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Abstract. A variety of pivot column selection rules based upon the gradient criteria
(including the steepest edge) have been explored to improve the efficiency of the primal
simplex method. Simplex-like algorithms have been proposed imbedding the gradient
direction (GD) which includes all variables whose increase or decrease leads to an im-
provement in the objective function. Recently a frame work has been developed in the
simplex method to incorporate the reduced-gradient direction (RGD) consisting of only
variables whose increase leads to an improvement in the objective function. In this pa-
per, the results are extended to embed GD in the simplex method based on the concept
of combining directions. Also mathematical properties related to combining directions
as well as deleting a variable from all basic directions are presented.
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1. Introduction

Consider the linear program (LP(1)):

Max z = ctx (1)
s.t. Ax = b and x ≥ 0

where ct = (c1, . . . , cn), bt = (b1, . . . , bm) , xt = (x1, . . . , xn) and A =
(aij) is a m × n matrix. Suppose B is the basis matrix corresponding to
a feasible extreme point and let aj be the column corresponding to the
variable xj . Also let xB and xN be the set of basic and nonbasic variables
corresponding to the basis matrix B. Partitioning the matrix A and the
vector ct corresponding to the basic and nonbasic variables into A = (B,
N) and ct = (ct

B , ct
N ), the linear programming in (1) can be written as

Max z = ct
BB−1b + ct

NxN (2)
s.t. xB + B−1NxN = B−1b = b and (xB , xN ) ≥ 0

where ct
N = (ct

N − ct
BB−1N). Clearly the solution is optimal if cN ≤ 0.

When one or more cj , j ∈ xN are positive the objective function value may
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be improved by replacing one of the basic variables (pivot row) with one of
the nonbasic variables xj (pivot column) for which cj > 0. In the steepest
unit ascent method (Dantzig(63)), the variable with the largest positive cj

is selected to enter the basis. To maintain primal feasibility the departing
variable xp is chosen using the rule

bp/apk = mini(bi/aik, aik > 0)

where k is the entering variable and aj = (aij) is the column corresponding
to xj in the formulation (2). If no such departing variable exists, the
problem is unbounded. When there is a tie, Bland’s (77) rule may be used
to avoid cycling. An improvement over the unit ascent rule is to select the
variable k for which the change in the objective function given by ck(bp/apk)
is a maximum.
Computationally more expensive gradient criteria for the selection of the
pivot column can be found in Abel (87), Goldfarb and Reid (77), Harris
(73), and Zoutenddijk (76). For example if the Np -norm of (aj , h) is given
by

Np(aj , h) = [
m∑

i=1

(|aij |+ |h|)p]
1/p

for1 ≤ p < ∞

N∞(aj , h) = Max(|ai1|, . . . , |ain|, |h|)

then the gradient of the variable j is gp
j = cj/Np(aj , h). Including only

the positive values or negative values or both of aj in the Np− norm and
setting h = 1 or cj , a variety of gradients can be generated. Under the
gradient criteria, the variable with the largest gradient value for which
cj > 0 is selected. The gradient g2

j when h=1 corresponds to the steepest
edge. Abel (87) reports the gradient criterion for p=1 and h=1, appears
to perform better requiring fewer iterations when compared with several
other gradients by changing the values of p. Computational experiments
by Goldfarb and Reid (77) indicate that the steepest edge criterion is more
efficient than the rule of selecting the variable with the most positive cj .
Attempts to bring more than one variable into the basis simultaneously
are limited to two variables (Paranjape (65) ) due to excessive computa-
tional effort. Another approach called gradient method, which attempts
to combine all eligible variables into a bundle is addressed by Beilby (76),
Eislet and Sandblom (90), Fathi and Murty (89), Graves and Wolfe (64),
Heady and Candler (58), Kallio and Porteus (78), Mitra, Tamiz and Yade-
gar (88). Following the development of Kallio and Porteus (78), suppose
x is a feasible solution corresponding to a basis where some nonbasic vari-
ables are permitted to be at a positive level. For each nonbasic variable j,
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let dj = (dij), be an n dimensional vector given by

dij =

 aij if i is a basic variable
1 if i = j
0 otherwise.

Determine the direction d by combining the columns dj , with weights given
by

wj =
{

cj if cj < 0 and xj > 0 or cj > 0
0 otherwise.

Now consider the new solution x = x + αd where d =
∑n

j=1 wjdj . Find
the largest step size α∗ for which x ≥ 0. Clearly the new solution is given
by x = x + α∗d and the increase in the objective function is α∗

∑n
j=1 c2

j .
When a nonbasic variable decreases to zero in the solution, the procedure
is continued. When one or more basic variables are driven to zero, one
of these basic variables is replaced by the first candidate in the list of the
nonbasic variables. The departing variable is added to the list of the non-
basic variables. Fathi and Murty (89) and Mitra, Tamiz and Yadegar (88),
provide a mechanism to construct a basic feasible solution from x with the
objective function value ≥ ctx before generating the next direction. This
method is proven to converge (Kallio and Porteus (78)) in a finite num-
ber of iterations when the LP is non degenerate. As noted by Graves and
Wolfe (64), this approach is similar to the gradient methods (Rosen (61)
and Kreko (68)), in using the gradient to determine the desired direction
of movement and is not conveniently illustrated geometrically.
Eislet and Sandblom (90) and Zipkin (80), developed a framework to embed
reduced-gradient direction (RGD) called external pivoting in the simplex
method where the variables in the gradient direction are restricted only to
those nonbasic variables for which cj > 0. In this paper the results are ex-
tended to develop a frame work to incorporate the gradient direction (GD)
in the simplex method and two algorithms are presented to implement the
scheme. The next section deals with the frame work to embed RGD and
GD in the simplex method.

2. Gradient Simplex Method Framework

Suppose Qk is a subset of variables v = (1,2,....,n). Define a variable yk

with a column vector dk and the coefficient in the objective function fk
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given by

dk =
∑

j∈Qk

wjkaj and fk =
∑

j∈Qk

wjkcj (3)

where |wjk| > 0 for j ∈ Qk and wjk = 0 otherwise and
∑

j∈Qk
|wjk| = 1.

Excluding the singleton sets and the empty set, noting the fact that each
weight wjk can be positive or zero or negative, the number of y-variables
one can construct is r = 3n − (n + 1). Now consider the LP (3) with n
x-variables and r y-variables given by

Max z = ctx + f ty (4)
s.t. Ax + Dy = b, Ix + Wy ≥ 0 and x ≥ 0, y ≥ 0

where D = (d1, . . . , dr) is a m× r matrix, W = (wjk) is a n× r matrix, I
is a n × n identity matrix and yt = (y1, . . . , yr). It is easy to verify that
if x∗ is a feasible solution to LP(1) then x = x∗ and y = 0 is a feasible
solution to LP(3). Conversely if (x∗, y∗) is a feasible solution to LP(3)
then x = x∗+Wy∗ is a feasible solution to LP(1). Since the corresponding
objective functions are equal it is clear that an optimal solution to LP(1)
can be found by solving LP(3).

When the weights wij are restricted to be nonnegative (RGD), the num-
ber of y-variables that can be formed is reduced to r = 2n − (n + 1) and
the second set of constraints in formulation 4 is redundant. As described in
Eislet and Sandblom (90) and Zipkin(80), to embed the RGD in the sim-
plex method, let aij , bi and cj be the elements of any tableau. Construct
the variable yk with weights

wjk =
{

cj/γ if j ∈ Qk = (j |cj > 0)
0 otherwise

where γ =
∑

j∈Qk
cj . Determine the corresponding column vector dk and

the objective function coefficient fk from (3). Pivot the variable yk into the
basis and continue the procedure till an optimal solution is found. In the
next section the results are extended to embed GD in the simplex method
based on the concept of combining directions and related mathematical
properties.

3. Gradient Simplex Method

It appears that the formulation (4) requires a basis size of (m+n) to imple-
ment the simplex method. The following analysis and results are directed
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towards developing a technique to embed GD in the simplex method with
a basis of size m. Suppose the weights for a singleton basic variable xk

are given by wjk = cj / |cj | = ± 1 (|cj | > 0) if j = k and zero, otherwise.
Now consider any basis of formulation LP(3) with weights for the m basic
variables (k(1),. . ., k(m)) given by wjk(i) , for i = (1,..., m) and j = (1,...,
n). It is clear that the values of the variables xj , for j = (1,2 ..., n), in the
formulation LP(1) can be obtained from

xj =
m∑

i=1

wjk(i)bi. (5)

Assuming that the selected set of basic directions and the corresponding
step lengths yielded all xj ≥ 0 in (5) at some iteration (t-1), consider a
new direction wjt = wjt/γ at iteration t where

wjt =
{

cj if cj > 0 or cj < 0 and xj > 0
0 otherwise (6)

where γ =
∑n

j=1 |wjt|. If there is no such direction clearly the current
tableau is optimal. If the step length of the new direction is α, then the
new solution xj is given by

xj =
∑m

i=1 wjk(i)(bi − αdit) + αwjt (7)

=
∑m

i=1 wjk(i)bi + α(wjt −
∑m

i=1 wjk(i)dit)
= xj + αθjt

where dit =
∑n

j=1 aijwjt and ft =
∑n

j=1 cjwjt. If all θjt ≥ 0, the objective
function can be made as large as possible by selecting large values for α and
hence the problem is unbounded. If for some j, θjt < 0, then the maximum
step length α∗t to maintain primal feasibility is given by

α∗t = minj(−xj/θjt, θjt < 0) = −xr/θrt. (8)

Having determined the step length α∗t , the following analysis provides a
mechanism to pivot a new direction into the basis. Suppose for each vari-
able j, P (j) = (i, wjk(i) 6= 0) and NP(j) represents the number of elements in
P(j). It is easy to verify from (7), moving along the generated direction by
the step length in (8) reduces the value of xr to zero. There are three cases.

CASE 1: xr is basic and NP(r) =1
Since xr is a basic variable and NP(r) = 1, cr = wrt = 0, wrk(i) = 0 when
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i 6= r and wrk(r) = 1. Therefore from (7), it follows that θrt = −drt which
implies bk(r) / drt = −xr / θrt = α∗t and hence the basic variable xr can be
replaced by the new direction. If any of the updated bi are negative, then
change it to −bi and multiply the corresponding weights of the direction
by -1.

CASE 2: α∗t > 0 and xr is nonbasic or NP(r) ≥ 2
In this case it is possible to generate more than one direction. Suppose for
v = 1, wv

t = (wv
jt), dv

t = (dv
it), fv

t > 0 and α∗tv are the normalized weights,
the elements of the column vector, the coefficient in the objective function
and the step length of the first direction. Also let x

(v−1)
j be the values of

the variables prior to generating the direction number v. After generating
the direction number v, update the values of the variables xj to xv

j =

x
(v−1)
j + α∗tvwv

jt. Using these updated values of xj and the relationship
(6), determine the weights of the new direction. If such a direction does
not exist or the corresponding α∗tv = 0, or it has been generated before
(to prevent zigzagging), stop generating additional directions. Suppose h
is the number of directions generated and let

wjt =
∑h

v=1(α
∗
tvwv

jt), dit =
h∑

v=1

(α∗tvdv
it) (9)

f t =
∑h

v=1(α
∗
tvfv

t ), λ =
n∑

j=1

|wjt|.

The following results are useful in combining these h directions into a single
direction.

Lemma 1 λ > 0.

Proof: From (9), λ = 0 implies |wjt| = wjt =
∑h

v=1 α∗tvwv
jt = 0 for all

j. After generating the h directions the values of the variables xj = xh
j are

given by

xh
j = x0

j +
h∑

v=1

α∗tvwv
jt = x0

j + wjt = x0
j . (10)

From (10) it follows that the increase in the objective function is zero which
is a contradiction since the increase in the objective function is f t > 0.

Theorem 1 After normalization, let wjt = (wjt/λ), dit = dit/λ and ft =
f t/λ. Then the step length of the combined direction is λ.
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Proof: First note that cj values remain the same for all the h directions
generated as well as for the combined direction. Also moving a step length
of α∗tv along each direction for v = (1,...,h) and the maximum step length
α∗t along the combined single direction results in the same increase in the
objective function. It is clear that the increase in the objective function
moving along the combined direction is given by α∗t ft = α∗t

∑n
j=1 cjwjt.

Substituting for wjt from (9), it is easy to verify that α∗t = λ.
Having combined all h directions to a single direction, let xr be a variable

driven to zero. If it is a basic variable and NP(r) = 1, replace this variable
with the direction generated as in the Case 1. Otherwise generate an
entering direction by combining the new direction with all basic directions
in P(r). Moving a step length of λ along the generated single direction
reduces the step lengths of the basic directions (RHS of the simplex tableau)
to (bi - λdit). Using these step lengths as weights, the weights of the
entering direction are

wj =
∑

v∈P (r)

(bv − λdvt)wjk(v) + λwjt. (11)

Lemma 2 Suppose γ =
∑n

j=1 |wj |. Then γ = 0 implies bi = 0 for all
i ∈ P (r), dit = 0 for all i /∈ P (r) and ft = 0.

Proof: Clearly γ = 0 implies |wj | = wj = 0 which in turn follows from
(11)

λwjt =
∑

v∈P (r)

wjk(v)(λdvt − bv). (12)

Multiplying both sides of the equation (12) by aij and summing from j=1
to n results in (after rearranging the terms)

λ
n∑

j=1

wjtaij = λdit =
∑

v∈P (r)

(λdvt − bv)dik(v)

where dik(v) are the elements of the column vector of the basic variable
k(v) which is an identity column. Therefore it follows λdit = (λdit− bi) for
i ∈ P (r) and λdit = 0 for i /∈ P (r). To prove the second part multiplying
both sides of the equation (12) by cj and summing over j = 1 to n results
in

λ
n∑

j=1

wjtcj =
∑

v∈P (r)

(λdvt − bv)fk(v) = λft.
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Since k(v) for v ∈ P (r) are basic variables, fk(v) = 0 and therefore ft = 0.

Corollary 1. When λ > 0 and ft > 0 then γ > 0.

Theorem 2 Suppose λ > 0 and ft > 0 . When the weights of the entering
direction from(11) are normalized, let wj = wj/γ. Then the column vector
d = (di) of the entering direction is given by di = bi/γ for i ∈ P (r) and
λdit/γ for i /∈ P (r).

Proof: By definition the elements of the vector d are given by di =∑n
j=1(aijwj/γ). Substituting for wj from (11) and simplifying yields ( see

lemma 2 )

di = (1/γ)
∑

v∈P (r)

(bv − λdvt)dik(v) + (λ/γ)dit

where dik(v) are the elements of the column vector of a basic variable in
the current tableau which is an identity column. Therefore dik(v) = 1 if i =
v and zero, otherwise. Substituting for dik(v) in the above expression the
required result follows.

Theorem 3 The step length of the entering direction with weights wj =
wj/γ as in (11) is γ. In addition, the step lengths of the combined direction
and the entering direction yield the same increase in the objective function.

Proof: To determine the step length of the entering direction, let θj and
θjt be the values of θ corresponding to the entering and combined directions
respectively. Then from(7), θj = (wj/γ −

∑m
i=1 wjk(i)di). Substituting for

wj from (11) and for di from Theorem(2) results in

θj = (1/γ)
∑

v∈P (r)

(bv − λdvt)wjk(v) + (λ/γ)wjt

−
∑

v∈P (r)

wjk(v)(bv/γ)−
∑

v/∈P (r)

wjk(v)(λ/γ)dit

= (λ/γ)[wjt −
m∑

i=1

wjk(i)dit] = (λ/γ)θjt.

Since λ is the maximum step length possible along the combined direction
and the variable xr is driven to zero at the maximum step length, it follows
from (8)

λ = minj(−xj/θjt, θjt < 0) = −xr/θrt.

Since θj = (λ/γ)θjt for all j = (1, . . . , n), the variable xr is also forced to
zero at the maximum step along the entering direction and therefore the
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maximum step length is given by −xr/θr = (−xr/θjt)(γ/λ) = γ.
Substituting for wj from (11) it is straight forward to show that f, the
coefficient of entering direction in the objective function is given by

f =
n∑

j=1

cjwj = 1/γ)
n∑

j=1

cjwj = (λ/γ)ft.

This proves the second part of the result γf = λft.

Lemma 3 The entering direction can be pivoted into the basis by replacing
any of the basic directions v ∈ P (r) for which bv > 0.

Proof: Note that at least one bv for v ∈ P (r) must be > 0. Otherwise
from (5) it follows that xr = 0 which is impossible. For v ∈ P (r) and
bv 6= 0, bv/dv = γ and therefor any one of the basic variables v ∈ P (r) for
which bv 6= 0 can be replaced by the entering column.

Corollary 2. Pivoting the entering direction results in a tableau with
bi = 0 for i ∈ P (r) except for the departing direction which is γ. In addi-
tion the weight of the variable r (the variable driven to zero) in the entering
direction is zero.

CASE 3 : α∗t = 0 and xr is nonbasic or NP(r) ≥ 2
In this case the first direction generated results in α∗t = 0. From (5) and
(7), it follows that there exists a variable r ∈ v = (1, . . . , n) such that xr

=
∑m

i=1 wrk(i)bi = 0 and θr = wrt −
∑m

i=1 wrk(i)dit < 0. Since xr = 0 and
wrt ≥ 0 it follows that

m∑
i=1

wrk(i)dit > wrt ≥ 0. (13)

Suppose T (r) ⊆ P (r) and is given by T(r) = (i|i ∈ P (r) and bi > 0).
Clearly P (r) 6= ∅, otherwise all wrk(i) = 0 which violates the relationship
(13). If NP(r) = 1, then there exists a unique p for which wrk(p) 6= 0.
From (13), it follows that dpt 6= 0. Since xr = 0 implies bp = 0 and
therefore the basic variable k(p) can be replaced by the new direction at
zero level. When NP (r) ≥ 2, suppose (P (r) − T (r)) 6= ∅ and at least one
dit ∈ (P (r) − T (r)) 6= 0. In this case any basic variable k(p) for which
dpt 6= 0 and p ∈ (P (r) − T (r)) can be replaced by the new direction at
zero level since bp = 0 for p ∈ (P (r) − T (r)). The following results are
directed towards developing a mechanism to pivot the new direction at
zero level when (P (r)− T (r)) = ∅ or (P (r)− T (r)) 6= ∅ and dit = 0 for all
i ∈ (P (r)− T (r)).
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Lemma 4 If T (r) = ∅, then there exists a basic variable k(p), for which
bp = 0 and dpt 6= 0.

Proof: If T (r) = ∅, then bi = 0 for all i ∈ P (r). From (13), it follows
that there exists at least one p for which dpt 6= 0. Any basic variable k(p)
for which p ∈ P (r) and dpt 6= 0 can be replaced by the new direction.

Lemma 5 If T (r) 6= ∅, then there are at least two elements in T(r) (NT (r) ≥
2).

Proof: Suppose if possible NT(r) = 1. Then there exists a unique p ∈
P (r) for which bp 6= 0. It follows that xr =

∑m
i=1 wrk(i)bi = wrk(p)bp 6= 0,

which is a contradiction.

Combine all the directions (NT (r) ≥ 2) in T(r) into a single direction
with weights bi and pivoting this combined direction into the basis by re-
placing any one of the basic directions in T(r) provides space for the new
direction to be pivoted at zero level. The weights of this combined direc-
tion are given by wj =

∑
i∈T (r) wjk(i)bi. The following results are useful in

determining the column vector of the combined direction.

Theorem 4 The column vector d = (di) of the combined direction with
weights wj is given by di = bi if i ∈ T (r) and di = 0 i /∈ T (r).

Proof: The elements of the vector d are given by

di =
n∑

j=1

aijwj =
n∑

j=1

aij

∑
v∈T (r)

bvwjk(v)

=
∑

v∈T (r)

bv

n∑
j=1

aijwjk(v) =
∑

v∈T (r)

bvdik(v).

Noting the fact that dik(v) are the elements of the column vector of the
basic variable k(v) which is an identity column vector and dik(v) = 1 for i
= v and dik(v) = 0 for i 6= v, the required result di = bi for i ∈ T (r), and
di = 0 for i /∈ T (r) follows.

Lemma 6 Let γ1 =
∑n

j=1 |wj |. Then γ1 > 0.

Proof: Suppose if possible γ1 = 0. Then it follows wj = 0 for all j =
(1, . . . , n). Now the elements of the column vector d are given by di =∑n

j=1 aijwj = 0 for all i including i ∈ T (r) which contradicts Theorem(4).
It is straight forward to verify by normalizing the weights of the combined

direction to wj = wj/γ1, the corresponding elements of the column vector
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are given by di = bi/γ1 for i ∈ T (r) and di = 0 for /∈ T (r). Now the
combined direction can be pivoted by replacing any basic direction p ∈
T (r). Pivoting this combined direction changes the RHS of the tableau to

bi = bi for i /∈ T (r)
= γ1 for i = p

= 0 for i ∈ (T (r)− p).

Pivoting the combined direction also changes the column vector of the new
direction to

dit = dit for i /∈ T (r) (9)
= dpt(γ1)/bp) for i = p

= dit − dpt(bi/bp) for i /∈ (T (r)− p).

Theorem 5 There exists an i ∈ (T (r)− p) for which dit 6= 0.

Proof:
Since NT (r) ≥ 2, (T(r)-p) is not empty. Suppose if possible dit = 0 for

all i ∈ (T (r)−p). Since bi = 0 for i ∈ (P (r)−T (r)), wrk(i) = 0 for i /∈ P (r)
and xr = 0, it follows that

∑m
i=1 wrk(i)bi =

∑
i∈T (r) wrk(i)bi = 0. From

(14), dit = 0 implies ditbp - dptbi = 0 for all i ∈ (T (r) − p). Substituting
for dptbi yields

dpt

∑
i∈T (r)

wrk(i)bi =
∑

i∈T (r)

wrk(i)dptbi

=
∑

i∈(T (r)−p)

wrk(i)ditbp + wrk(p)dptbp

= bp

∑
i∈T (r)

wrk(i)dit = 0

Since dit = 0 for i ∈ (P (r) − T (r)) and wrk(i) = 0 for i /∈ P (r), it follows
that bp

∑m
i=1 wrk(i)dit = 0. Since bp > 0, this contradicts (13).

After pivoting the combined direction, the new direction can be pivoted
by replacing any basic variable i ∈ (T (r) − p) for which dit 6= 0. Based
on the above analysis and results, the following is an implementation of
imbedding the full GD in the simplex method.
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4. Algorithm

Step(1): Start with an initial set of basic directions. Slack and artificial
variables may be used to get started. For i = (1, . . . ,m) and j = (1, . . . , n),
let wjk(i) be the weights of the basic variables, A = (aij), b = (bi) and c

= (cj) be the elements of the initial simplex tableau and xj =
∑m

i=1 wjk(i)bi.

Step(2): Determine the weights of the entering direction wjt from (6).
If all wjt = 0, stop. The current solution is optimal. Otherwise attempt to
find the maximum step length α∗t of the direction from (7) and (8). If the
step length cannot be found stop. The problem is unbounded. Otherwise
let xr be one of the variables limiting the step length to α∗t .

Step(3): Let P (r) = (i, wrk(i) 6= 0) and NP(r) represents the number of
elements in P(r). If xr is a basic variable and NP(r) = 1, go to Step(4).
Otherwise go to Step(5).

Step(4): Pivot the new direction replacing the basic direction corre-
sponding to the variable xr, update the values of the variables and go to
Step(2).

Step(5): In this case xr is either nonbasic or NP (r) ≥ 2. If α∗t = 0, then
go to Step(7). Otherwise ( α∗t > 0 ), update the values of the variables
xj and continue generating more directions until such a direction does not
exist, or it has been generated before in the current iteration (to prevent
zigzagging) or the corresponding step length is zero. If the corresponding
step length does not exist stop. The problem is unbounded. Otherwise
combine all the directions generated into a single direction by multiply-
ing the weights with step lengths and determine the weights wjt and the
elements of the column vector dit of this single direction from (9) and The-
orem(1). Also determine the step length of this single direction λ and the
limiting variable xr. If xr is basic and NP (r) = 1, go to step(4). Otherwise
go to step(6).

Step(6): Combine all the directions in P(r), with weights (bi-λdit) and
the single direction with weight λ. Determine the weights of the entering
direction wj and the step length γ from (11) and Lemma (2). Also de-
termine the elements of the column vector of the entering direction from
Theorem(2). Pivot this entering direction with step length γ replacing any
of the basic directions in T(r) = (i|i ∈ P (r) and bi > 0). Update the values
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of the variables and go to step(2).

Step(7): If there exists a basic direction k(p) for which bp = 0 and the
corresponding element of the column vector of the new direction dpt 6= 0,
then pivot the new direction at zero level by replacing the basic direction
k(p). If dit = 0, for all i ∈ (P (r) − T (r)), let NT (r) be the number of
elements in T (r) and go to step(8).

Step(8):.Combine all the basic directions in T (r) with weights bi into a
single direction and pivot this direction replacing any of the basic directions
k(p) in T (r). From (14) determine dit, the updated values of the elements
of the column vector of the new direction and pivot the new direction with
zero step length replacing any of the basic directions i ∈ (T (r) − p) for
which dit 6= 0 and go to step(2).

Note that after pivoting a direction into the basis if any bi < 0, it can be
made positive by multiplying the weights of the corresponding direction by
(-1). In the next section a numerical example is presented to illustrate the
computations involved.

5. GD and an Example

In the numerical example in Table 1, x4, x5, and x6 are the slack variables.
Starting with the three basic directions (0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 1, 0)
and (0, 0, 0, 0, 0, 1) the initial simplex tableau is given in Table 1. Clearly

Table 1. Example 1-Tableau-1.

Basis x1 x2 x3 x4 x5 x6 RHS d1 Ratio
x4 1 1 1 1 0 0 5 1 5
x5 0 1 0 0 1 0 2 1/2 4
x6 1 2 1 0 0 1 6 3/2 4
c 2 3 1 0 0 0 0 7/3
x 0 0 0 5 2 6
w1

1 2/6 3/6 1/6 0 0 0
θ1
1 2/6 3/6 1/6 -1 -1/2 -3/2

x1 4/3 2 2/3 1 0 0

Q1
1 = (1, 2, 3), (d1

1)
t = (1, 1/2, 1/3), f1

1 = 7/3, and α∗11 = 4 resulting in the
solution x1. Since Q2

1 = (1, 2, 3) = Q1
1 and the basic variable x5 (NP (5)

=1) is forced to zero by the first direction, the variable y1 = y1
1 is pivoted
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with step length α∗ = 4 replacing x5 in Table 1 (x6 could also have been
replaced) resulting in Table 2.

Table 2. Example 1 -Tableau-2.

Basis x1 x2 x3 x4 x5 x6 RHS d2 Ratio
x4 1 -1 1 1 -2 0 1 1 1
y1 0 2 0 0 2 0 4 -5/7 -
x6 1 -1 1 0 -3 1 0 1 0
c 2 -5/3 1 0 -14/3 0 28/3 5/3 -
x 4/3 2 2/3 1 0 0
w1

2 6/14 -5/14 3/14 0 0 0
θ1
2 2/3 0 1/3 -1 0 -1

x1 4/3 2 2/3 1 0 0

Since Q1
2 = (1, 2, 3), it follows that (d1

2)
t = (1, -5/7, 1) and f1

2 = 5/3.
Clearly α∗21 = 0 due to the basic variable x6 with NP(6) = 1. Replacing
x6 with y2 results in Table 3.

Table 3. Example 1-Tableau -3.

Basis x1 x2 x3 x4 x5 x6 RHS d3 Ratio
x4 0 0 0 1 1 -1 1 3/10 10/3
y1 5/7 9/7 5/7 0 -1/7 5/7 4 -4/35 -
y2 1 -1 1 0 -3 1 0 -1 -
c 1/3 0 -2/3 0 1/3 -5/3 28/3 7/15 -
x 4/3 2 2/3 1 0 0
w1

3 1/4 0 -2/4 0 1/4 0
θ1
3 3/4 -1/4 -1/4 -1/4 1/4 0

x1 10/3 4/3 0 1/3 2/3 0
w2

3 1/2 0 0 0 1/2 0
θ2
3 5/6 -1/2 1/6 -1/2 1/2 0

x2 35/9 1 1/9 0 1 0

From Table 3, Q1
3 = (1, 3, 5), (d1

3)
t = (1/4, -3/14, -1), f1

3 = 1/2, and
α∗31 = 8/3 resulting in the solution x1. From x1 it is clear that Q2

3 = (1, 5)
6= Q1

3, (d2
3)

t = (1/2, 2/7, -1), f2
3 = 1/3 and α∗32 = 2/3 resulting in x2. Since

the next direction yields Q3
3 = (1, 3, 5) = Q1

3, the directions y1
3 and y2

3 are
combined in to a single direction with weights 8/3 and 2/3 resulting in the
direction y3 with weights 8/3w1

3 + 2/3w2
3. Normalizing (dividing by λ =

10/3) yields the weights (3/10, 0, -4/10, 0, 3/10, 0). The column vector
corresponding to this direction d3 = 3/10(8/3 d1

3 + 2/3 d2
3) is shown in

the Table 3. The step length of this direction is λ = 10/3 which forces the
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basic variable x4 to zero. Since NP(4) = 1, replacing x4 with y3 results in
Table 4.

Table 4. Example 1-Tableau-4.

Basis x1 x2 x3 x4 x5 x6 RHS d4 Ratio
y3 0 0 0 10/3 10/3 -10/3 10/3 10/18 6
y1 5/7 9/7 5/7 8/21 5/21 7/21 92/21 92/126 6
y2 1 -1 1 10/3 1/3 -7/3 10/3 10/18 6
c 1/3 0 -2/3 -14/9 -11/9 -1/9 98/9 1/54 -
x 35/9 1 1/9 0 1 0
w1

4 3/20 0 -6/20 0 -11/20 0
θ1
4 83/90 0 -83/90 0 0 0

x1 4 1 0 0 1 0
w2

4 3/14 0 0 0 -11/14 0
θ2
4 65/63 0 -13/126 0 0 0

From Table 4, Q1
4 = (1, 3, 5), (d1

4)
t = ( -11/6, -5/21, -1/3), f1

4 = 83/90,
and α∗41 = 10/83 with the corresponding solution x1. The next direction
yields Q2

4 = (1, 5), (d2
4)

t = (-55/21, -5/147, -2/42), f2
4 = 65/63 and α∗42= 0.

Discarding the second direction and noting the fact that the first direction
forced the nonbasic variable x3 to zero, combine all the basic directions y3,
y1, and y2 in which x3 has a nonzero weight and the new direction y1

4 with
weights [10/3 +11/6(10/83)], [92/21 + 5/21(10/83)], [10/3 + 1/3(10/83)]
and 10/83 resulting in the entering direction y4 with normalized weights
(4/6, 1/6, 0, 0, 1/6, 0) and step length γ = 6. The corresponding column
vector d4 is shown in Table 4. Replacing y3 with y4, results in Table 5
(note that y1 or y2 could have also been replaced).

Table 5. Example 1-Tableau-5.

Basis x1 x2 x3 x4 x5 x6 RHS d5 Ratio
y4 0 0 0 6 6 -6 6 -24/5 -
y1 5/7 9/7 5/7 -4 -29/7 33/7 0 121/35 0
y2 1 -1 1 0 -3 1 0 13/15 0
c 1/3 0 -2/3 -5/3 -4/3 0 11 17/15 -
x 4 1 0 0 1 0
w1

5 1/5 0 0 0 -4/5 0
θ1
5 17/15 0 -17/15 0 0 0

The next possible direction is Q1
5 = (1, 5) yields α∗51 = 0, due to the

nonbasic variable x3. Noting the fact that P(3) = (2,3) and T(3) = ∅,
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replacing y1 with y5 = y1
5 , yields Table 6 (note that y2 could also have

been replaced).

Table 6. Example 1 -Tableau-6.

Basis x1 x2 x3 x4 x5 x6

y4 120/121 216/121 120/121 54/121 30/121 66/121
y5 25/121 45/121 25/121 -140/121 -145/121 165/121
y2 56/121 -238/121 56/121 364/121 14/121 -308/121
c 12/121 -51/121 -109/121 -43/121 3/121 -187/121
x 4 1 0 0 1 0
w1

6 4/22 -17/22 0 0 1/22 0
θ1
6 459/113 0 -459/ 113 0 0 0

Basis RHS d6 Ratio
y4 6 -1581/ 113 -
y5 0 -405 / 113 -
y2 0 2142 / 113 0
c 11 459 / 113 -

Clearly Q1
6 = (1, 2, 5) results in α∗61 = 0 due to the nonbasic variable

x3. Since T(3) = ∅, replacing y2 with the direction y6 = y1
6 , results in the

optimal Table 7.

Table 7. Example 1-Tableau-7.

Basis x1 x2 x3 x4 x5 x6 RHS
y4 4/3 1/3 4/3 8/3 1/3 4/3 6
y5 5/17 0/17 5/17 -10/17 -20/17 15/17 0
y6 44/153 -187/153 44/153 286/153 11/153 -242/153 0
c 0 0 -1 -1 0 -1 11
x 4 1 0 0 1 0 -

6. Enhancements for the GD Simplex Method

Pivoting a new direction into the basis may result in forcing a variable xr

to zero for which NP(r) ≥ 2 in step(6). In steps 7 and 8, the step length
of a new direction is restricted to zero with no improvement in the objec-
tive function due to a variable at zero level. If P (r) 6= ∅ for the variable
driven to zero, it may be desirable to eliminate this variable from all basic
directions (make the weights to zero). If this is not done, one may have to
remove each basic direction in P(r), one at a time resulting in generating
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and pivoting several new directions requiring substantial computational ef-
fort. The following analysis is directed at developing efficient procedures
and conditions for feasibility of eliminating a variable driven to zero from
all basic directions. There are two cases.

CASE 1: New Direction Step Length α∗ > 0

If xr is basic and NP(r) = 1, the basic direction is replaced by the new
direction with zero weight for xr and therefore the weight of this variable is
zero in all basic directions. If xr is nonbasic and NP(r) =1, the new direc-
tion is combined with the unique direction in P(r) generating the entering
direction with zero weight for xr to replace the basic direction k(r) in P(r)
resulting in zero weights for xr in all basic directions ( see Lemma(3) and
Corollary(2)). Now suppose that xr is basic and NP (r) ≥ 2. If the cor-
responding RHS of this basic variable br 6= 0, then the entering direction
with zero weight for xr can be pivoted replacing the basic direction k(r).
This makes xr nonbasic and it still has nonzero weights in other basic di-
rections. But when br = 0, it is not possible to replace the basic direction
k(r). However, since the column corresponding to xr is an identity column
and the value of this variable is zero after pivoting, the weights of the vari-
able xr can be made to zero without impacting the identity columns of the
other basic variables. The changes needed are to normalize the weights of
the other basic directions by replacing wjk(i) with wjk(i) / wrk(i) for i 6= r
and j 6= r and wrk(i) = 0 for i 6= r and replace the RHS of the basic direc-
tions from bi to biwrk(i) (note that wrk(i) 6= 0) where wrk(i) = 1- |wrk(i)|.
This reduces the problem to eliminating a nonbasic variable at zero level
with NP (r) ≥ 1 from all basic directions. Making the weights wrk(i) of
the nonbasic variable xr to zero changes the identity columns of the basic
variable k(p) for p = (1, . . . ,m) to

gip = −airwrk(p)/wrk(p) fori 6= p

gii = (1− airwrk(i))/wrk(i).

Also the c values of the basic variables are changed from zero to cp =
−crwrk(p) / wrk(p). Making the columns of the basic variables to identity
columns is equivalent to multiplying the matrix A = (aij) with the inverse
of the matrix G = (gip). In addition the c values of the basic variables
must be made to zero. Finally the RHS of the tableau is also changed to
bp wrk(p) from bp. The following results provide the inverse of the matrix
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G and the condition when it exists and the justification for changing the
bp and cp values of the basic variables.

Theorem 6 The inverse of the matrix G, G−1 exists if ∆ = 1 -
∑m

i=1 airwrk(i)

6= 0 and the elements of the matrix G−1 = (gpj) are given by

gpj = aprwrk(j)wrk(p)/∆ forp 6= j

gjj = (1 + ajrwrk(j)/∆)wrk(j).

Proof: It is straight forward to verify the result by multiplying the ith
row of the matrix G with the jth column of the matrix G−1.

Lemma 7 When the variable xr is removed from all basic directions and
the remaining weights are normalized, the cp values of the basic variables
are changed to cp = −crwrk(p)/wrk(p).

Proof: Before the variable xr is removed from all basic directions, the c
values of the basic variables are given by cp =

∑n
j=1 wjk(p)cj = 0. Deleting

the weight wrk(p) and normalizing the remaining weights changes the value
to cp =

∑
j 6=r cjwjk(p)/wrk(p) = -crwrk(p) / wrk(p).

Lemma 8 When the columns of the x-variables are multiplied by the matrix
G−1, the RHS of the tableau is changed to biwrk(i).

Proof: The proof is straight forward by multiplying G−1 and the column
vector of the RHS of the tableau.

To eliminate the weights of the variable xr, from all basic directions first
multiply the tableau by G−1. Then multiply the pth row of the tableau
with −cp( see Lemma(7)) and add it to the c row for all p to make the
cp of the basic variables to zero. Finally change the weights of the basic
directions and the RHS to wjk(p)/wrk(p) and bpwrk(p).

CASE 2 : New Direction Step Length α∗ = 0

The analysis is similar to the case when the step length α∗ > 0 in all
situations except when xr is basic, the corresponding bk(r) 6= 0 and NP(r)
≥ 2. In this case combine all basic directions in T(r) ( note that T(r) 6= ∅),
with weights bi for i ∈ T (r) as in step (8) and pivot this direction replacing
any direction in T(r), except the basic variable xr. This will make bk(r) = 0
in the updated tableau. Now the variable xr can be eliminated from all
basic directions except k(r) as discussed in the case when α∗ > 0. Even
before pivoting the new direction, it may be possible to remove the variable
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xr which caused the zero step length from all basic directions. This may
help to reduce the number of pivots with zero step length.
To illustrate the computations involved consider the example of the previ-
ous section. In the first three tableaus a basic variable is forced to zero.
But in Table 4 the entering direction with step length 10/83 forced the
nonbasic variable x3 to zero. After the new direction is combined with all
basic directions in P(3) = (1, 2, 3) and pivoting this direction resulted in
Table 5. The elements of the column vector of x3 in Table 5 are a13 = 0,
a23 = 5/7, and a33 = 1 . Also the weights of x3, in the three basic direc-
tions are w3k(1) = 0, w3k(2) = 1/6 and w3k(3) = 3/14. The matrix G and
its inverse G−1 are given by

1 0 0 1 0 0
G = 0 37/35 -15/77 G−1 = 0 55/36 75/392

0 -1/5 1 0 11/56 407/392

Removing the variable x3 from all basic directions changes the c values of
the three basic variables to cy4 = 0, cy2 = 2/15 and cy2 = 2/11. Multiply-
ing the columns of the x-variables of Table 5 with G−1 and then multiplying
the rows of the Table 5 with 0, (-2/15) and (-2/11) and adding them to the
c row results in the optimal tableau below (Table 8).

Table 8. Example 2 -Optimal Tableau.

Basis x1 x2 x3 x4 x5 x6 RHS
y4 0 0 0 6 6 -6 6
y1 25/28 30/28 25/28 -110/28 -130/28 135/28 0
y2 33/28 -22/28 33/28 -22/28 -110/28 55/28 0
c 0 0 -1 -1 0 -1 11

7. Expanded Basis Gradient Simplex Method

In steps (6) of the algorithm a new direction is combined with all basic
directions in P(r) before it can be pivoted into the basis. In step (8),
all basic directions in T(r) are combined into a single direction and it is
pivoted to make room to pivot the new direction with zero step length.
A possible approach to avoid combining the basic directions or combining
with the basic directions is to expand the basis size. As noted earlier, if the
variable xrwhich is forced to zero is a basic variable and NP(r) = 1, then the
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direction can be pivoted replacing xr. Otherwise consider the relationship
ur - xr -

∑
i∈P (r) wrk(i)yi = 0, where yi are the basic directions pivoted

into the basis so far. Clearly ur yields the value of the variable xr and is a
redundant constraint. Adjoin this constraint at the bottom of the tableau
which increases the size of the basis by one. Suppose the current basis is
v ≥ m. Noting the fact that yi = bk(i) -

∑n
j=1 ak(i)jxj and substituting for

yi in the expression for ur yields the coefficient av+1j of xj and is given by
av+1j =

∑
i∈P (r) aijwrk(i) if j 6= r and av+1r =

∑
i∈P (r) airwrk(i) − 1.

Theorem 7 The element of the column vector of the entering direction
corresponding to the new constraint dv+1t = - θr.

Proof: By definition

dv+1t =
n∑

j=1

wjtav+1j =
n∑

j=1

wjt

∑
i∈P (r)

aijwrk(i) − wrt

=
∑

i∈P (r)

wrk(i)

n∑
j=1

ajtwjt − wrt =
∑

i∈P (r)

wrk(i)dit − wrt

= −θr.

This proves the required result.
Since the RHS of the equation for ur is

∑
i∈P (r) biwrk(i) = xr, the variable

ur can be replaced by the new direction with step length α∗. The variable
ur is discarded after pivoting the new direction. The computations involved
are illustrated using the example of section(6). Since the basic variables
x5, x6 and x4 are forced to zero in the first three iterations, the first four
tableaus generated under both the methods are identical. In Table 4 since
a nonbasic variable x3 is forced to zero, the basis size is expanded form 3 to
4 to include the constraint u3 - x3-1/6y1 -3/14y2 + 4/10y3 = 0, where 1/6,
3/14 and -4/10 are the weights of the variable x3 in the basic directions y1,
y2 and y3. Now substituting for the basic directions y1, y2 and y3 which
are given by

y1 = 92/21− 5/7x1 − 9/7x2 − 5/7x3 − 8/21x4 − 5/21x5 − 7/21x6

y2 = 10/23− x1 + x2− x3− 10/3x4 − 1/3x5 + 7/3x6

y3 = 10/3− 10/3x4 − 10/3x5 + 10/3x6

from Table 4, results in u3 +1/3x1 -2/3x3 -5/9x4 -11/9x5 +8/9x6 = 1/9
and the following Table 9.

Pivoting y4 and replacing u3 yields the optimal tableau with c = (0,0,0,-
1,0,-1), y1 = 366/83, y2 = 280/83, y3 = 295/83, and y4= 10/83. It is
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Table 9. Example 3-Tableau-4.

Basis x1 x2 x3 x4 x5 x6 RHS d4

y3 0 0 0 10/3 10/3 -10/3 10/3 -11/6
y1 5/7 9/7 5/7 8/21 5/21 7/21 92/21 -5/21
y2 1 -1 1 10/3 1/3 -7/3 10/3 -1/3
u3 1/3 0 -2/3 -5/9 -11/9 8/9 1/9 83/90
c 1/3 0 -2/3 -14/9 -11/9 -1/9 98/9 83/90

interesting to note that the reduced cost for all variables which are included
in the basic directions are all zero which are different when compared with
the previous methods.

8. Remarks and Conclusions

Imbedding the RGD direction in the frame work of the simplex method
is straight forward since a unique direction is generated from each tableau
and is pivoted replacing one of the basic direction. Incorporating the GD
direction in the simplex method is complicated and differs in three respects.
First the step length of each direction is determined by the nonnegativity
restrictions on the variables. Second, it is possible to generate many direc-
tions with a positive step length from each tableau. These directions must
be combined into a single direction. When a basic variable xr is driven
to zero and NP(r) =1, the single direction is pivoted replacing the basic
variable. Otherwise, the single direction is combined again with all basic
direction in P(r) and pivoted replacing any basic direction in T(r). Third,
when the step length of the first direction is zero, it may be necessary to
combine all basic directions in T(r) ( when T(r) 6= ∅) into a single direction
and pivot it to make room for pivoting the new direction at zero level.
A computationally efficient method is proposed requiring only to multiply
the simplex tableau with a matrix, to eliminate a nonbasic variable at zero
level under fairly general conditions. This will reduce the number of zero
pivots and possibly reduce the number of iterations to determine the opti-
mal solution. In the Expanded Basis Method when a new direction cannot
be pivoted replacing a basic direction, a redundant constraint is added to
make room to pivot the new direction.

In this paper the results are extended to include a general gradient direc-
tion in the frame work of the simplex method. The concept of combining
directions is introduced and is used to develop pivoting rules for entering
directions. One may limit the number of variables selected in both RGD
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and GD directions without significant changes in the proposed methods.
The motivation for limiting the number of variables is that an optimal solu-
tion can always be found with no more that m variables at a positive level.
The feasibility of reducing the basis size in the Expanded Basis Method
and computational experiments for the two methods presented are under
investigation.
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