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Abstract. Estimates of a seasonal index in the standard manner (from a moving av-
erage) introduce systematic error into the seasonal estimates if a trend is present. This
paper shows that a logarithmic modification of the standard moving average procedure
will cause it to be consistent with a trend and is an efficient alternative. This paper
also compares several other efficient seasonal indexing procedures appropriate for rou-
tine business applications and shows some numerical results. The results indicate that
it is possible to achieve an improvement in the precision of the seasonal index, in the
seasonally adjusted data and in forecasts based upon this data, by considering logarith-
mic alternatives to standard seasonal indexing procedures. This improvement may be
accomplished without a substantial increase in complexity or in the associated compu-
tational burden. The opportunities for improvement are shown to be greatest when the
data contain substantial trend and seasonal aspects and when the trend has a percentage
form. Some suggestions for forecasters are offered.
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1. Introduction

Seasonality is frequently an important element in forecasting for basic deci-
sion processes in business regarding production, inventory control, person-
nel, marketing and finance. It is common to deseasonalize the data before
applying forecasting methods and then to reseasonalize the forecasts. Ac-
curacy in a seasonal index can be very important in some applications.
Errors in measuring the seasonal pattern translate into errors in forecasts
and decisions made on the basis of those forecasts. Business forecasting
applications often require highly efficient methods in order to handle very
large numbers of inventory items and frequent updates. For example, a su-
permarket may have over 10,000 items with different product codes. The
differences in methods are particularly important when there is a sub-
stantial trend and a substantial seasonal effect, as is common in business
applications, and when a short data series is used, also common in business
applications. Forecasters in business applications are typically reluctant to

T Requests for reprints should be sent to Peter T. Ittig, Management Science and
Information Systems Department, College of Management, University of Massachusetts,
100 Morrissey Blvd, Boston, MA 02125-3393.



88 P. T. ITTIG

use more than 2 or 3 years of historical data, fearing that demand is chang-
ing too quickly for older data to be relevant. Both a short data series and a
need for highly efficient methods (for large numbers of items) limit the use
of complex procedures, such as seasonal ARIMA models, Census decom-
position and nonlinear programming models. Complex procedures present
additional difficulties when a forecaster is asked to explain the methods
used.

Gardner (1986) noted that “Depending on customer service objectives,
safety stocks are typically set in the range of two to three times the mean
absolute deviation (MAD) of the forecast errors. If we think about the
MAD in dollar terms, for every dollar it is reduced, safety stocks are au-
tomatically reduced by two to three dollars. That is, it takes less safety
stock to maintain the same level of customer service.” Wemmerlov (1989)
commented that “The existence of forecast errors radically affects the be-
havior of the lot-sizing procedures... For example, forecast errors not only
lead to stockouts, they also induce larger inventories.”

In situations in which an accurate seasonal index is required for business
applications there are advantages in considering alternatives to the most
commonly used seasonal index procedures. Currently, if a seasonal index
is needed for business applications, it is ordinarily obtained by sequentially
separating trend and seasonal components of the time series. The most
popular and standard way to do this is by first estimating the seasonal
effect from a ratio of data to a centered moving average (CMA). This pro-
cedure is sometimes referred to as classical decomposition and is also the
basis for the seasonal adjustment procedure of the US Census Bureau, re-
ferred to as Census II and experimental variations (X-11, X-12). For a
discussion of this procedure see, for example, Makridakis et al. (1998, p.
109) or the latest Census Bureau reference manual (1999). An earlier pa-
per (Ittig, 1997) showed that estimates of seasonals from a centered moving
average introduce systematic error into the seasonal estimates if a trend is
present. The standard procedure is only a heuristic and is not consistent
with a trend. An alternate procedure that is sometimes used (for example,
in the Minitab statistics package) is to first estimate a linear trend from
the raw data and then de-trend the data. It is currently not well known
that both of these methods introduce systematic error into the seasonal
estimates if a trend is present and they incorrectly separate trend and sea-
sonal influences, as will be discussed subsequently. The earlier paper (Ittig,
1997) also presented a method based upon a logarithmic regression that is
often superior, has a theoretical justification, and simultaneously separates
trend and seasonal influences while smoothing noise. It was further shown
in that paper that errors in the seasonal index will propagate through to



COMPARISON OF EFFICIENT SEASONAL INDEXES 89

forecasts that are based upon seasonally adjusted data, even if the trend
is correctly estimated. Of course, it is more difficult to accurately project
the trend with bad seasonals.

It is relatively well known that a logarithmic transformation will some-
times aid forecasting. A few forecasters are aware that a seasonal index
may be calculated from logged data (data that has been subjected to a
logarithmic transformation). However, it is not generally known that a
centered moving average applied to logged data allows the calculation of
a seasonal index that is consistent with a trend. The existing forecasting
literature does not describe this important property and as a consequence
this approach is not popular. This property of a centered moving average
of the logged data is presented and explored in this paper. An implemen-
tation procedure is presented that permits a seasonal index to be obtained
in a simple manner that is related to the Ittig (1997) procedure, but a com-
parison of the two procedures displays a compromise between tracking and
smoothing characteristics that is related to familiar issues in other areas of
forecasting.

2. Note on Census Decomposition

A ratio of data to a centered moving average (CMA) is the basis for the
seasonal adjustment procedure originally developed by the US Census Bu-
reau, referred to as Census II and variations. The procedure contains ad-
justments that seek to separate the seasonal effect from the business cycle
as well as the trend. The procedure is computationally intensive and dif-
ficult to understand, but is relatively popular with economists and is used
to produce seasonally adjusted versions of some US Government data se-
ries. As with the standard CMA procedure, seasonals are not produced for
the latest half-year as a consequence of computing centered annual moving
averages. Recent versions of the Census method attempt to fix this defect
by projecting the missing numbers using an ARIMA procedure.

Another disadvantage of the Census procedure is that it has become in-
creasingly complex and more obscure as it has aged. Hylleberg & Pagan
(1997, p. 329) commented that “Unfortunately, the way in which the sep-
aration of factors is accomplished has become increasingly a ‘black box’
and this lack of transparency has raised doubts about the procedure when-
ever odd movements in the series have been encountered.” ARIMA models
share this lack of transparency. Recent versions of the Census method have
also added an option to calculate the seasonals from logged data.
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2.1. Decomposition models

In business forecasting it is common to view the data as a product of sev-
eral components, including a multiplicative seasonal component, as shown
in equation (1). The form shown is that of Makridakis, Wheelwright &
Hyndman (1998, p.106) where the sales or demand data are Y, the sea-
sonal component is S, the trend is T and the noise or random element is
E, all at time period t. The multiplicative seasonal index S is percentage
based and is defined to average 1.0 (or 100%). As noted by Makridakis
and Wheelwright (1989, p.96), “practically all series in the economic and
business domains consist of seasonality and cycle, which are proportional
to the trend, and hence the multiplicative model is appropriate.” In this
paper, a multiplicative decomposition model is used, as in equation (1).
This is also the model assumed in using the standard seasonal index from
a centered moving average, which produces a multiplicative seasonal index.

}/I‘/:St*Tt*Et (1)

If the trend is linear with slope B and Y-intercept A, then T, = A + B *
t, and the data may be represented as shown below. Gardner (1987, p.175)
noted that “A linear trend is the most popular assumption in practice.”

Y, =8, *(A+B*t)*E, 2)

If the trend has a percentage form, rather than a linear form, then it may
be represented by an exponential expression of the form, T; = P (1 +1)?,
where the parameter i is the growth rate and P is a constant. The combined
decomposition model is shown as equation (3). This is the model used to
obtain a seasonal index from a simultaneous decomposition in the Ittig

(1997) paper.

Y; =S (Px(1+4)") x B (3)

An additive decomposition model, as shown in equation (4), is sometimes
used by statisticians, but is not popular in business applications. The Ittig
(1997) procedure has the effect of converting the multiplicative form of (1)
to the additive form of (4) by the use of logarithms.

Y, =5 +T; + E (4)
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3. Intel Example

In order to demonstrate that significant differences may arise from different
methods of seasonal adjustment in a business application, an example is
shown below for the Intel Corporation. Intel (INTC) is a large manufac-
turer of semiconductors. Quarterly revenues for Intel are shown in Table 1
for a four-year period (1996-1999). A seasonal index was generated from the
first three years of data (1996-1998) and this was used to forecast revenues
for each quarter of the fourth year (1999). Seasonals from several methods
are shown in Table 2 for the first three years of data together with the
percentage differences in comparison with the Logarithmic Regression pro-
cedure. The methods used are the Simultaneous (Logarithmic Regression)
method from Ittig (1997), the standard procedure from a Centered Moving
Average (Standard CMA) and a Logarithmic Centered Moving Average
procedure (Log CMA) that will be described subsequently. The formulas
for the Logarithmic Regression procedure are shown in the appendix. Note
that the differences are substantial for some periods, as large as about 2%.
Differences may be even larger in a situation in which there are particularly
small seasonal values for some periods.

The differences in the seasonal index influence forecasts based upon these
seasonals. To demonstrate this, forecasts were calculated for the fourth
year from seasonally adjusted data for the first three years. The fore-
casting method used is a simple extrapolation of the trend from linear
regression, based upon seasonally adjusted data. The forecasts were then
reseasonalized in a conventional manner. Forecasts and forecast accuracy
are shown in Table 3 using the correct revenues for the fourth year. This
is true forecast accuracy. The differences are significant for some periods,
as large as about 2% or about $120 million. The difference in the errors
generally favors the logarithmic procedures. It may be shown that the Log
Regression method also provides the best accuracy of fit to the historical
data set.

Table 1. Revenues for Intel Corp. (millions of US dollars).

1996 1997 1998 1999
Q1 4644 6448 6001 7103
Q2 4621 5960 5927 6746
Q3 5142 6155 6731 7328
Q4 6440 6507 7614 8212

One issue relates to whether the differences in methods are sufficiently
great to be of interest even though the average errors of Standard CMA
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Table 2. Seasonals for Intel for 3 Years of Data (1996-1998) and Differences (%).

Q1 Q2 Q3 Q4 MAPD

Log Regression | 0.988 0.930 0.986 1.096

Standard CMA | 1.010 0.938 0.969 1.082

% difference 2.19% 0.92% | -1.71% | -1.21%| 1.51%
Log CMA 1.008 0.937 0.972 1.083
% difference 1.97% 0.81% | -1.48% | -1.13%| 1.35%

MAPD= Mean Absolute Percentage Difference in comparison with Log Regression method.

procedure are proportionately much larger than those of the logarithmic
procedures. If differences of this scale do not matter to the user, then an
argument might be made for using familiar procedures even though some
accuracy is being discarded. Another issue concerns accuracy for particular
periods, regardless of the average accuracy indicated by MAPE. Accuracy
is particularly important for periods with a seasonal value of less than one,
since an error of .01 in such a value will produce an error of more than
1% in seasonally adjusted sales. This is because the adjustment procedure
involves dividing by the seasonal index. The smaller the true seasonal value,
the greater the magnification of errors in the seasonal value when adjusted
sales are computed. Additional issues concern performance in smoothing
noise and in tracking changing trend/seasonal components. A combination
of these effects may produce significant differences in the seasonal index
from different methods and in the resulting forecasts, as is seen in the Intel
example.

Table 3. Forecasts and Forecast Accuracy for Intel fourth year (1999).

Q1 Q2 Q3 Q4 MAPE | MAD | MSE | Bias
Standard CMA | 7238.0 | 6889.2 | 7291.8 | 8334.6
% error 1.90% | 2.12% | 0.49% | 1.49% | 1.50% | 109.2 | 13765 | 91.1

Log Regression | 7030.6 | 6769.5 | 7350.8 | 8352.6

% error 1.02% | 0.35% | 0.31% | 1.71% | 0.85% 64.8 6523.4 | 28.6
Log CMA 7168.8 | 6824.4 | 7242 8258.3
% error 0.93% | 1.16% | 1.17% | 0.56% | 0.96% 69.1 5005.2 | 26.1

Correct Values | 7103 6746 7328 8212

MAPE= Mean Absolute Percentage Error MAD= Mean Absolute Deviation MSE= Mean Squared Error
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4. A Modified Method From a Centered Moving Average

As described earlier, it is not generally known that a centered moving aver-
age applied to logged data (data that has been subjected to a logarithmic
transformation) allows the calculation of a seasonal index that is consistent
with a trend. The existing forecasting literature is silent on this important
point, which is demonstrated below. It is also not generally known that
estimates of a seasonal index in the standard manner (from a centered mov-
ing average of the raw data) introduce systematic error into the seasonal
estimates if a trend is present. However, that point is discussed in another
paper (Ittig, 1997). The effect of using logged data in a modified CMA
procedure is similar to multiple runs of the simultaneous regression based
procedure for a very small data set, but without the use of regression. This
modification is consistent with a multiplicative seasonal and a multiplica-
tive trend, as in the regression based procedure. The modified procedure
is convenient and is very similar to the standard method. The procedure
permits the calculation of a seasonal index without the use of regression
and the procedure has a sound theoretical basis, while the standard CMA
procedure does not. This procedure will provide better tracking of changes
in seasonal and trend effects than the Logarithmic Regression method, but
weaker smoothing of noise (as will be seen subsequently). This procedure
is referred to subsequently as the Log CMA procedure. The modified pro-
cedure involves the following steps:
i) Calculate centered moving averages for the logarithms of the sales data
rather than for the raw data.
ii) Calculate the difference or deviation between the logarithm data and
the centered moving averages of the logarithms. This step is similar to the
conventional calculation of ratios of data to centered moving averages to
obtain preliminary seasonals.
iii) Smooth the differences for each quarter by averaging these. This step
is similar to the smoothing of preliminary ratios in the standard method.
iv) Exponentiate (raise to the power of e, the Naperian base) the smooth
deviations for each season. This step produces a preliminary seasonal index,
which is proportional to the final seasonal index.
v) Normalize the seasonal index to cause the values to average 1.0 to obtain
the final seasonal index in the same manner as in the standard method.
For quarterly data the seasonals should have a sum of 4.0.

The modified procedure is demonstrated in Table 4 for three years of
quarterly data. Note that, as with the standard method, 3 years of data
produce only 2 sets of seasonal estimates.



94 P. T. ITTIG

Table 4. Calculation of Seasonals from Centered Moving Average of Logarithms (Log CMA method).

Time | Sales | LogSales | Annual | Centered | difference | smooth | preliminary | normalize

MA MA (EXP)
1 180 5.19
2 132 4.88 4.45
3 140 4.94 4.59 4.52 0.42
4 16 2.77 4.72 4.66 -1.89 Seasonals
5 324 5.78 4.84 4.78 1 1 2.72 1.8 Q1
6 220 5.39 4.94 4.89 0.51 0.51 1.66 1.1 Q2
7 220 5.39 5.03 4.98 0.41 0.42 1.52 1 Q3
8 24 3.18 5.11 5.07 -1.89 -1.89 0.15 0.1 Q4
9 468 6.15 5.19 5.15 1 Sum Sum
10 308 5.73 5.26 5.23 0.5 6.04 4
11 300 5.7
12 32 3.47

Entries rounded to 2 decimal places.

4.1. Origin of parameter estimates for log CMA method

This section demonstrates that the Log CMA method is consistent with
a percentage trend and develops the formulas for the seasonal estimates.
Both the Log CMA method and the Log Regression method are based upon
a model of the data that assumes that the trend and seasonal relationships
are both multiplicative or percentage based and may be expressed as shown
below, where Sj is the seasonal index and i is the average rate of growth or
decline in Sales per period. The parameter P is a constant and t is a time
index. If the data consist of quarters, then j runs from 1 to 4.

Sales(t,j) = S; * Px (1+1i)" (5)
The logarithmic form of (5) is given below in equation (6).

log (Sales) = log (P) +t *log(1 + i) + log (S}) (6)

It is easy to show that the first annual moving average, MA; , of the
terms in equation (6) is as below for quarterly data.

MA, = log(P) + 2.5 x log(1 + 1) + (1/4)Xlog(S;) (7)

Thus, an annual moving average centered at time t, CMA(t), may be
expressed as:

CMA(t) = log(P) + t x log(1 + i) + (1/4)Xlog(S;). (8)
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The difference or deviation between the logarithm data (6) and the cen-
tered moving averages for the same time period (8) may be expressed by
subtracting equation (8) from equation (6), as shown below.

deviation(t, j) = log(S;) — (1/4)Xlog(S;). (9)

If the differences or deviations in expression (9) are raised to the power
of e, the Naperian base, the resulting expression is given below (10). This
corresponds to step iv) in the procedure for the Log CMA seasonals.

exp(deviation) = S;/(11S;)%2 (10)

The denominator in equation (10) is the geometric mean of the season-
als. Since the same factor is applied to the denominator of each term,
it is removed when the seasonals are normalized in the last step of the
procedure.

The equations shown are for quarterly data. More generally, if there are
L periods in a year or cycle (e.g., 12 months), then there are L seasonals
in equations (5) and (6), and the fraction in equations (7), (8), (9) and the
power in equation (10) should be 1/L rather than 1/4.

5. Comparisons Without Noise

The performance of a seasonal indexing procedure depends upon several
factors including the scale and shape of the trend, the scale of the seasonal
effect, the level of noise in the data set, the length of the data series and the
stability of the trend and seasonal effects. The interaction of these factors
is complex. In order to explore aspects of the problem, a seasonal index
was calculated from several different methods from constructed test data
sets. The first cases are tests on data with no noise. Note that tests with-
out noise favor CMA based procedures since these procedures provide only
weak smoothing of noise and do not smooth noise at all when only two years
of data are available. Data sets of varying lengths with both large and mod-
erate trend/seasonal components are treated. In all of the tables for this
section the errors reflect only systematic errors in the method of seasonal
adjustment, since no noise is present in the data and the trend/seasonal
pattern is stable. The data for the first case were constructed from a linear
trend that increments by 20 units per period (from a base of 100), and from
a multiplicative seasonal effect that has values of 1.8, 1.1, 1.0, 0.1 for the
four quarters. The correct trend line is: Yt = 80+20%*t. This data set is
taken from the linear test case used in Ittig (1997). This data set contains
large seasonal and trend components and represents a difficult test for a
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seasonal indexing procedure. The resulting seasonals and an error calcu-
lation are shown in Tables 5, 6 and 7 . The errors are reported as Mean
Absolute Percentage Errors (MAPE) measured from the true known sea-
sonals. In addition to the methods used previously, results are also shown
for a de-trend procedure in Table 5. The Standard CMA and de-trend
procedures both attempt to sequentially separate trend and seasonal ef-
fects and introduce systematic error into the estimates of the seasonals.
The systematic error from the Standard CMA procedure was discussed in
Tttig (1997). The systematic error from a de-trend procedure arises from
fitting a regression line to the raw data and thereby incorrectly treating the
seasonal effect as noise. Table 7 shows the errors resulting from extending
the data set from 2 to 6 years in length. Note that the procedures based
upon a centered moving average gradually improve with more data, in the
absence of noise, due to the averaging of subsequent estimates, while the
Logarithmic Regression procedure does not improve. Also, note that the
only reason that there is any error at all for the logarithmic procedures
in this case is that a linear trend is present in the test data rather than
the percentage (multiplicative) trend assumed by the logarithmic methods,
as shown in equation (3). If the trend were percentage based rather than
linear, the logarithmic procedures would track the seasonals perfectly, as
is shown in Table 7. For Table 7 the trend was set to 20% rather than 20
units. Note that with a percentage trend the standard seasonals are not
improved by averaging over more years of data in this case. One advantage
of the Logarithmic Regression procedure is that it allows for standard sta-
tistical tests, as may be seen in the results in the appendix Table Al. The
large trend/seasonal case shows that systematic error alone in the standard
CMA procedure contributes about 2 to 4 percent to average errors in the
seasonals.

Table 5. Seasonals and Seasonals Accuracy for 2 Years of Quarterly Data with a Large
Linear Trend/Seasonal.

Ql | Q2 | Q3 | Q4 | MAPE
De-trend 1.59 | 1.12 | 1.16 | 0.13 | 14.57%
Standard CMA | 1.75 | 1.12 | 1.03 | 0.10 | 2.72%
Log Regression | 1.78 | 1.11 | 1.01 | 0.10 | 0.84%
Log CMA 1.80 | 1.10 | 1.01 | 0.10 | 0.27%
Correct Values | 1.8 | 1.1 |1 0.1 | 0%
MAPE= Mean Absolute Percentage Error
Trend Line Equation from De-Trend Method: Yt = 162.571-1.23810 x* ¢.
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Table 6. Seasonal Accuracy (MAPE) for 2 to 6 years data with Large Linear
Trend/Seasonal and No Noise.

2 years | 3 years | 4 years | 5 years | 6 years
Standard CMA | 2.72 2.27 1.97 1.76 1.66
Log Regression | 0.84 0.89 0.93 0.96 0.98
Log CMA 0.27 0.17 0.13 0.10 0.08

MAPE= Mean Absolute Percentage Error

Table 7. Seasonal Accuracy (MAPE) for 2 to 6 years data with Large Percentage
Trend/Seasonal and No Noise.

2 years | 3 years | 4 years | b years | 6 years
Standard CMA | 4.10 4.10 4.10 4.10 4.10
Log Regression | 0 0 0 0 0
Log CMA 0 0 0 0 0

MAPE= Mean Absolute Percentage Error

The errors are sensitive to the size of the trend and seasonal effects. This
may be seen in the next case (Tables 8-10) where a data set was used with
more moderate seasonal and trend components. The trend was set to 5
units per period (from a base of 100) and the seasonals were changed to
more moderate values of 1.3, 1.0, 0.9, 0.8, as may be found in retailing
applications. The correct trend line is Yt = 95+5*t. Once again, if the
trend was percentage based rather than linear, the logarithmic procedures
would track the seasonals perfectly, as is shown in Table 10. For Table 10
the trend was set to 5% rather than 5 units and the moderate seasonals
were used (1.3, 1.0, 0.9, 0.8). There is still no noise present in the data.
The moderate trend/seasonal case shows that systematic error alone in the
standard CMA procedure contributes about a quarter to a third of one
percent to average errors in the seasonals.

Note that with a large linear trend in Table 6, there is a small, but no-
ticeable, increase in the errors for the Logarithmic Regression method as
more years of data are added, although the table shows that the Logarith-
mic Regression method is still superior to the Standard CMA method for
every time period. In Table 9, with a smaller linear trend, this effect is
not apparent but still present. This effect is due to the cumulative error
associated with the difference between the linear trend in the data and the
assumed percentage trend in the Logarithmic Regression procedure. For
this reason, and because the trend and seasonal effects may change over
time, there may be advantages in applying the Logarithmic Regression pro-
cedure to only a portion of the data at one time. The choice involves a
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tradeoff between smoothing and tracking that has parallels with the choice
of the length of a moving average or the choice of a smoothing parameter
in exponential smoothing. The Log CMA procedure has a similar effect to
multiple runs of the Log Regression procedure for a very small data set.

Table 8. Seasonals and Seasonals Accuracy (MAPE) for 2 Years of Data with Moderate
Trend and Seasonals.

Q1 Q2 Q3 Q4 MAPE
De-trend 1.236 | 0.989 | 0.924 | 0.852 | 3.80%
Standard CMA | 1.297 | 1.004 | 0.902 | 0.797 | 0.32%
Log Regression | 1.299 | 1.001 | 0.901 | 0.800 | 0.09%
Log CMA 1.300 | 1.00 0.900 | 0.800 | 0.01%
Correct Values | 1.3 1 0.9 0.8 0%
Trend Line Equation from De-Trend Method: Yt = 113.9286+ 0.571429* t

Table 9. Seasonal Accuracy (MAPE) for 2 to 6 years data with Moderate Linear
Trend/Seasonal and No Noise.

2 years | 3 years | 4 years | 5 years | 6 years
Standard CMA | 0.32 0.29 0.28 0.26 0.25
Log Regression | 0.09 0.08 0.08 0.08 0.09
Log CMA 0.01 0.01 0.01 0.01 0.01

Table 10. Seasonal Accuracy (MAPE) for 2 to 6 years data with Moderate
Percentage Trend/Seasonal and No Noise.

2 years | 3 years | 4 years | 5 years | 6 years
Standard CMA | 0.36% | 0.36% | 0.36% | 0.36% | 0.36%
Log Regression | 0 0 0 0 0

Log CMA 0 0 0 0 0

6. Tests With Simulated Noisy Data

In order to test the performance of seasonal indexing procedures on noisy
data, simulations were run to generate data with the same trend and sea-
sonal characteristics as shown previously, but with an additional noise fac-
tor. A multiplicative noise factor was introduced (in the manner indicated
by equations 2 and 3) by multiplying each data point by a random number
from a Normal distribution with a mean of 1.0 and a 2% standard deviation
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(0.02). About two-thirds of the errors introduced in this manner should
be less than 2%. Alternately, about half of the errors introduced should
be less than 1.4% and half greater. The MAPE accuracy of the resulting
seasonals is reported below in Table 11 for data with a large linear trend
and seasonal. The data points for Table 11 are the same as those used to
generate Tables 5 and 6, with the addition of noise factors. Each entry in
the table represents an average of 10 simulations. With a large linear trend
the results show that the errors from the standard CMA procedure are
about 1% to 1.5% worse than those for the logarithmic procedures, with
the larger differences for shorter data sets.

Table 12 shows the same information for data with a large percentage
(multiplicative) trend rather than a linear trend. For the results in Table 12,
the trend was changed from 20 units to 20%. In this case, with a large
percentage trend, the errors from the standard CMA procedure are much
worse, about 3% to 3.5% worse than those for the logarithmic procedures,
with the larger differences for longer data sets.

Note that the resulting seasonals from the logarithmic procedures are
consistently better whether the trend is linear or percentage based. Also
note that, in both Tables 11 and 12 the MAPE accuracy for the logarithmic
regression gradually improves. This differs from the earlier demonstration
with no noise (Table 6). In this case the superior smoothing of noise asso-
ciated with regression overcomes a portion of the cumulative errors in the
trend. In Table 11, the CMA Log procedure is seen to be superior to the
Log Regression procedure when more than 2 years of data are used due
to superior tracking of the linear trend. The seasonals from the standard
CMA procedure are much worse when the trend is percentage based, result-
ing in a more dramatic difference in Table 12. Table 12 also demonstrates
the superior smoothing ability of the Log Regression method.

Table 11. Seasonal Accuracy (MAPE) for 2-6 years simulated noisy data
with Large Linear trend/Seasonal and 2% noise.

2 years | 3 years | 4 years | b years | 6 years
Standard CMA | 2.95 2.33 2.05 1.88 1.74
Log Regression | 1.30 1.10 0.98 0.94 0.86

Log CMA 1.40 0.88 0.81 0.78 0.62
Each entry is an average of 10 simulations.
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Table 12. Seasonal Accuracy (MAPE) for 2-6 years simulated noisy data
with Large Percentage trend and 2% noise.

2 years | 3 years | 4 years | 5 years | 6 years
Standard CMA | 4.28 4.16 4.16 4.19 4.14
Log Regression | 1.13 0.82 0.80 0.67 0.56

Log CMA 1.46 0.87 0.83 0.79 0.63
Each entry is an average of 10 simulations.

6.1. Tests with moderate trend and seasonal effects plus noise

The errors in the standard CMA procedure are related to the magnitude
of the trend and seasonal effects as well as the level of noise. Additional
tests were run on data containing moderate trend and seasonal effects in
order to demonstrate the scale of effects to be expected in such an appli-
cation. The linear trend was reduced to 5 units per period (from a base
of 100) and the seasonals were reduced to 1.3, 1.0, 0.9, 0.8, as may be
found in retailing applications. The resulting test data were used previ-
ously. Again, noise was introduced by multiplying each data point by a
random number from a Normal distribution with a mean of 1.0 and a 2%
standard deviation (0.02). Each entry in Table 13 represents an average of
10 simulations. Note that the MAPE accuracy for the logarithmic regres-
sion gradually improves as the data are extended from 2 to 6 years. Once
again, the superior smoothing of noise associated with regression overcomes
a portion of the cumulative errors in the trend. The logarithmic regression
procedure is seen to be superior to the both of the CMA based procedures
for every time period in this case, due to superior smoothing capability,
with a reduction of about one quarter percent in error. The Log CMA
procedure provides only a small advantage over the standard CMA proce-
dure in this circumstance (none at 2 years), though the advantage of the
CMA Log procedure over the standard CMA procedure is seen to grow
as more data points are added. Both of the CMA based methods fail to
diminish noise when only 2 years of data are available. The Log Regression
procedure provides some smoothing of noise if more than 5 quarters are
available (one year plus one period).

Table 14 shows the same information for data with a moderate percentage
trend rather than a linear trend. For the results in Table 14, the trend was
changed from 5 units to 5%. Smoothing of noise in the CMA Log procedure
is comparable to that of the standard CMA procedure and the accuracy
of both methods are seen to improve as more data points are added. The
advantage of the CMA Log procedure over the standard CMA procedure is
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seen to grow as more data points are added beyond 2 years due to superior
tracking of the trend. The logarithmic regression procedure is again seen to
be superior to the both of the CMA based procedures for every time period
due to superior smoothing capability, with a reduction of about one quarter
percent in error.

Table 13. Seasonal Accuracy (MAPE) for 2-6 years simulated noisy data with
Moderate Linear Trend/Seasonal and 2% noise.

2 years | 3 years | 4 years | b years | 6 years
Standard CMA | 1.30 0.93 0.87 0.85 0.77
Log Regression | 1.05 0.81 0.77 0.63 0.53
Log CMA 1.33 0.87 0.80 0.77 0.61

Each entry is an average of 10 simulations.

Table 1/. Seasonal Accuracy (MAPE) for 2-6 years simulated noisy data with
Moderate Percentage Trend and 2% noise.

2 years | 3 years | 4 years | 5 years | 6 years
Standard CMA | 1.32 0.96 0.91 0.91 0.83
Log Regression | 1.07 0.81 0.78 0.64 0.56
Log CMA 1.33 0.87 0.80 0.77 0.61

MAPE= Mean Absolute Percentage Error

Each entry is an average of 10 simulations.

Additional tests were run on data containing no trend and the moderate
seasonal component. The trend was reduced to zero units per period (from
a base of 100) and the moderate seasonals were used (1.3, 1.0, 0.9, 0.8).
Again, noise was introduced by multiplying each data point by a random
number from a Normal distribution with a mean of 1.0 and a 2% standard
deviation (0.02). Each entry in the table represents an average of 10 sim-
ulations. The results are shown in Table 15 for 2 to 6 years of noisy data.
The standard CMA procedure is consistent if there is no trend present in
the data and might be expected to perform well in this test. The logarith-
mic procedures attempt to separate out a trend that does not exist in this
data set. These tests demonstrate the ability of several methods to smooth
noise in this situation.

Note that the simultaneous logarithmic regression procedure offers su-
perior performance to the CMA procedures for every time period due to
superior smoothing of noise. The difference is greatest (about one quarter
percent) with two years of data. The performance of the Log CMA proce-
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dure is comparable to that of the standard CMA procedure in smoothing
noise, and thus offers no significant advantage for a data set with no trend.

With no trend present in the noisy data, the trend term in the logarithmic
regression procedure will generally be found to fail standard significance
tests. In this case, conventional statistical practice would be to remove
the trend term from the regression equation and to rerun the regression to
force a zero trend. If this is done, the resulting seasonal index is improved
a bit, as shown in Table 15 in the row entitled “Log Regression with NO
Trend Term”. The improvement is most noticeable with a very short data
series where some patterns of noise may be misconstrued as indicating a
trend.

Table 15. Seasonal Accuracy (MAPE) for 2-6 years simulated noisy data with no trend and moderate
seasonal.

2 years | 3 years | 4 years | 5 years | 6 years
Standard CMA 1.34 0.87 0.80 0.77 0.69
Log Regression 1.07 0.81 0.78 0.64 0.56
Log Regression with NO Trend Term | 1.00 0.77 0.76 0.64 0.56
Log CMA 1.33 0.87 0.80 0.77 0.61

Each entry is an average of 10 simulations.

7. Conclusions

When a seasonal index is needed for business applications, particularly
when a substantial trend is present in the data, it is possible to achieve bet-
ter results in the precision of the seasonal index, in the seasonally adjusted
data and in forecasts based upon this data, by considering alternatives to
standard seasonal indexing procedures. The standard CMA seasonals rep-
resent a rule of thumb approximation that works best when there is no
trend present and provides only weak smoothing of noise. When a trend is
present and there are more than 2 years of data, the seasonals offered by the
Log CMA method appear to generally provide a convenient and superior
alternative to the standard CMA procedure. The method is no more diffi-
cult to use than the standard method when applied in spreadsheet software
or statistical software. These seasonals also provide a seasonal index with
a sound theoretical justification. A disadvantage of the Log CMA proce-
dure is that the convenience gained by avoiding regression results in the
loss of standard statistical tests and no better smoothing of noise than the
standard CMA procedure. Both CMA methods provide weaker smoothing
of noise than the Log Regression procedure. A further difference is that
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procedures based on a moving average provide no results for the latest
half-year and no smoothing of noise at all unless more than two years of
data are available. Both CMA procedures will track changes in trend and
seasonal effects to some degree. The Log Regression procedure will work
with less data, as little as one year plus one period, and provides efficient
smoothing of noise. The logarithmic procedures provide substantially bet-
ter results when the trend and seasonal components of the data are large
and particularly when the trend has a percentage form.

Ultimately, the choice of a seasonal index depends upon the balancing
of several matters. One issue relates to convenience versus precision. The
standard seasonals from a centered moving average are convenient in that
they are familiar, moderately intuitive and moderately accurate under some
circumstances. However, the standard seasonals are obtained from a heuris-
tic that introduces systematic error into the seasonal estimates when a
trend is present and provides only weak smoothing of noise. The ma-
nipulation of logarithms is slightly less convenient than manipulation of
the raw data. A moving average is probably more convenient than one
or more regression runs. However, the availability of fast regression rou-
tines substantially diminishes the difficulty of using regression in business
applications. For example, the “Trend”, “Linest” and “Logest” functions
in Excel allow for the convenient use of regression in spreadsheet applica-
tions. Additional issues concern performance in the tradeoff between the
smoothing of noise and the tracking of changes in trend or seasonals for
the data being examined. Generally, the Log Regression procedure will
provide better smoothing of noise than sequential procedures but may not
track changes in trend or seasonals as well unless the range is broken into
segments. For a short data series, the Log Regression procedure appears
to provide superior results. The Log CMA procedure represents a compro-
mise between convenience, simultaneous decomposition and smoothing of
noise.
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Appendix
Formulas for Logarithmic Regression Procedure

A simultaneous decomposition method was presented by Ittig (1997). This
seasonal index is based upon a logarithmic regression using seasonal indica-
tors and assumes a percentage (multiplicative) trend. This seasonal index
simultaneously separates trend and seasonal effects while reducing noise
through the use of regression. The method models the trend and seasonal
relationship as below.

Sales = Sj* Px (1 +1)*

Formulas for the seasonals on a quarterly basis are summarized below.

S;=0;P,j=1,2,3,4 (A1)
P = (b + b5+ b5+ by)/4 (A.2)
b = exp(b;) (A.3)

The regression coefficients b;are obtained from the regression model,

lOg (Sales) = b1I1 + b2I2 + ngg + b4I4 + b5t. (A4)

In this model the I; are seasonal indicators (0 or 1), and t is a time
index. The regression model has no constant (i.e. the constant is forced
to be zero). A spreadsheet implementation of this procedure is shown in
Table Al. In the Excel spreadsheet it is possible to calculate the coefficients
b;» directly, without first calculating logarithms, by using the “LOGEST”
spreadsheet function with the constant set to one.
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Table A.1. Calculation of Seasonals from Simultaneous De-
composition by Logarithmic Regression.

105

Sales | Q1 | Q2 | Q3 | Q4 | Time | LogSales
130 1 0 0 0 1 4.87
105 0 1 0 0 2 4.65
99 0 0 1 0 3 4.60
92 0 0 0 1 4 4.52
156 1 0 0 0 5 5.05
125 0 1 0 0 6 4.83
117 0 0 1 0 7 4.76
108 0 0 0 1 8 4.68
182 1 0 0 0 9 5.20
145 0 1 0 0 10 4.98
135 0 0 1 0 11 4.91
124 0 0 0 1 12 4.82
Coeflicients | sum b;’ | sum b;’ /4
b;’ (=14) | P Seasonals
Q1 | 126.77 390.51 97.63 1.3
Q2 | 97.7 1
Q3 | 87.96 0.9
Q4 | 78.08 0.8
T 1.04 0.04042
(1+i) i
R Square 0.998 Standard Error 0.011
Coefficients b Standard Error | t )
Intercept 0
Q1 4.84 0.008 614.22 0
Q2 4.58 0.009 539.03 0
Q3 4.48 0.009 487.89 0
Q4 4.36 0.010 440.26 0
Time 0.04 0.001 41.34 0
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