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Abstract. This paper studies the effect of the normal distribution assumption on the
power and size of the sign test, Wilcoxon’s signed rank test and the ¢-test when used in
one-sample location problems. Power functions for these tests under various skewness
and kurtosis conditions are produced for several sample sizes from simulated data using
the g-and-k distribution of MacGillivray and Cannon [5].
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1. Introduction

In the context of asymmetric data, the difference between testing for a
specific mean and testing for a specified median is often critical. How-
ever, simply an idea of location is usually the object, however that may
be defined. In these situations, the median is probably the most useful
description of data location, but typically practitioners use mean tests as
alternatives or competitors. To investigate the consequences of this point
of view, we treat the Wilcoxon, ¢-test and sign test as tests for a specified
median and analyse their properties. Of these tests, only the t-test is not
already a median test.

In order to use the well known parametric t-test, the data must ei-
ther have been sampled from a population that is normally distributed,
or the sample size must be sufficiently large so that asymptotic normal-
ity of the sample mean can be assumed. If these assumptions cannot be
made, then non-parametric procedures such as the sign test, or Wilcoxon’s
signed rank test should be employed. These non-parametric tests have
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less restrictive assumptions about the shape of the parent population than
the t-test. Wilcoxon’s signed rank test assumes that the sample is drawn
from a continuous, symmetric population while the sign test only requires
that the population is continuous around the vicinity of the median. Non-
parametric tests are also usually easier to apply and understand than the
corresponding parametric tests and are generally insensitive to outliers.
Hollander and Wolfe [4] list nine advantages of non-parametric methods
over parametric methods.

When the assumptions necessary for parametric tests are true, then
parametric tests should have greater power than the corresponding non-
parametric tests. This power difference may not necessarily be large how-
ever. When these assumptions are not true, there can be little confidence
in the resulting inference if parametric tests are used, and in this situa-
tion non-parametric techniques will often have greater power. Carolan and
Rayner [2] found that even for parametric techniques that are robust, the
corresponding non-parametric tests may be superior when the paramet-
ric assumptions do not hold. In addition, Rayner and Carolan [11] state
that as the data becomes increasingly non-normal, the assumption that the
significance level (size) is its nominal value becomes increasingly doubtful.

Cressie [3] examined the behaviour of the ¢ statistic when sampling from
non-normal populations, using functions of the third and fourth moments
about the mean as measures of skewness and kurtosis respectively. He
found that heavy tailed data produced light tailed ¢ values, and vice versa.
Positively skewed data resulted in negatively skewed test statistic values
and vice versa. He observed that skewness had a greater impact on the ¢ dis-
tribution compared with kurtosis. In addition, with kurtosis only present,
the size of the ¢ test was lower than the nominal value for heavy tailed data
and, for lighter tailed data, the size was greater than the nominal value.

Our interest is in testing a specified value, pg, of the median.

2. Quantile Distributions

The g-and-k distribution of MacGillivray and Cannon [5] is a quantile dis-
tribution family, that is, a distribution specified in terms of its quantile
function. Details of these distributions are repeated and further explained
in Rayner [9] and Rayner and MacGillivray [10]. The g-and-k distribu-
tion is a transformation of the standard normal distribution which intro-
duces effects due to skewness (measures of asymmetry) and kurtosis (heav-
iness/lightness in the tails). This distribution includes a wide variety of
shapes, as well as the normal distribution. The quantile function for the
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Figure 1. Graphs showing distribution shapes for g-and-k distributions with each com-
bination of g (skewness) and k (kurtosis) used.

g-and-k distribution is:

Q(ulA, B,g.k) = F~'(ulA, B, g, k)
1—e 9%
= A+ Bz, (14— | (14 22)* 1
+ Bz ( +c1+egzu>( +z;) (1)

where A and B > 0 are location (median) and scale parameters respectively,
g measures skewness in the distribution, k& > —% measures kurtosis of the
distribution, z, = ®~!(u) is the uth standard normal quantile, and c is a
chosen constant. We have used ¢ = 0.8 in this paper.

The sign of the skewness parameter indicates the direction of skewness:
g < 0 indicates the distribution is skewed to the left, and g > 0 indi-
cates skewness to the right. Increasing/decreasing the magnitude of g in-

creases/decreases the skewness in the indicated direction. When g = 0,
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the distribution is symmetric. Increasing the kurtosis parameter, k, adds
more kurtosis to the standard normal base distribution. The value £k = 0
corresponds to no extra kurtosis added to the standard normal base distri-
bution. When —1 < k < 0, the g-and-k distribution exhibits less kurtosis
than the normal distribution. Refer to Figure 1 for the distribution shapes
of the combinations of g and k values used.

3. Tests

Let X1,...,X,, be a random sample from a continuous population with mean
i, median M, and standard deviation o (o unknown). We can test hy-
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potheses about the location of this population using the well known ¢-test,
Wilcoxon'’s signed rank test, or the sign test.

3.1. Test details

The t-test assumes that X; ~ N(u,02) for i = 1,...,n. For large samples,
the assumption that the population is normally distributed is not necessary,
since the sample mean is approximately normally distributed according to
the central limit theorem. Wilcoxon’s signed rank test assumes that the
data are drawn from a continuous, symmetric population. Further details



240 M. K. MCDOUGALL AND G. D. RAYNER

about the assumptions and test statistic calculations for the ¢-test and
Wilcoxon’s test can be found in most introductory statistics texts, including
Weiss [14]. There is no assumption about the shape of the population
distribution for the sign test. Moore and McCabe [6] provide additional
details and examples for the sign test.

3.2. Power comparison

Many statisticians assume that the ¢-test works reasonably well even when
the data under consideration are not obviously normally distributed, and
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the sample size is small or moderate, provided the data are 'not too far’
from normal. That is, the ¢-test is widely thought to be robust to moderate
violations of the normality assumption.

Rao [8] states that procedures based on t-tests (especially one sided pro-
cedures) are more sensitive to skewness than to heaviness or lightness in
the tails (kurtosis). For symmetric distributions, ¢-test procedures perform
relatively well, even when the distribution is non-normal. Ott [7] concludes
that when the population distribution is symmetric but heavy-tailed, ro-
bust methods such as Wilcoxon ranked sum test are more efficient than the
corresponding ¢-test about the parameter p. Weiss [14] warns that ¢-test
procedures should not be used when the data are obviously skewed.

Bradley [1] gives the asymptotic relative efficiency (ARE) of the sign
test relative to the ¢-test when parametric conditions are met (random,
independent sample from a normal population) as 0.637. When parametric
conditions are not met (population non-normal), Bradley [1] finds the sign
test may be more efficient than the ¢-test.

When parametric conditions are met, then for finite samples the relative
efficiency of the sign test to the ¢-test increases as the values of n, a and
|t — po| decrease. Relative efficiency figures as high as 0.96 have been found
and are given by Bradley [1].

Although the sign test does not assume a symmetric population, the test
is clearly still valid if symmetry is assumed. However, as stated in Sprent
[13], the sign test then often has lower efficiency and less power than the
Wilcoxon signed rank test. Wilcoxon’s test uses more information than the
sign test since the magnitudes of the observations are ranked and the ranks
used in the test statistic formula. If the data are skewed, the sign test often
performs as well or better than the inappropriate signed-rank test. Even
for some symmetric distributions (particularly those with long tails), the
sign test is more efficient than the signed-rank test. For example, Sprent
[13] states that for the double exponential distribution, the sign test has
an asymptotic relative efficiency of 4/3 relative to the signed-rank test.

For a normally distributed variable, Weiss [14] finds that the ¢-test is more
powerful than the Wilcoxon signed-rank test, but not much more powerful.
However, if the variable is symmetric but not normally distributed, the
Wilcoxon signed-rank test is usually more powerful than the ¢-test and is
often considerably more powerful.

4. Simulation Study

We have used the MATLAB package to calculate empirical power curves,
estimated using 10,000 simulations, for the sign test, Wilcoxon’s signed
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rank test and the t-test based on samples of sizes n= 5, 10, 20 and 30
for po = 0 and at nominal size « = 5%. The g-and-k distribution (see
section 2) was used to simulate data with varying kinds and amounts of
non-normality. Skewness was achieved using ¢ values of -2, 0 and 2 and
kurtosis was achieved using values for £ of -0.5, 0 and 0.5. Simulations were
carried out with A=0 and B=1 for each of the following nine combinations
of g and &, (g9,k): (-2,-0.5), (-2,0), (-2,0.5), (0,-0.5), (0,0), (0,0.5), (2,-
0.5), (2,0), (2,0.5). Figure 1 shows the g-and-k distribution shape for each
combination of parameters. Note that for g=0 and k=0 the distribution is
the standard normal distribution.

Using the 10,000 sets of simulated data for each n and (g, k) combina-
tion, a two-sided test for location was performed for the ¢-test, Wilcoxon
and sign tests and the power curve empirically estimated as the proportion
of simulated samples rejected. Critical values were not used; MATLAB
calculated p-values for each hypothesis test and compared these with a.
MATLAB finds exact p-values for the t-test, for the Wilcoxon test when
n < 15, and for the sign test when n < 100. Otherwise a normal approx-
imation is used for the Wilcoxon test and a continuity corrected normal
approximation for the sign test.

Figures 2 to 4 show power curves in terms of the true location parameter
—3 < p < 3 for various kinds of non-normal data (values of g and k).

Figure 5 shows true sizes of each test as the g and k parameters are
varied over —5 < g < 5 and —% < k < 1. Shown are plots for sample sizes
n = 10,15, 30 chosen to illustrate the nature of the progressive separation
of these size curves. Note that these plots show sizes, rather than powers.
In terms of test size, this plot emphasises the adverse reaction of the ¢-test
and Wilcoxon signed rank test to non-normality of the data, whereas the
sign test is indifferent. Importantly, the effect of increasing sample size is
to amplify this adverse reaction, not reduce it.

5. Results

Figures 2 - 4 show how the power curves for each of the sign, Wilcoxon and
t-tests vary according to the different skewness and kurtosis combinations
used for the data. Some noteworthy observations are listed below.

e All tests are more powerful for lighter tails (less kurtosis) rather than
heavier tails, with the effect strongest for the sign test, followed by the
Wilcoxon test, then the t-test.

e Generally all three tests are more powerful for larger sample sizes.
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Figure 5. Comparison of sizes for the ¢-test (top), the Wilcoxon signed rank test (middle,
shaded) and the sign test (bottom) for —5 < g < 5 and —0.5 <k < 1.
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e For the smallest considered sample of n = 5 no sign test exists with
size less than 0.05.

e Generally, skewed distributions produce tests that are more powerful at
detecting location shifts in the heavier tail (presumably because there
is likely to be more data there).

e For the sign test, the test size is more affected by sample size than by
skewness or kurtosis.

e For the Wilcoxon and ¢-tests, the minimum point of the power curve
seems to ’drift away’ from pg=0 as the sample size increases. This
drift depends on the amount of skewness, and moves in the opposite
direction to the direction of the skewness. This means that for these
tests as tests for a specified median, the true size gets worse and worse
with increasing sample size if there is skewness present in the data. This
is much more pronounced for the t¢-test than for the Wilcoxon signed
rank test which is unsurprising as the ¢-test is an unbiased test for the
mean, not the median.

By comparing curves for the three tests at the various sample sizes
(graphs not included here) we make several further observations.

e All three tests are more powerful for greater sample size and flatter
tailed data (less kurtosis).

e The minimum point of the power curves for the Wilcoxon test and, to
a greater extent, the t-test, ’drift’ from po=0 quite significantly in the
presence of skewness. This causes the bad empirical sizes (see Figure
5). The situation gets worse as the sample size increases, due to the
assumptions being violated and this effect being more pronounced with
increasing n.

e For normally distributed data and symmetric light-tailed data, there is
very little difference in the power curves for the ¢-test and Wilcoxon’s
test, regardless of the sample size.

Figure 5 shows how the true size of the t¢-test and the Wilcoxon signed
rank test is sensitive to skewness and kurtosis. Ideally the size of a loca-
tion test should be insensitive to these parameters. While the sign test
displays a flat power curve, both the Wilcoxon signed rank test and, to a
greater extent, the ¢-test, display much more sensitivity to departures from
normality. The effect of non-normality on these tests increases with sam-
ple size. Both the Wilcoxon and ¢-tests seem mainly sensitive to skewness
rather than kurtosis with this sensitivity increasing for lighter tailed (less
skewed) distributions.
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6. Conclusion

When the normal distribution assumption holds, unsurprisingly the ¢-test
is the most powerful test, although there is very little difference in power
over Wilcoxon’s test. Again, under the assumption of normality, for n > 20
the sign test has almost as much power as the ¢-test and Wilcoxon’s test.
However, the t-test and Wilcoxon’s signed rank test are more sensitive
to skewness than kurtosis. This result for the ¢ test is consistent with
Cressie [3].

In agreement with Ott [7], when the data are symmetric and heavy tailed,
Wilcoxon’s test is more powerful than the t-test. The sign test is still as
powerful as Wilcoxon’s test for n > 20. For symmetric, light tailed data,
the ¢-test is more powerful (though only slightly) than Wilcoxon’s test for
all sample sizes. For n=>5, the size of the t-test is less than the nominal
value of 0.05 for heavy tailed data, and for light tailed data the size is
greater than 0.05, supporting Cressie [3].

Larger sample sizes increase the power of the sign test, for any data
distribution. For the ¢-test and Wilcoxon’s signed rank test with a fixed
nominal size, if the data are not symmetric, the power curves drift from a
minimum at g = pp, with the true size increasing with n.

For skewed data, the sign test has greater power than Wilcoxon’s signed
rank test or the t-test (for n > 5). The true size for the sign test is at
most the nominal size. For the sign test, the minimum of the power curve
is always at p = po.

On the basis of this study, if the data are symmetric, use Wilcoxon’s
signed rank test and if not, use the sign test (n > 5). If n > 20 the sign
test can be used without significant loss in power compared with the other
tests unless the distribution is light tailed.

Many statistics text books, including Weiss [14], Moore and McCabe
[6] and Samuels and Witmer [12] state that the t-test is still appropriate
when the data are non-normal provided n is "large’. Suitable sample sizes
given include values of the order of 15, 20, 30 or 40, depending on the
degree of non-normality. However the practice of using the ¢-test in such
situations appears to be a dangerous one. The fact that size problems for
the t-test (and Wilcoxon’s test) are experienced more often as the sample
size increases is counter to our intuition and should serve as a warning
to those relying only on the asymptotic normality of the sample mean.
While this drift can to some extent be explained by the fact that the ¢-test
detects the mean rather than the median, this is not sufficient to allow us
to ignore the problem. The Wilcoxon test also suffers from this problem.
Although asymptotic normality of the t-test statistic can be used to obtain
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its distribution, few statisticians seem to remember that this has nothing
to do with the optimality of this test.

The combinations of g and k used in this study may not all necessarily
relate to situations commonly experienced by the majority of practition-
ers. However, in case such extreme distributions were to be encountered
in practice, the behaviour of the various tests has been studied here for
interest’s sake as well as completeness.

References

1. J. V. Bradley. Distribution-Free Statistical Tests, Prentice Hall, New Jersey, p.
168, 1968.

2. A. M. Carolan and J. C. W. Rayner. One sample score tests for the location of
modes of non-normal data. Journal of Applied Mathematics and Decision Sciences,
5(1):7-25, 2000.

3. N. Cressie. Relaxing assumptions in the one-sample t-test. Austral. J. Statist.,
22(2):143-153, 1980.

4. M. Hollander and D. A. Wolfe. Nonparametric Statistical Methods, 2nd edition,
New York: Wiley, p. 1, 1999.

5. H. L. MacGillivray and W. H. Cannon. Generalizations of the g-and-h distributions
and their uses. Working Paper, 1998

6. D. S. Moore and G. P. McCabe. Introduction to the Practice of Statistics, 4th
edition, W. H. Freeman and Company, New York, p. 504-505, 509-511, 2002.

7. L. Ott. An Introduction to Statistical Methods and Data Analysis, 4th edition,
PWS-Kent, p. 243 , 1988.

8. P. V. Rao. Statistical Research Methods in the Life Sciences, Duxbury Press,
California, p. 166, 1998.

9. G. D. Rayner. Statistical methodologies for quantile-based distributional families.
Ph.D Thesis, Queensland University of Technology (QUT), 2000.

10. G. D. Rayner and H. L. MacGillivray. Numerical maximum likelihood estimation
for the g-and-k and generalised g-and-h distributions. Statistics and Computing,
12:57-75, 2002.

11. J. C. W. Rayner and A. Carolan. Assessing robustness of the one-sample t-test.
ICOTS 5. Proceedings of the Fifth International Conference on Teaching of Statis-
tics, Pereira-Mendoza, L. et al. ed., Vol. 3, pp. 1225-1232.

12. M. L. Samuels and J. A. Witmer. Statistics for the Life Sciences, 2th edition, p.
206. Prentice-Hall, Inc., Upper Saddle River, New Jersey, 1999.

13. P. Sprent. Data Driven Statistical Methods, Chapman and Hall, London, 1998.

14. N. A. Weiss. Introductory Statistics, 5th edition, Addison-Wesley, Reading, Mas-
sachusetts, 1999.



Advances in Difference Equations

Special Issue on

Boundary Value Problems on Time Scales

Call for Papers

The study of dynamic equations on a time scale goes back
to its founder Stefan Hilger (1988), and is a new area of
still fairly theoretical exploration in mathematics. Motivating
the subject is the notion that dynamic equations on time
scales can build bridges between continuous and discrete
mathematics; moreover, it often revels the reasons for the
discrepancies between two theories.

In recent years, the study of dynamic equations has led
to several important applications, for example, in the study
of insect population models, neural network, heat transfer,
and epidemic models. This special issue will contain new
researches and survey articles on Boundary Value Problems
on Time Scales. In particular, it will focus on the following
topics:

e Existence, uniqueness, and multiplicity of solutions
e Comparison principles

e Variational methods

e Mathematical models

e Biological and medical applications

e Numerical and simulation applications

Before submission authors should carefully read over the
journal’s Author Guidelines, which are located at http://www
.hindawi.com/journals/ade/guidelines.html. Authors should
follow the Advances in Difference Equations manuscript
format described at the journal site http://www.hindawi
.com/journals/ade/. Articles published in this Special Issue
shall be subject to a reduced Article Processing Charge of
€200 per article. Prospective authors should submit an elec-
tronic copy of their complete manuscript through the journal
Manuscript Tracking System at http://mts.hindawi.com/
according to the following timetable:

Manuscript Due April 1, 2009

First Round of Reviews | July 1, 2009

Publication Date

October 1, 2009

Lead Guest Editor

Alberto Cabada, Departamento de Andlise Matematica,
Universidade de Santiago de Compostela, 15782 Santiago de
Compostela, Spain; alberto.cabada@usc.es

Guest Editor

Victoria Otero-Espinar, Departamento de Andlise
Matemadtica, Universidade de Santiago de Compostela,
15782 Santiago de Compostela, Spain;
mvictoria.otero@usc.es

Hindawi Publishing Corporation

http://www.hindawi.com



http://www.hindawi.com/journals/ade/guidelines.html
http://www.hindawi.com/journals/ade/guidelines.html
http://www.hindawi.com/journals/ade/
http://www.hindawi.com/journals/ade/
http://mts.hindawi.com/
mailto:alberto.cabada@usc.es
mailto:mvictoria.otero@usc.es

	1Call for Papers4pt
	Lead Guest Editor
	Guest Editor

