+1)}(0)
\end{gather*}
$$

in which ${ }_{h} C_{k}$ is the binomial coefficient $h!/\{k!(h-k)!\}$, then

$$
\begin{equation*}
4^{p+1} S_{n p}=\sum_{r=0}^{s+1}(-1)^{r} \gamma_{r p}(2 n+1)^{2 p+1-2 r} \tag{2.13}
\end{equation*}
$$

We start the proof of Lemma 1 with the inference from $(2.7),(2.8),(2.9),(2.10)$ and (2.11) that

$$
\begin{align*}
2^{2 s+3} A_{n p}= & 2^{2 s+3} S_{n p}+(-1)^{s}(2 n+1)^{2 s+2} g_{0}^{(2 s)}(z)-(-1)^{s} \varphi^{(2 s)}(x) \tag{2.14}\\
+ & (-1)^{s}(2 n+1) \sum_{r=0}^{2 s} 2{ }_{2} C_{r} f^{(r)}(x)(2 n+1)^{2 s-r}(\sin z)^{(2 s-r)} \\
& -(-1)^{s} \sum_{r=0}^{2 s} 2 s C_{r} f^{(r+1)}(x)(2 n+1)^{2 s-r}(\cos z)^{(2 s-r)}
\end{align*}
$$

If we replace x by 0 in (2.14) and note that $g_{0}^{(2 s)}(0)=(-1)^{s}(2 p+1)^{-1}$, that $A_{n p}(0)=2 S_{n p}$, and that $f^{(2 r)}(0)=0$ if r is a nonnegative integer, some simple manipulations suffice to prove the lemma.

We will need the explicit representations of $A_{n p}, B_{n p}$ and $C_{n p}$ stated in the following lemma, whose proof is essentially the same as that of Lemma 2 in [3].

Lemma 2: It is true that

$$
\begin{align*}
& 2^{2 p+2} A_{n p}=(2 n+1)^{2 p+1} \sum_{r=0}^{2 p+1} g_{r p}(2 n+1)^{-r} \tag{2.15}\\
& 2^{2 p+3} B_{n p}=(2 n+1)^{2 p+2} \sum_{r=0}^{2 p+2} \dot{h}_{r p}(2 n+1)^{-r} \tag{2.16}\\
& 2^{2 p+4} C_{n p}=(2 n+1)^{2 p+3} \sum_{r=0}^{2 p+3} k_{r p}(2 n+1)^{-r} \tag{2.17}
\end{align*}
$$

if the coefficients $g_{r p}, h_{r p}$ and $k_{r p}$ are defined as they were in Lemma 2 in [3], with the following exceptions:
a. When in [3, Eqs. (2.19a)-(2.21d)] the letter p occurs as a superscript, or in a range of values of r, it should be replaced by the letter s.
b. The coefficients not defined in [3] are defined as follows:

$$
\begin{gather*}
g_{2 p+1, p}=(-1)^{s+1}\left\{\gamma_{s+1, p}+f^{(2 s+1)}(x) \cos z+\varphi^{(2 s)}(s)\right\} \tag{2.18}\\
h_{2 p+2, p}=(-1)^{s}\left\{f^{(2 s+2)}(x) \cos z+\varphi^{(2 s+1)}(x)\right\} \tag{2.19}\\
k_{2 p+3, p}=(-1)^{s+1}\left\{\varphi^{(2 s+2)}(x)-\varphi^{(2 s+2)}(0)+f^{(2 s+3)}(x) \cos z\right. \\
\left.-f^{(2 s+3)}(0)\right\} \tag{2.20}
\end{gather*}
$$

If we start from(2.15), (2.16) and (2.17), we can reproduce the statements and proofs of Lemmas 3 through 7 of [3] almost verbatim. (The quantity $O(1)$ in line 8 , p. 587 of [3] should have been $o(1)$. The quantity g in line 9 , p. 587 of [3] could have been, and in this paper should be, g_{0}.) The last Lemma 7 exhibits quantities $v_{r p}$ such that

$$
\begin{equation*}
\nu_{n p}=(2 n+1) \sum_{r=0}^{\infty}(2 n+1)^{-r} v_{r p} \tag{2.21}
\end{equation*}
$$

when n is sufficiently large. The definition $v_{r p}$ is the same as in [3], although the underlying functions g_{0}, g_{1} and g_{2} are different, and the quantities $\gamma_{m p}, g_{m p}, h_{m p}$ and $k_{m p}$ have been modified as described in Lemmas 1 and 2 above.

In a similar manner, the constants $S_{r m p}(0 \leq r+m \leq 3)$ and $S_{r p}(r=0,1,2,3)$ exhibited in Lemmas 8 through 11 of [3] can be shown by arguments essentially the same as those in [3] to be such that
$\mu_{p}^{-1} v_{r p}=\sum_{m=0}^{3-r}(2 n+1)^{-m} S_{r m p}+(-1)^{n}(2 n+1)^{r-3} S_{r p}+O\left\{(2 n+1)^{r-4}\right\}$
when $r=0,1,2,3$. (The coefficient $8 p^{2}+6 p+3$ of $\cos 2 z$ in Eq. (3.6) of [3] should have been $8 p^{2}+12 p+3$.) The desired result (1.3) now follows from (2.21) and (2.22) if the coefficients $D_{r p}$ are defined so that

$$
\begin{equation*}
D_{r p}=\sum_{m=0}^{r} S_{r-m, m p} \quad(r=0,1,2,3) . \tag{2.23}
\end{equation*}
$$

Just as in [3] we then find the following explicit formulas for $D_{r p}$

$$
\begin{gather*}
D_{o p}=1, D_{1 p}=2 \pi^{-1} \int_{0}^{\infty}\left\{\mu_{p}^{-1} G_{p}(z)-1\right\} d z, D_{2 p}=-(4 p+3) / 6 \tag{2.24}\\
D_{3 p}=(3 \pi)^{-1} \int_{0}^{\infty}\left\{\mu_{p}^{-1} J_{p}(z)+4 p+3-\left(4 p^{2}+6 p+3\right) \cos z\right\} d z-(3 \pi)^{-1} \\
\int_{0}^{\infty}\left[\mu_{p}^{-1} H_{p}(z)-2(p+1) \sin z-(2 z)^{-1}\left\{4 p+3+\left(8 p^{2}+12 p+3\right) \cos 2 z\right\}\right] z d z
\end{gather*}
$$

These formulas for the coefficients $D_{r p}$ are identical with Equations (3.28) and (3.29) in [3], apart from three inexplicable typographical errors in (3.29). They are, therefore, valid when $2 p$ is any nonnegative integer except 0 and 1 . On the other hand, the results of [2] and [4] show that $D_{20}=-0.25973$ and $D_{2,1 / 2}=-1 / 2$ instead of the values $-1 / 2$ and $-5 / 6$ predicted by (2.24).

References

[1] Das, M., The average number of real zeros of a random trigonometric polynomial, Proc. Cambridge Philos. Soc. 64 (1968), 721-729.
[2] Wilkins, Jr., J.E., Mean number of real zeros of a random trigonometric polynomial, Proc. Amer. Math. Soc. 111 (1991), 851-863.
[3] Wilkins, Jr., J.E., Mean number of real zeros of a random trigonometric polynomial. II. In: Topics in Polynomials of One and Several Variables and Their Applications (ed. by Th. M. Rassias, H.M. Srivastava and A. Yanushauskas), World Scientific Co., Singapore (1993), 581-594.
[4] Wilkins, Jr., J.E. and Souter, S.A., Mean number of real zeros of a random trigonometric polynomial. III, J. Appl. Math Stoch. Anal. 8 (1995), 299-317.

