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Abstract. This paper establishes new methodology for calculating the optimal sam-
ple size when a hypothesis test between two binomial populations is performed. The
problem is addressed from the Bayesian point of view, with prior information expressed
through a Dirichlet distribution. The approach of this paper sets an upper bound for
the posterior risk and then chooses as ‘optimum’ the combined sample size for which the
likelihood of the data does not satisfy this bound. The combined sample size is divided
equally between the two binomials. Numerical examples are discussed for which the two
proportions are equal to either a fixed or to a random value.
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1. Introduction

The size of the sample required to perform an experiment is a topic of
particular interest in statistical theory. The researcher does not wish to
compromise the validity of her/his findings by collecting too small a sam-
ple or unnecessarily consume the available resources on an excessively large
sample. Furthermore, the issue of hypothesis testing between two binomial
populations has a considerable range of practical applications. Such exam-
ples include a comparison of the proportions of male births in two human
populations, testing the unemployment rates between inner city and sub-
urban areas, or comparing the satisfaction levels amongst clients from two
branches of a bank.
In the first case, the population proportions of male births may be tested
against a fixed value p, usually obtained through a mathematical model
under study. In the unemployment example, it would be reasonable to
assume that the researcher is mostly interested in verifying that a certain
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nationwide target level for unemployment is met rather than estimating any
differences. These are essentially goodness-of-fit tests. In the last example,
the satisfaction proportions of the bank’s different branches are compared
to the satisfaction rate of its headquarters, itself a random variable. In all
of the above cases it is not unreasonable to expect that the prior knowledge
for the population proportions depend on each other. The classical theory,
through the use of the normal approximation to the binomial, utilizes the
power function as the sole source of inference to derive the unknown sample
size n.
In Bayesian methodology, posterior accuracy is employed to express ex-
perimental precision. DasGupta and Vidakovic in [4] quantify this ap-
proach in the context of one way ANOVA. In hypothesis testing a decision
αi is correct if θ ∈ Θi, which corresponds to Hi (i = 0, 1). Under the

“0 − 1” loss function: L(θ, αi) = {
0, θ ∈ Θi
1, θ ∈ Θj

, (i 6= j), the posterior risk is

given by min{P (H0|y), P (H1|y)} where y = (y1, . . . , yn) denotes the data
vector. It must not exceed a pre-specified bound, that is,

min{P (H0|y), P (H1|y)} ≤ ε (1)

Furthermore, we must account for the fact that this is a pre-experimental
procedure, hence the data are unknown beforehand. Thus if there are data
y that do not satisfy (1), it must so happen with a small likelihood, that
is,

P (y ∈ T c) < δ (2)

where K = T c is the set of all data not satisfying (1), δ is a constant and
the probability in (2) is calculated based on the marginal distribution of
the data.
In the area of one binomial population, Adcock in [1], [2] and [3] sug-
gested a tolerance region, which includes the parameters of a multinomial
distribution with certain likelihood. Pham-Gia and Turkkan in [6] derived
sample sizes for a binomial proportion by setting precision bounds on the
posterior variance and Bayes risk while Joseph et al. in [5] and Rahme
and Joseph in [7] fixed either the length or the probability of coverage for
intervals to obtain the required sample sizes.
In this paper, we obtain the optimal sample size to compare two binomial
populations when a priori the proportions are dependent through a Dirich-
let distribution. The structure is as follows. In Section 2, we consider two
cases: The first one is a test of hypothesis H0 : p1 = p2 = p, where p is a
specified constant, the other a test H0 : p1 = p2. Based on (1) and (2) the
optimal sample size is derived. In Section 3, the results for specific cases
are presented.
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2. Hypothesis Testing

Let Yi, i = 1, 2 be binomial random variables with parameters ni, pi. Our
goal is to compute the optimal sample size n = n1+n2, for conducting the
test H0 : p1 = p2 = p vs H1 : p1 6= p2. We shall consider the case where
p is a fixed constant and also the case where p is not specified but follows
a Beta distribution. Each binomial distribution will have an equal number
of observations, that is, ni =

n
2 . If ni is not an integer, we can substitute it

with [ni], which is the highest integer less than ni. The prior probabilities
of H0 and H1 are π0 and π1 respectively. The prior information on the
proportions is summarized by a Dirichlet distribution with parameters λi ≥
0, i = 1, 2, 3, that is,

h(p1, p2) =
Γ(
∑3

i=1 λi)

Π3i=1Γ(λi)
pλ1−11 pλ2−12 (1− p1 − p2)

λ3−1

The formulation of the Dirichlet prior relies on p1 + p2 being no greater
than 1. If this is not the case, we could always reparametrise in terms of
1−p1 and 1−p2. As expressed by (1) and (2), the posterior risk is bounded
from above accounting for the fact that the data are unknown.

2.1. Case 1: p is fixed constant

2.1.1. Theoretical results

We shall first examine the case where the proportion p is constant. Under
the null hypothesis the posterior density of p1 and p2 is given by:

g(p1, p2|y) =

∏2
i=1

(

ni

yi

)

py1+y2qn−y1−y2π0

m(y)

Similarly, under the alternative hypothesis, the joint posterior density of
p1 and p2 is given by:

g(p1, p2|y) =
(
∏2

i=1

(

ni

yi

)

pyi

i q
ni−yi

i )
Γ(

∑3
i=1 λi)

Π3
i=1Γ(λi)

pλ1−11 pλ2−12 (1− p1 − p2)
λ3−1π1

m(y)

where qi = 1− pi, q = 1− p and

m(y) =
2
∏

i=1

(

ni
yi

)

py1+y2qn−y1−y2π0 +
2
∏

i=1

∫ 1

0

(

ni
yi

)

pyi

i q
ni−yi

i

Γ(
∑3

i=1 λi)

Π3i=1Γ(λi)
pλ1−11 pλ2−12 (1− p1 − p2)

λ3−1π1dpi
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where the Bayes factor B is given by:

py1+y2qn−y1−y2
∏3

i=1 Γ(λi)

Γ(
∑3

i=1 λi)
∫ 1

0

∫ 1

0

∏2
i=1 p

yi+λi−1
i (1− pi)ni−yi(1− p1 − p2)λ3−1dp1dp2

(3)

To find the set K = T c where (1) is not satisfied, we note that

P (H0|y) =
(π0/π1)B

1 + (π0/π1)B

Hence

min{P (H0|y), P (H1|y)} = P (H0|y)I(B ≤
π1
π0
) + P (H1|y)I(B ≥

π1
π0
)

where I(·) is the indicator function that takes the value 1 if the condition
inside the parenthesis is satisfied, 0 otherwise. So the set K is given by:

K = {y :
ε

1− ε

π1
π0

< B <
1− ε

ε

π1
π0
} (4)

It is important that the probability of this set calculated with respect to
the marginal distribution of the data converge to zero as the sample size
increases to infinity.

Theorem 1 The probability of the set K with respect to the marginal dis-

tribution of the data approaches zero as n approaches infinity: P (K)→ 0,
as n→∞.

Proof: This is immediate if we prove that the Bayes factor B converges
either to 0 or to ∞. The proof of the latter is presented in the Appendix.

2.1.2. Sample size calculations

To derive the exact sample size we set P (K) = δ, or in a more explicit
form:

P{
ε

1− ε

π1
π0

< B <
1− ε

ε

π1
π0
} = δ (5)

Assuming that λ3 − 1 is a positive integer (if not, it can be replaced by
[λ3 − 1]), Newton’s binomial formula yields:

(1− p1 − p2)
λ3−1 =

λ3−1
∑

k=0

(

λ3 − 1

k

)

(1− p1)
kpλ3−k−12 (−1)λ3−k−1 (6)



BAYESIAN SAMPLE SIZE 37

Based on (6), the double integral in the denominator of (3), is expressed in
the following way:

F (y1, y2) =

λ3−1
∑

k=0

(

λ3 − 1

k

)

(−1)λ3−k−1
∫ 1

0

py1+λ1−11 (1− p1)
n1+k−y2dp1

∫ 1

0

py2+λ2+λ3−k−22 (1− p2)
n2−y2dp2

= Γ(y1 + λ1)Γ(n2 − y2 + 1)

λ3−1
∑

k=0

(

λ3 − 1

k

)

(−1)λ3−k−1

Γ(n1 + k − y1 + 1)Γ(n2 − y2 + 1)

Γ(λ1 + n1 + k + 1)Γλ2 + λ3 + n2 − k
(7)

Combining (3), (5) and (7), the optimal sample size is derived by solving
the following equation for n.

P (K) = P [W1 <
py1+y2

qy1+y2F (y1, y2)
< W2] = δ

where W1 =
ε
1−ε

π1
π0

Γ(
∑3

i=1 λi)

qn
∏

3
i=1 Γ(λi)

and W2 =
1−ε
ε

π1
π0

Γ(
∑3

i=1 λi)

qn
∏

3
i=1 Γ(λi)

Alternatively, by multiplying with the necessary constants, the double
integral in (3) could have been expressed as E[

∏2
i=1(1 − pi)

ni−yi ], the
expected value of (1− p1)

n1−y1(1− p2)
n2−y2 with respect to the Dirichlet

distribution with parameters y1 + λ1, y2 + λ2, λ3. In the latter case, the
equation yielding the sample size would have been the following:

P (K) = P [W1 <
py1+y2Γ(y1 + y2 + λ1 + λ2 + λ3)

qy1+y2
∏2

i=1 Γ(yi + λi)E[
∏2

i=1(1− pi)ni−yi ]
< W2] = δ

2.2. Case 2: p is a random variable

We shall turn our attention to the hypothesis testing of H0 : p1 = p2 = p
where there is no special interest in the value p. Therefore a priori we
have that p ∼ Beta(α, β) and the prior information on the proportions pi’s
is still described through a Dirichlet distribution with parameters λi ≥ 0,

i = 1, 2, 3. Similarly, the posterior odds are given by P (H0|y)
P (H1|y)

= B π0
π1
where

the Bayes factor B is given by:

B =

Γ(α+β)
Γ(α)Γ(β)

Γ(y1+y2+α)
Γ(α+β+n) Γ(n+ β − y1 − y2)

∏3
i=1 Γ(λi)

Γ(
∑3

i=1 λi)
∫ 1

0

∫ 1

0

∏2
i=1 p

yi+λi−1
i (1− pi)ni−yi(1− p1 − p2)λ3−1dp1dp2
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Using the same methodology as in the previous case we obtain the set
K = {y : ε

1−ε
π1
π0

< B < 1−ε
ε

π1
π0
}. Again, since as n → ∞, B converges

to either 0 or ∞, we establish that the marginal probability of this set
converges to zero as the sample size increases. Like before, the optimal
sample size is derived by solving the following equation for n.

P (K) = P [
ε

1− ε

π1
π0
C <

Γ(y1 + y2 + α)Γ(n+ β − y1 − y2)

F (y1, y2)
<
1− ε

ε

π1
π0
C]

where C =
Γ(α)Γ(β)Γ(α+β+n)Γ(

∑3
i=1)(λi)

Γ(α+β)
∏

3
i=1 Γ(λi)

.

3. Numerical Results

In this section we present the results of the previously developed method-
ology, using specific examples. For a given value of n, points of the random
variables y1 and y2 are generated and the probability P (K) is obtained.
The algorithm is based on the calculation of the double integral presented
in Section 2.1.2. The optimal sample size is derived when the condition
P (K) = δ is satisfied. The program is written in SAS and is available
upon request.
Numerical investigation has shown that for given values of the parame-
ters, a proper value of n exists in all the cases that have been examined.
However, for specific values of δ, n can be very small which is of no practical
significance to the researcher.
Table 1 summarizes the results for the case when p is a specified constant.
The parameters p and λi are given in the table. We have set π0 = 0.5,
ε = 0.1 and δ = 0.3. The value of δ represents a measure of the likelihood
of the data. As δ increases, the researcher is less strict about the existence
of “undesirable data” (that is, data not satisfying (1)) and therefore the
optimal sample size is expected to decrease.
One important factor affecting the sample size is the distance between the
prior mean values and the fixed value p. Generally, for a fixed value of the
precision constant δ, a larger sample size is needed to detect any differences
when the average prior proportions are closer to the specified constant p,
than when they are further apart. The following cases illustrate the above
argument. When p is equal to 0.2, the average prior values are equal to
0.2 for both binomial populations and the covariance between the two prior
proportions takes the value -0.0019, the optimal sample size needed to reach
the specified precision is 90. On the other hand, if p is equal to 0.1, 0.4, 0.5
or 0.6 and the average prior values and the covariance remain the same, the
required sample size reduces to 76, 40, 18 or 12 respectively. This specific
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Table 1. Sample sizes for the case where p is fixed. (ε = 0.10,
δ = 0.30).

p E(p1) E(p2) Cov(p1, p2) λ1 λ2 λ3 n

0.1 0.2 0.2 -0.0019 4 4 12 76
0.2 0.2 0.2 -0.0019 4 4 12 90
0.2 0.2 0.2 -0.0036 2 2 6 50
0.2 0.2 0.2 -0.0067 1 1 3 36
0.2 0.2 0.3 -0.0054 2 3 5 50
0.2 0.2 0.1 -0.00095 4 2 14 60
0.2 0.3 0.3 -0.0082 3 3 4 44
0.2 0.2 0.5 -0.0047 4 10 6 20
0.5 0.2 0.2 -0.0036 2 2 6 16
0.5 0.2 0.2 -0.0019 4 4 12 18
0.5 0.2 0.2 -0.0067 1 1 3 12
0.5 0.4 0.4 -0.0076 8 8 4 52
0.5 0.4 0.4 -0.0145 4 4 2 36
0.5 0.4 0.4 -0.027 2 2 1 22
0.8 0.4 0.4 -0.0145 8 8 4 10
0.6 0.2 0.2 -0.0019 4 4 12 12
0.6 0.4 0.4 -0.0145 4 4 2 24
0.6 0.4 0.4 -0.0076 8 8 4 28
0.6 0.4 0.4 -0.027 2 2 1 18
0.4 0.2 0.2 -0.0019 4 4 12 40
0.4 0.4 0.4 -0.0145 4 4 2 36
0.4 0.4 0.4 -0.0076 8 8 4 56
0.4 0.4 0.4 -0.027 2 2 1 24

trend is depicted in Figure 1 where the common expected value of p1 and
p2 is defined as p

?.
The same pattern holds for different values of E(p1) and E(p2). The
smaller this distance is, the larger is the sample size required to distinguish
any significant difference. Compare, for example, the cases when E(p1) =
0.2, E(p2) = 0.3 and E(p1) = 0.2, E(p2) = 0.5. The value of p remains
unchanged at 0.2 and the covariance is approximately the same. In the
former case, the required sample size is 50, whereas in the latter situation
a considerably smaller sample, (n = 20), is needed .
Yet another factor that determines the sample size is the covariance be-
tween the prior proportions. A strong negative value indicates that a priori
the proportions are negatively correlated. Therefore, when one of them
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a priori assumes a large(small) value, the other proportion will have a
small(large) prior value. Hence, a small sample is required to establish H1.
This is highlighted in the case of p = 0.5, E(p1) = E(p2) = 0.4. Three
different sets of prior parameters yield the following values for the covari-
ance: -0.0076, -0.0145 and -0.027. The respective sample sizes are 52, 36
and 22. This comes to no surprise since the increasing negative correla-
tion between the two prior proportions enables the researcher to use an
exceedingly smaller sample to detect any differences.
Table 2 provides the optimal sample sizes for the cases when the null
hypothesis is of the form: H0 : p1 = p2. The common value p is a non-
informative Beta prior distribution with parameters α = β = 1. In most
cases, the sample sizes tend to be higher than in the previous case of a
specified constant. This is evident in the case of E(p1) = E(p2) = 0.2
where, for the same sets of the prior parameters, the resulting sample sizes
(40, 52 and 30) are consistently higher than in the case of p = 0.5 (16, 18
and 12 respectively). This should be expected since the prior specifications
on p exhibit a higher degree of uncertainty thus requiring larger sample
sizes.

Table 2. Sample sizes for the case where p is random. (ε = 0.10, δ = 0.30).

E(p) V ar(p) E(p1) E(p2) Cov(p1, p2) λ1 λ2 λ3 n

0.5 0.008 0.2 0.2 -0.0036 2 2 6 40
0.5 0.008 0.2 0.2 -0.0019 4 4 12 52
0.5 0.008 0.2 0.2 -0.0067 1 1 3 30
0.5 0.008 0.4 0.2 -0.0145 4 4 2 32
0.5 0.008 0.4 0.2 -0.0076 8 8 4 46
0.5 0.008 0.4 0.2 -0.027 2 2 1 24
0.5 0.008 0.1 0.2 -0.00047 2 2 16 54
0.5 0.008 0.3 0.2 -0.0082 3 3 4 38
0.5 0.008 0.2 0.3 -0.0054 2 3 5 40
0.5 0.008 0.2 0.5 -0.009 2 5 3 18

The covariance of the prior proportions largely determines the optimal
sample size. The stronger the two proportions are negatively correlated,
the smaller the sample needed to detect a difference. The distance between
the average proportions and p, as well as the distance between the average
proportions, do not seem to be important factors in this case.
In summary, this methodology constitutes a Bayesian way of establishing
the solution to the problem of sample size determination for hypothesis
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Figure 1. Optimal Sample size n versus the distance between various fixed p values and
p∗ (ε = 0.10, δ = 0.30, Cov(p1, p2) = −0.0019).

testing among two binomial proportions with dependent prior parameters.
It can be applied when the comparison is against a fixed value (essentially
a goodness-of-fit situation) or simply between two populations. The basic
factors determining the sample size include the prior covariance and, in the
case of a fixed p, the distance between the prior mean values and p.
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Appendix

Proof of the fact that B converges either to 0 or to ∞

It suffices to show that in general the posterior odds converge either to 0
or to ∞. We shall use a result by Schwarz in [8] adapted to our case. If
n→∞, then

lnP (H0|y) = −n lnλ0 + C0 ln lnn+O(1)

where λ0 =
maxΩ f(y|θ)
maxΘ0 f(y|θ)

and C0 is a constant in terms of n and depends on

the dimensions of Ω and Θ0. Similarly for P (H1|y) we obtain the following:

lnP (H1|y) = −n lnλ1 + C1 ln lnn+O(1)

Hence, the difference of the above logarithmic expressions is the natural
logarithm of the posterior odds, that is,

ln
P (H0|y)

P (H1|y)
= n ln

maxΘ0 f(y|θ)

maxΘ1 f(y|θ)
+ (C0 − C1) ln lnn+O(1) (A.1)

The limit of (A.1) is dictated by the limit of n ln
maxΘ0 f(y|θ)

maxΘ1 f(y|θ)
. If ln

maxΘ0 f(y|θ)

maxΘ1 f(y|θ)
>

0 (meaning that maxΘ0 f(y|θ) > maxΘ1 f(y|θ)), then ln
P (H0|y)
P (H1|y)

→ ∞

which shows that the posterior odds (and hence B as well) converge to ∞.

Similarly if ln
maxΘ0 f(y|θ)

maxΘ1 f(y|θ)
< 0 (meaning that maxΘ0 f(y|θ) < maxΘ1 f(y|θ)),

then ln P (H0|y)
P (H1|y)

→ −∞. In this case the posterior odds and subsequently

the Bayes factor converge to 0.
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