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Abstract. This paper develops methodology for predicting faecal coliform values in
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1. Introduction

The Seemingly Unrelated Regression (SUR) model is well-known in the
econometric literature (Zellner [19], Srivastava and Giles [17], Greene [4]),
but is less known else where. Its benefits have been explored by several
authors (Zellner [20], Kmenta and Gilbert [6], Revankar [13] & [14], Mehta
and Swamy [10], Dwivedi and Srivastava [3], Maeshiro [9], Blatten and
George [1], Kurata and Kariya [7]). More recently the SUR model is be-
ing applied in agricultural economics (O’Donnell, Shumway and Ball [11],
Wilde, McNamara, and Ranney [18]), aquaculture economics (Samonte-
Tan and Davis [15]), and forestry for modelling tree growth (Hasenauer,
Monserud and Gregoire [5]). Its application in the natural sciences is likely
to increase once scientists in these disciplines are exposed to its potential.
Liu and Wang [8] demonstrated to natural scientists the superiority of SUR
model over the unrelated model that uses ordinary least squares to estimate
parameters.

This paper illustrates how the SUR model could be used to fit spatio-
temporal data in an environmental setting. It starts by introducing the
SUR model and presents some of its properties when covariances are known.

† Requests for reprints should be sent to Ross Sparks, CSIRO Mathematical and In-
formation Sciences, Locked Bag 17, North Ryde, NSW 1670, Australia.



16 R. SPARKS

It then examines how regression parameters will be estimated if covariances
are unknown. A simulation study is used to compare SUR model with
unrelated regression models.

Missing data is fairly common in the applications cited in this paper.
Thus the paper indicates how the EM algorithm (Dempster, Laird, and
Rubin [2]) can be used to give Maximum Likelihood Estimates of regression
and dispersion parameters. A simulated examples illustrate the advantage
of using all the data to estimate parameters when some of the responses
are missing.

The applications considered also have left-censored values. This paper
illustrates how the EM algorithm is used to overcome this incomplete data
problem. A simulation study demonstrates the methodology. Followed by
a detailed consideration of an example of application.

2. Introduction to the SUR Model

Assume that you have p response variables each with n observations de-
noted by vectors y1, y2, ···, yp with associated explanatory variables X1, X2, ··
·, Xp, respectively. One way of fitting these models is to treat them as un-
related multiple regression models of the form of

yj = Xjβj + ej (1)

where βj is a vector of unknown regression parameters and ej is a vector
of random errors with each element having variance σ2

j , for j = 1, 2, · · ·, p.
Let

X =




X1 0 . . 0
0 X2 . . 0
. . . .
. . . .
0 0 . . Xp




, y =




y1

y2

.

.
yp




, β =




β1

β2

.

.
βp




, e =




e1

e2

.

.
ep




(2)

E(eie
′

j) = σijI where σij 6= 0, E(ee′) = Σ = I⊗∆ , where ∆ = {σij} is the
covariance matrix capturing the variances and covariances of the random
error terms of (1), then the SUR form of this model is

y = Xβ + e (3)

When ∆ is known, then SUR formulation of the regression models pro-
duces more efficient regression parameter estimates using generalized least
squares estimates given by
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β̂ = (X
′

Σ−1X)−1X
′

Σ−1y, (4)

than the ordinary least squares estimates in the unrelated form of the model
given by

β̂j = (X
′

jXj)
−1X

′

jyj (5)

for each j = 1, 2, ..., p. However the efficiency of the estimators in appli-
cations is not that simple.

2.1. Efficiency of SUR model for estimating regression

coefficients

Note that if either σij = 0 for all j 6= i or Xi = Xj for all j 6= i, then the
two model formulations produce identical estimates, that is, equation (4)
will be identical to (5). The efficiency in the SUR formulation increases, the
more the correlations between error vector differ from zero and the closer
the explanatory variables for each response are to being uncorrelated (e.g.,
see Mehta and Swamy [10]). Sparks [16] discussed how to select variables
and parameter estimators for the SUR model. The standard errors for
the set of the regression parameter estimates in the SUR formulation is

given by the diagonal elements of
(
X

′

Σ−1X
)−1

while for the unrelated

formulation it is the appropriate diagonal elements of (X
′

jXj)
−1 for j =

1, 2, . . . , p. These can be used to gain an idea of the relative merits of
the SUR model formulation for estimating the regression parameters of
the model. Generally when σij 6= 0 and the covariances are known, it

can be shown that the diagonal elements of (X
′

jXj)
−1are larger than the

corresponding diagonal elements of
(
X

′

Σ−1X
)−1

for each j, and the mean

square error of prediction using the generalized least squares estimate is
smaller. This is not generally true when the covariances are unknown. The
relative benefit of SUR model when covariances are unknown depends on
the sample size n (Zellner, [20], Kmenta and Gilbert [6], Revankar [13] &
[14], Mehta and Swamy [10], Dwivedi and Srivastava [3], Maeshiro [9]).
When fitting regression models with small sample sizes, its unlikely that
the seemingly unrelated regression formulation and related generalized least
squares estimates are going to add much value. However, the larger the
sample size, the more reliable is the estimate of ∆, and hence the more likely
an advantage is gained from the seemingly unrelated regression formulation
of the model.
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3. The Application

In this paper, the response variables are the natural logarithm of one plus
the faecal coliform measurement taken at various sites in Port Jackson
(Sydney). Faecal coliform measurements are a good indicator of the level
of bacteria in the waterways, and therefore they flag risks associated with
recreational activities, like swimming and boating. The collection of fae-
cal coliform measurements is expensive, however moderate to heavy local
rainfall induce many sewerage overflows into the waterways. Therefore
an important explanatory variable of faecal coliform levels in the water-
ways is the aggregation of previous rainfall values. Aggregation was taken
over non-overlapping twelve hour periods (running from 6am to 6pm, and
6pm to 6am). Typically measuring rainfall is considerably cheaper than
measuring faecal coliforms. Using a modelling approach we can establish
predictions of faecal coliform levels from daily rainfall values, and therefore
averting the need to measure faecal coliforms on a daily basis.

Each sample site in Port Jackson differed in distance from the rainfall
gauge site. Therefore, forward selection with a backward look (stepwise
regression) was used to select the set of rainfall explanatory variables that
were best for predicting each site response.

These subset models were included in the seeming unrelated regression
formulation. The rainfall data takes away some of the spatial relationship
between site response values, however the error term in the models are still
going to have some spatial information relating to tidal influences, local
rainfall missed by the network of gauges, and flow-down effects in Port
Jackson. These spatial relationships determine the value of using the SUR
formulation of the model.

The faecal coliform data from sample sites have two incomplete data
problems:

• Missing data: Not every site was sampled on each day the data were
recorded. There were days when a subset of the sites was sampled.

• Censored data: The measurement methodology could not measure
faecal coliform values below 4 CFU (colony forming units).

Therefore, in this paper methodology is developed to deal with these issues.
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3.1. Application of the EM algorithm to deal with missing data

and left-censored observations

3.1.1. Dealing with missing data

Missing data occurs when no feacal coliform measurement is collected for
least for one of the sites on a sample day.

The EM-algorithm of Dempster, Rubin and Laird [2] is applied to es-
tablish maximum likelihood estimates for the regression coefficients and
dispersion parameters of the SUR model. The E-step of this algorithm is
defined for the various cases below.

Denote yij as the ith day’s logarithm of faecal coliform measurement plus
one collected at the jth location in the waterway (xij is defined similarly

for rainfall readings). Note that yij ∼ N(x
′

ijβj , σ
2
j ) is assumed.

Case 1: Only one site has missing data. Assume that this jth
observed response is missing for day i. The expected value of this missing
value, given all other measured values is

E(yij |yik for all k 6= j) = x
′

ijβj +σ
′

(−j)Σ
−1
(−j)(yi(−j)−Z

′

i(−j)β(−j)) = µ̂ij.(−j)

(6)
where

• σ
′

(−j) is the j th row of Σ with the jth element removed,

• Σ(−j) is the matrix Σ with the jth row and jth column removed,

• yi(−j) is the vector of all faecal coliform observations collected on day
i with the jth response removed, and

• β(−j) is the vector β with the regression coefficients relating to selected
explanatory variables of the jth response/site removed, i.e., βj removed.

• x
′

ij be the ith row of Xj and

• Zi =


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in which 0j is a vector of zeros of the same

length as vector xij , then Z
′

i(−j) is Zi with the jth row removed.
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Case 2: More than one site has missing data. Let C be the set of
number sites that have faecal coliform measurements taken on day i. Then
the expected value of the missing jth response value, given all observed
response values during data collection day i is

E(yij |yik for all k ∈ C) = x
′

ijβj + σ
′

jCΣ−1
CC(yiC − Z

′

iCβC) = µ̂ij.C (7)

where

• ΣCC is the sub-matrix of Σ that corresponds to all responses in C,

• σ
′

jC are the covariances between jth response and all responses in C as
a row vector,

• yiC is the vector of all faecal coliform observations collected on day i
with response number in C,

• βC is the vector β with the regression coefficients relating to selected
explanatory variables of all response/site variables with numbers not in
C removed, and

• Z
′

iC is a matrix with rows consisting of all rows Zi that correspond to
variable numbers in C.

The expected value of the product of two missing responses on

the same day. Denote σjk.C = σjk−σ
′

jCΣ−1
CCσkC . If any pair of response

variables are missing on day i, then the expected value of their product is

E(yijyik|yim for all m ∈ C) = σjk.C + µ̂ij.C µ̂ik.C (8)

Therefore, when applying the SUR model we need to consider whether
to apply the SUR model to:

• all sites with only completed data (discarding observations with any
site having missing data), or

• all the data using the EM algorithm (Dempster et al [2]) to deal with
missing data.

We found using simulation techniques that the latter approach was signif-
icantly better in terms of minimizing the mean square error of prediction.
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3.1.2. Dealing with left-censored data values.

The measurement process of the faecal coliform values can not report values
of 4 colony forming units (CFU) or below, e.g., any “true” zero counts for
CFU are reported as below 4 CFU. We therefore do not have complete
information for all measurements. Also, the variation in measured values
such as:

• sampling variation;

• variation caused by differences in handling (outside the laboratory);
and

• variation caused by errors within measurement laboratories,

can be as much as 40% on average at some sites under certain conditions.
Therefore, we can not be certain that a near zero measurement is a true
reflection of the faecal coliform level at a site.

Four methods of dealing with the censored values and missing values are
considered. These are as follows:
Method 1: Simple approach to handling censored data. Here we patch
censored data with the quantiles of the estimated distribution below the
censored value. To achieve this, the distribution is assumed to be normal
(log-normal) and the parameters are estimated from the data as outlined
below.

Let ȳj be the mean of all uncensored y values from the jth site that are
not missing, and mj be the number of missing values in T days sampled.
The estimated population mean (Persson and Rootzen [12]) is:

µ̂j = ȳj − ασ̂RML(j) (9)

and

σ̂2
yj

= Σ
T−mj

i=1 (y∗
ij − ȳj)

2/(T − mj) − (αλ(T−mj)/T − α2)σ̂2
RML(j) (10)

where:

• y∗
ij is the ith observed value of the jth response,

• α = T√
2Πe−λ2

(T−mj)/T /(T − mj) ,

• λa/b is the upper a
b th quantile of the standard normal distribution, and
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•
σ̂2

RML(j) =
1

2
{λ(T−mj)/T ν̄j +

√
[(λ(T−mj)/T ν̄j)2 + 4τ2

j } (11)

in which ν̄j = Σ
T−mj

i=1 (y∗
ij − log(5))/(T − mj) and τ2

j = Σ
T−mj

i=1 (y∗
ij −

log(5))2/(T − mj).

For our example we know that faecal coliforms are positively associated
with local rainfall. Therefore for the jth site, the censored days are ranked
according to total rainfall in the region and they are patched with the re-
spective quantile value of a normal distribution with mean µ̂j and variance
σ̂2

j . This is repeated for each response j. These patched censored values are
treated as if they were known, and the parameters of the model (excluding
missing observation) are estimated for each site individually using (5).
Method 2: Simple approach to handling censored data and missing data.
We carry out all steps in Method 1. That is, we patch censored data with
the quantiles of the estimated distribution below the censored value. Then
the patched censored values and ordinary least squares are used to estimate
regression parameter for each site, independently. These estimated models
are used to estimate missing data for each site, and then the SUR model
is used to improve the estimate of the regression model (i.e., using (4)).
Method 3: EM algorithm used to handle both censored data and missing
data. It seems convenient to use the same methodology for dealing with
both sets of incomplete information. Therefore, the EM algorithm is used
to “patch” left-censored value as well as the missing data via an expectation
step, and then these “patched” values are used to establish maximum like-
lihood estimates of the parameters. These two steps are applied iteratively
until estimates converge.

We build in the information recorded for left-censored values by finding
the conditional expectation of responses given censored values are less than
the low detect values. However, there is information available from neigh-
boring sites and local rainfall records, and this can also help with patching
“censored” values.
Case 1: All other response values for the ith day are either uncensored or
not missing. Put σjj.(−j) = σjj − σ

′

(−j)Σ
−1
(−j)σ(−j), Z(−j), and let y denote

the log faecal coliform measurement plus 1. Censored value yij is replaced
by (see Appendix A)

E(yij |yik for all k 6= j & yij < log(5)) = µ̂ij.(−j)−σjj.(−j)φ(z1)/Φ(z1) (12)

where:
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z1 = [log(5) − µ̂ij.(−j)]/
√

σjj.(−j) (13)

Case 2: All other response values for i th day are uncensored but some
sites on the day have missing values. Censored value yij is replaced by (see
Appendix A)

E(yij |yik for all k 6= j & yij < log(5)) = µ̂ij.C − σjj.Cφ(z2)/Φ(z2) (14)

where:

z2 = [log(5) − µ̂ij.C ]/
√

σjj.C (15)

Case 3: Some other response values for ith day are censored and other
sites on the day have missing values (see Appendix B). Let S be all sites
with censored values on day i. Censored value yij is replaced by (see
Appendix B)

E(yij |yij < log(5) & yi` < log(5) for all ` ∈ S) (16)

which is solved using simulation methods.
Case 4: Some other response values for ith day are censored and sites on
the day have observed uncensored values (see Appendix B). Censored value
yij is replaced by (see Appendix B)

E(yij |yik for all k 6= j, yij < log(5) & yi` < log(5) for all ` ∈ S) (17)

which is solved using simulation methods.
Method 4: E-Step of the EM algorithm is used to handle both censored

data and missing data, but this E-step is simplified to condition on all vari-
ables not included in the expectation. It would be convenient if we could
ignore the difficult conditioning on other censored values as in Case 3, and
condition on them as if they were observed, by using the previous estimates
of censored values in iterations as the“observed values”. This method ob-
viously ignores some of the information the censored values provide, but
we want to know what is lost.

4. Comparison of Methods by Simulation

4.1. Example 1

The following SUR model was simulated

wi1 = exp(2.5 + 2x1j + x2i + e1i + 0.4e2i) − 1



24 R. SPARKS

and
wi2 = exp(3 + 2x3i + 2x4i + e3i + 0.4e2i) − 1

where x1i, x2i, x3i, x4i, e1i, e2i and e3i are generated as independent stan-
dard normal random variates. Ten percent of the random variables wi1

and wi2 were hidden at random, i.e., treated as missing. Any of wij values
below 4 were censored. The resulting data were fairly typical of some
sites in Port Jackson. The number of observations simulated on each oc-
casions is 40. The response variables in the fitting process was taken as
yij = loge(wij + 1) for j = 1, 2.

Denote β̂p as the estimator gained by using the E-step of EM-algorithm
to patch missing and censored values as in equations (5), (6), (7), (10), (11)

and (12). β̂np is the estimator gained by first setting censored values of yij

to loge(4+1) and then the EM algorithm to establish parameter estimates.
The simulation was run 100 independent times with each simulation cal-
culating |β̂p −βtrue |−| β̂np −βtrue| where β

′

true =
[

2.5 2 1 3 2 2
]
. The

results are presented in Fig. 1, where the parameter estimates are number
1, 2, 3, 4, 5 & 6 referring to estimates of 2.5, 2, 1, 3, 2, and 2, respectively.
It is clear from Fig. 1 that we gained by using the EM algorithm to adjust
for missing values because, on average, |β̂p − βtrue |≤| β̂np − βtrue|.

Figure 1. Comparison of regression estimates when missing are patched, and censored
data are patched and not patched.



SUR MODELS APPLIED TO AN ENVIRONMENTAL SITUATION 25

4.2. Example 2

The same simulation example as Example 1 was used, except this simula-
tion compared the various methods defined earlier for dealing with missing
and censored values.

Fig. 2 illustrates that there is very little difference between Method 3
and Method 4, and both these methods are superior to Method 1 and
Method 2. Method 2 has only a slight advantage over Method 1. Method
4 requires much less computational effort than Method 3, of the order of
1

400 th of the effort, and this is likely to increase as the amount of censoring
increases. In terms of balancing effort and accuracy, Method 4 seems to
be preferable. Very little is lost by avoiding the complicated evaluation of
conditional expectations (16) and (17).

Figure 2. Comparing methods of estimating model parameters using a simulation study.
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5. Examples of Application

Recall the application section earlier in the paper. This outlined the
intention of producing efficient predictions of faecal coliform (fc) values
at various recreational sites in Port Jackson (Sydney). Three different
geographical locations in Port Jackson are used to illustrate the value of
these models (see Table 1):

Table 1. Sample site information and model fit.

Areas Percentage

of Site No. of values values variation

Port locations obs.† censored missing explained

Jackson by model

Parramatta PJ02, PJ03, 146 20% 4% 72%
River PJ04

Lane Cove PJ05, PJ06, 150 11% 3% 73%
River PJ07

Middle PJ29, PJ30, 153 31% 1% 80%
Harbor PJ31, PJ32

† days fc values were measured

Recall the explanatory variables are the lagged 12-hourly rainfall totals.
Up to five lags at each of eleven rainfall stations are considered. Using
forward selection with a backward look (stepwise regression) we selected
the significant rainfall explanatory variables for each site. The selected
subset models are then written in SUR model form. The parameters are
estimated using the SUR model. The results are recorded in Tables 2, 3,
and 4.

The following are worth noting in these three regions of Port Jackson.

• The variable selection process selects 12-hour rainfall totals lagged 1,
2, 3, 4 and 5 from time fc was measured as significant explanatory
variables approximately 9%, 9%, 19%, 23%, and 40% of the time, re-
spectively. This was a surprise because prior to this analysis, experts
at Sydney Water suggested that rainfall now would not influence fae-
cal coliform levels 48 hours later. For this reason, we only considered
explanatory rainfall variables up to lag 5 (48 to 60 hours later). The
modelling process did not seem to adhere to conventional wisdom, and
future models should consider lags beyond 60 hours.

• Note that the explanatory variables relating to lag 5 values generally
corresponded to, on average, higher regression parameter estimates in
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Table 2. Estimated model for sites in the Parramatta River.

Method 3 Method 2 Method 1

PJ02

Constant 3.0132 2.9653 2.9331

Rainfall site 22 lag 5 0.2382 0.2639 0.3123

Rainfall site 25 lag 1 0.1869 0.1787 0.1662

Rainfall site 37 lag 2 0.0703 0.0719 0.0723

Rainfall site 64 lag 4 0.1903 0.1961 0.1985

Rainfall site 70 lag 3 0.6155 0.6134 0.6624

PJ03

Constant 2.2788 2.1949 2.1602

Rainfall site 25 lag 1 0.0664ns 0.0674 0.0680

Rainfall site 29 lag 5 0.1026 0.1054 0.0952

Rainfall site 37 lag 2 0.0484 0.0505 0.0555

Rainfall site 37 lag 3 0.1691 0.1854 0.2079

Rainfall site 37 lag 5 0.1398 0.1395 0.1337

Rainfall site 70 lag 3 0.1466 0.1657 0.2190

Rainfall site 70 lag 5 0.3135 0.3287 0.3585

Rainfall site 87 lag 4 0.0593ns 0.0616 0.0608

PJ04

Constant 1.8708 1.7810 1.7914

Rainfall site 25 lag 5 -0.0629 -0.0679 -0.1053

Rainfall site 64 lag 4 0.0769 0.0821 0.0860

Rainfall site 70 lag 5 0.1300 0.1345 0.1553

Rainfall site 87 lag 4 0.1769 0.1897 0.2110

the Lane Cove River. Explanatory variables relating to lag 3 or 5 rain-
fall values generally corresponded to, on average, higher regression pa-
rameter estimates in Middle Harbor. Explanatory variables relating to
lag 3, 4 or 5 rainfall values generally corresponded to higher regression
parameter estimates in Port Jackson.

• Variables that are significant when fitting independent multiple regres-
sion models can become insignificant when fitting the seeming unrelated
regression model (e.g., those parameters with a superscript ns on the
left-hand side of the estimate are nonsignificant).

• Some estimates change very little when all the information is used (SUR
formulation), while others change significantly (e.g., Rainfall site 25 lag
5 of PJ30 changes dramatically).

• Estimates of the explanatory variable regression coefficients are gener-
ally closer to zero using the SUR model (Method 3), than the respective
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coefficients estimated from separate models – Method 1 (in more than
80% of the cases).

Table 3. Estimated model for sites in the Lane Cove River.

Method 3 Method 2 Method 1

PJ05

Constant 2.0164 1.8858 1.8801

Rainfall site 25 lag 5 -0.0860 -0.0805 -0.0886

Rainfall site 29 lag 1 0.1948 0.2052 0.1967

Rainfall site 37 lag 4 0.0973 0.1027 0.1070

Rainfall site 64 lag 5 0.2061 0.2102 0.2107

Rainfall site 70 lag 5 0.2308 0.2273 0.2618

PJ06

Constant 2.8925 2.7821 2.7773

Rainfall site 22 lag 2 0.1976 0.2029 0.2391

Rainfall site 22 lag 5 0.4554 0.4765 0.4931

Rainfall site 25 lag 5 -0.1985 -0.2060 -0.2197

Rainfall site 66 lag 1 0.1792 0.1882 0.1629

Rainfall site 87 lag 3 0.1785 0.1670 0.1608

Rainfall site 87 lag 4 0.0499 0.0641 0.0698

PJ07

Constant 3.5448 3.4947 3.4823

Rainfall site 17 lag 4 0.1887 0.1924 0.1956

Rainfall site 29 lag 3 0.3449 0.3479 0.3617

Rainfall site 66 lag 5 0.1167 0.1217 0.1223

6. Conclusion

The SUR model can be usefully applied to many point estimation problems
in environmental settings. This model proves useful in spatio-temporal set-
tings where temporal information is built into models via the appropriate
explanatory variables and lagged response variables, while the spatial cor-
relations are used via the model errors to improve parameter estimates and
predictions.

Often these environmental settings have missing data and left censoring
observations. This paper provides an approach to fitting SUR models
when faced with these difficulties. Several methods of handling these are
explored in the paper, and the simple approach of applying the E-step of
the EM algorithm by conditioning on all observations (whether observed,
censored or missing), and iterating until estimates converge (Method 4)
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Table 4. Estimated model for sites in Middle Harbor.

Method 3 Method 2 Method 1

PJ29

Constant 1.9208 1.8250 1.8517

Rainfall site 25 lag 5 -0.0657ns -0.588 -0.0976

Rainfall site 64 lag 5 0.1525 0.1563 0.1750

Rainfall site 70 lag 3 -0.3198 -0.2565 -0.2852

Rainfall site 70 lag 5 0.2300 0.2282 0.2465

Rainfall site 87 lag 3 0.2857 0.2882 0.2924

Rainfall site 87 lag 5 0.1339 0.1418 0.1428

PJ30

Constant 1.6241 1.5312 1.5508

Rainfall site 25 lag 5 -0.0181ns -0.0246 -0.0760

Rainfall site 37 lag 5 0.0709 0.0739 0.0923

Rainfall site 70 lag 4 0.1626 0.1831 0.1898

Rainfall site 70 lag 5 0.3772 0.3849 0.4195

Rainfall site 87 lag 3 0.6791 0.6967 0.7063

PJ31

Constant 1.4817 1.4038 1.4035

Rainfall site 22 lag 2 0.2505 0.2727 0.3084

Rainfall site 29 lag 4 0.0693 0.0764 0.0618

Rainfall site 37 lag 3 0.3255 0.3259 0.3205

Rainfall site 66 lag 5 0.1226 0.1299 0.1312

Rainfall site 70 lag 3 0.3399 0.4350 0.4118

Rainfall site 70 lag 4 0.0835ns 0.0769 0.0889

Rainfall site 70 lag 5 0.3046 0.3058 0.3025

PJ32

Constant 1.7820 1.7777 1.7609

Rainfall site 17 lag 2 0.1888 0.1956 0.1967

Rainfall site 17 lag 3 0.6784 0.6714 0.6733

Rainfall site 17 lag 4 0.1532 0.1579 0.1584

Rainfall site 29 lag 5 0.3904 0.3727 0.4346

Rainfall site 64 lag 5 0.1477 0.1470 0.1486

Rainfall site 70 lag 4 0.1518 0.1556 0.1405

is computationally efficient and reasonably accurate. In those few cases
where accuracy is paramount use Method 3.
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Appendix A

Let log of the faecal coliform values plus one be denoted by the random vari-
able y and assume that this is normally distributed. Let φ(z) = e−

1
2 z2

/
√

2π
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and Φ(z) =
∫ z

−∞ φ(x)dx, then

E(y|y < c) =
∫ c

−∞ ye−
1

2σ2 (y−µ)2/(
√

2πσ)dy/Φ( c−µ
σ )

=
∫ c

−∞
(y−µ)

σ e−
1

2σ2 (y−µ)2/
√

2πdy/Φ( c−µ
σ ) + µ

= −σe−
1

2σ2 (y−µ)2/
√

2π|y=c
y=−∞/Φ( c−µ

σ ) + µ

= −σφ( (y−µ)
σ )/Φ( c−µ

σ ) + µ

Appendix B

Log of faecal coliform values plus one at site j is denoted by the ran-
dom variable yj . Assume the normal distribution. Let S = (`1...`S)
be all response variable numbers corresponding to censored values and
C = (C1, ..., Cp−S−1) be all the response variable numbers that correspond
to uncensored values,

y
′

r = [ yj y`1 . . . y`S ],

y
′

C = [ yC1
yC2

. . . yCp−S−1 ],

cov([ y
′

r y
′

C ]) =

[
Σrr ΣrC

ΣCr ΣCC

]
, E([ y

′

r y
′

C ]) = [ µ
′

r µ
′

C ] Σrr.C = Σrr −

ΣrCΣ−1
CCΣCr , µr.C = µr − ΣrCΣ−1

CC(yC − µC),

Φ(1c) =

∫ c

−∞
...

∫ c

−∞
e−

1
2 (yr−µr)

′

Σ−1
rr (yr−µr)/{(2π)

p/2 |Σrr||1/2}dyjdyS ,

where dyS = dy`1 ...dy`S
, and

Φr.C(1c) =

∫ c

−∞
...

∫ c

−∞
e−

1
2 (yr−µr.C)

′

Σ−1
rr.C(yr−µr.C)/{(2π)

p/2 |Σrr.C |1/2}dyS

1. The case when the only data available within a day is censored data.

E(yj |yj < c& y` < c for all` ∈ S)

=
∫ c

−∞ ...
∫ c

−∞

∫ ∞
−∞ ...

∫ ∞
−∞ yje

− 1
2 (y−µ)

′

Σ−1(y−µ)/{(2π)
p/2 |Σ|1/2}

dyjdyS/Φ(1c)

=
∫ c

−∞ ...
∫ c

−∞ yje
− 1

2 (yr−µr)
′

Σ−1
rr (yr−µr)/{(2π)

p/2 |Σrr|1/2}
dyjdyS/Φ(1c).

2. When both censored and uncensored values are available

E(yj |yj < c , y` < c for all ` ∈ S and yC) =∫ c

−∞ ...
∫ c

−∞ yje
− 1

2 (yr−µr.C)
′

Σ−1
rr>c(yr−µr.C)/{(2π)

p/2 |Σrr.C |1/2}
dyjdyS/Φr.C(1c)
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The above integrals can be solved by simulation. That is,

1. Simulated the response vector from a multivariate normal random vari-
ate with mean vector µ and covariance matrix Σ. Retain all values
that are censored. Repeat this many times. Then find all simulations
that have yj < c & y` < c for all ` ∈ S, then take the average of all the
yj values in this group to give the required values.

2. Simulated yr conditional on yC given they are jointly multivariate nor-
mal. Retain only observations with all values in yr censored (less than
c). Then calculate the average of these values these retained values to
give the expected values of for each variable in yr.

These approaches are computationally fairly expensive and the parameter
estimation process is slow.
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