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Recursive Estimation of Inventory Quality
Classes Using Sampling
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Abstract. In this paper we propose a new discrete time discrete state inventory model
for perishable items of a single product. Items in stock are assumed to belong to one of
a finite number of quality classes that are ordered in such a way that Class 1 contains
the best quality and the last class contains the pre-perishable quality. By the end of
each epoch, items in each inventory class either stay in the same class or lose quality
and move to a lower class. The movement between classes is not observed. Samples
are drawn from the inventory and based on the observations of these samples, optimal
estimates for the number of items in each quality classes are derived.
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Perishable Items.

1. Introduction

In this paper, we propose a new discrete time, discrete state inventory
model for perishable items of a single product.
The vector X = (X1

n, X2
n, . . . , XK

n ) represents the state of the inventory by
the end of epoch n, n ∈ N and Xi

n, i = 1, . . . ,K stands for the inventory
level of quality i. New arriving items are assigned to quality 1. Further, by
the end of each epoch n, due to uncontrollable factors, some items in Class
i may move to Class (i + 1) signaling the fact that the items have moved
to a lower quality class, i = 1, . . . ,K. Items in Class K either perish or
remain in the same class.
It is implicit in the model that classes are ordered in such a way that Class
1 contains the best quality of items, Class 2 the second best, etc.
We assume that the inventory is large and that all items are held in one
place together making it impractical to count the number of items Xi

n

within each class. We also assume that at each epoch n, the demand that
is not fulfilled is lost.
The assumption of lost sale is strictly not needed but is kept to make the
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mathematics less messy.
It is certainly desirable for most practitioners and managers of stock to
have an idea about the level of stock of each quality class. This obviously
is helpful in setting up plans for future targets. On way of overcoming
the difficulty of counting the entire stock is simply to take a sample of the
stock, then count the number of items in each class in this sample. Based
on the results of this sampling scheme an estimate of the level of stock
of each quality class is proposed. By doing this, we in fact have put our
problem within the general framework of Filtering Theory. Here, we have
the main model (the inventory model) where items are either sold or stay
in the same class or move to a lower class. The movement between classes
is too expensive to be observed and so a less expensive alternative is to
observe a sample of the stock on hand. Then, an estimate of the state of
the inventory conditional on the observed processes is proposed.
Filtering theoery is popular among engineers: Anderson and Moore [3],
and does not seem to have had a big impact in Operations Research. This
paper along with others: see Aggoun, Benkherouf and Tadj [1] and [2], we
hope will open up ways to use powerful tools of stochastic analysis in yet
unexplored questions in Operations Research.
Our approach in tackling the proposed problem hinges on the so called
Change of Measures Techniques. This basically means that the real world
probability measure on which the inventory model was introduced is trans-
formed by a technical artifice to another probability measure where various
technical derivations are made easy. Then, another reversed transforma-
tion will recover the original model.
As mentioned at the outset, this paper deals with a product experiencing
changes in quality over its life span. Products experiencing perishability are
numerous. To name a few, food stuff, blood samples, drugs, electronic com-
ponents etc. For more details about the development of inventory models
with deteriorating items see the review of Raafat [13].

It is worth noting from the review of Raafat that there are very limited
number of stochastic models as opposed to deterministic ones, apart from
the work of Nahmias [12]. Kaspi and Perry [8] and [9], Benssoussan, Nissen
and Tapiero [6] and more recently Aggoun, Benkherouf and Tadj [1] and
[2].

The paper is organized as follows. The next section introduces the math-
ematical model with the required set up. Section 3 deals with the problem
of estimating the number of items in each quality class. Section 4 contains
details of a parameters estimation problem related to the model. The paper
concludes with some general remarks.
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2. The Mathematical Model

Before introducing formally the mathematical model for the inventory sys-
tem with quality classes we need to fix some notations.
Let X be a nonnegative integer-valued random variable. Then for any
α ∈ (0, 1) define the operator “◦” by:

α ◦X =
X∑

j=1

Zj , (1)

where Zj is a sequence of i.i.d random variables, independent of X, such
that:

P (Zj = 1) = 1− P (Zj = 0) = α.

Recall that the Xn = (X1
n, X2

n, . . . , XK
n ) is a ZK

+− valued random variable
representing the level of inventory by the end of epoch n, n ∈ N, where
Xi

n stands for the inventory level of quality i, i = 1, . . . ,K, and X0 is the
initial inventory. Also, let Dn = (D1

n, . . . , DK
n ) be a vector defined on ZK

+

with distribution φ representing the demand for the items at time n. New
arriving items are assigned to Class 1.
Now, each item in Class i at time (n − 1) is assumed to remain in the
same class with probability αi. Otherwise, it moves to Class (i + 1) with
probability (1− αi) where i is just an index and 0 < αi < 1.
Let X0 be the initial inventory which is supposed to be known. Then,
it follows from the above assumptions that the dynamics describing the
inventory movement have the representation:

X1
n = α1 ◦X1

n−1 + Un −D1
n,

X2
n = α2 ◦X2

n−1 + (1− α1) ◦X1
n−1 −D2

n,

X3
n = α3 ◦X3

n−1 + (1− α2) ◦X2
n−1 −D3

n,

... (2)

XK
n = αK ◦XK

n−1 + (1− αK−1) ◦XK−1
n−1 −DK

n

Here, put αi ◦ Xi
n−1 = 0 for all Xi

n−1 ≤ 0 where the operator “ ◦” is
defined by (1). Also, set Xi

n = 0 whenever Xi
n ≤ 0. We also remark that

it is implicit in the model that items arriving from the previous period go
first through the classification process before they get affected by demand.
The variable Un is a Z+-valued sequence, representing the replenishment
quantity at time n, which is either deterministic or predictable, that is,
function of whatever information we have available at time n − 1. Also,
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note that it is implicit in (2) that new arriving items go to Class 1.
Also, note from (2) that there is no restriction on the inventory space
available. The case where there is limited storage space can be handled
with obvious changes.

Remark. The operator ”◦” defined in (2.1) was used by Al-Osh and Alzaid
[4] and McKenzie [11] for modeling integer-valued time series. For more
details about this and similar idea consult the book of MacDonald and
Zucchnini [10].

As mentioned at the outset, the company holding the stock with the plant
equations (2) has all the items in one place mixed together and it is desirable
to know the partition of the stock among the K classes. sampling with
replacement, a random sample of size M from the inventory is selected of
which the outcome is denoted by:

Yn = (Y 1
n , . . . , Y K

n ) ∈ ZK
+ . (3)

Let
Fn = σ{Xi

k, Di
k, Uk, 1 ≤ i ≤ K , k ≤ n}, (4)

and
Yn = σ{Y i

k , 1 ≤ i ≤ K , k ≤ n}, (5)

be the complete filtrations generated by the inventory model and the out-
come of the sampling process up to epoch n, n = 0, . . . . Also, let

Ln =
K∑

i=1

Xi
n

be the inventory level at time n.
Now, assume that the (ZK

+ -valued) random variables Yn, n = 1, 2, . . . , have
probability distributions

f
(n)
Y/X(y1, . . . , yK) = P

[
Y 1

n = y1, . . . , Y K
n = yK | X1

n = x1, . . . , XK
n = xK

]
= M !

K∏
i=1

(
xi

Ln

)yi

1
yi!

. (6)

3. Recursive Estimators

The main result of this paper is the derivation of recursive estimators for
the distribution of the vector Xn, representing the level of inventory at
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time n, based on the information obtained from (5).
We shall construct a new probability measure P under which the pro-
cesses {Xn} and {Yn} are independent. This fact shall greatly simplify
the derivation of our results. For more information regarding change of
measure techniques for discrete time processes: see the book by Elliott,
Aggoun and Moore [7].
Under the new probability measure P , to be defined below, we shall have

1. For each n ≥ 1, Yn = (Y 1
n , ..., Y K

n ) has a multinomial distribution such
that

P
[
Y 1

n = y1, . . . , Y K
n = yK

]
=

M !
y1!...yK !

K∏
i=1

K−yi

=
M !

y1!...yK !
K−M .

(7)

2. For each n ≥ 1, Xn = (X1
n, ..., XK

n ) has probability distribution φ.

The crucial step here is the construction of a suitable P− martingale which
will provide us with the Radon-Nikodym derivative of P with respect to P
. To do that define

γ0 = 1,

γk =
φ(X1

k , . . . , XK
k )

Rk
K−M

K∏
i=1

(
Xi

k

Lk

)−Y i
k

. (8)

Here

Rk(Uk, X1
k−1, . . . , X

K
k−1, X

1
k , . . . , XK

k )

= φ
(
α1 ◦X1

k−1 + Uk −X1
k , α2 ◦X2

k−1 + (1− α1) ◦X1
k−1

−X2
k , . . . , αK ◦XK

k−1 + (1− αK−1) ◦XK−1
k−1 −XK

k

)
, (9)

and let

Γn =
n∏

k=1

γk. (10)

Write
Gn = Fn ∨ Yn.

Let E denotes the expectation under probability measure P .

Lemma 1
E[γk | Gk−1] = 1.
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Proof. Let
Xi

n

Ln

∆= pi
n, and φ(α1 ◦X1

k−1 + Uk −D1
k, . . . , αK ◦XK

k−1 + (1−

αK−1) ◦ XK−1
k−1 − DK

k ) ∆= Φ(Uk, X1
k−1, . . . , X

K
k−1, D

1
k, . . . , DK

k ). In view of
(8) we have

E[γk | Gk−1] = K−ME

[
φ(X1

k , . . . , XK
k )

Rk

× E

[
K∏

i=1

(
pi

k

)−Y i
k

∣∣∣∣∣X1
k , . . . , XK

k ,Gk−1

]∣∣∣∣∣Gk−1

]

=
1

KM
E

[
φ(X1

k , . . . , XK
k )

Rk

∑
y1

k,...,yK
k

M !
K∏

i=1

(
pi

k

)yi 1
yi!

× (p1
n)−y1

...(pK
n )−yK

∣∣∣∣∣Gk−1

]

=
1

KM
E

[
φ(X1

k , . . . , XK
k )

Rk

∑
y1

k,...,yK
k

M !
K∏

i=1

1
yi!

∣∣∣∣∣Gk−1

]

= E

[
φ(X1

k , . . . , XK
k )

Rk

∣∣∣∣∣Gk−1

]

= E

[
Φ(Uk, X1

k−1, . . . , X
K
k−1, D

1
k, . . . , DK

k )
φ(D1

k, . . . , DK
k )

∣∣∣∣∣Gk−1

]

= E

[
E

[
Φ(Uk, X1

k−1, . . . , X
K
k−1, D

1
k, . . . , DK

k )
φ(D1

k, . . . , DK
k )

∣∣∣∣∣Gk−1, α
1 ◦X1

k−1

+ Uk, . . . , αK ◦XK
k−1, . . . , (1− αK−1) ◦XK−1

k−1 ]

]∣∣∣∣∣Gk−1

]

= E

[ ∑
d1,...,dK

Φ(Uk, X1
k−1, . . . , X

K
k−1, d

1, . . . , dK)
φ(d1, . . . , dK)

× φ(d1, . . . , dK)

∣∣∣∣∣Gk−1

]
= 1

which completes the proof.

Lemma 2 The sequence {Γn}n∈N is an- (Gn, P ) martingale.
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Proof. Using Lemma 1 and the fact that Γn−1 is Gn−1-measurable

E [Γn | Gn−1] = Γn−1E[γn | Gn−1]
= Γn−1,

by Lemma 1, which finishes the proof.
The following two theorems are preliminary results that are needed in our
estimation problem.

Theorem 1 Let (Ω,F , P ) be a probability space equipped with the filtration
{Gn}. Write F∞ = ∨Gn ⊂ F . Let P be another probability measure on
(Ω,F) which is absolutely continuous with respect to P. Suppose that Γn are
the corresponding Randon-Nikodym derivatives when both are restricted to
Fn for each n . Then Γn converges to an integrable random variable with
probability 1.

The proof of the above Theorem uses Lemma 2 and Martingale conver-
gence Theorem: see Shiryayev [14].
Using Theorem 1 and Kolmogorov’s Extension Theorem, see [14], we set:

E

[
dP

dP
|Gn

]
= Γn,

that is, for G ∈ Gn,

P (G) =
∫

G

ΓndP.

Theorem 2 (Abstract Bayes Theorem) Let (Ω,F , P ) be a probability space
and G ⊂ F is a sub−σ− field. Suppose P is another probability measure
absolutely continuous with respect to P and with Radon-Nikodym derivative
dP

dP
= Γ. Then if f is any integrable F-measurable random variable

E[f | G] =
E[Γf | G]
E[Γ | G]

.

For the proof of Theorem 2: see [7] (page 23).

Lemma 3 Under probability measure P , Yn has probability distribution
given by (7).
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Proof. let f be a test function. Using Theorem 2, Lemma 1 and repeated
conditioning as in the proof of Lemma 1

E [f(Yn) | Gn−1] =
E [f(Yn)Γn|Gn−1]

E [Γn | Gn−1]
=

Γn−1

Γn−1

E [f(Yn)γn|Gn−1]
E [γn | Gn−1]

= E

f(Yn)
φ(X1

n, . . . , XK
n )

Rn
K−M

K∏
i=1

(
Xi

n

Ln

)−Y i
n

∣∣∣∣∣Gn−1



= E

[
E

[
φ(X1

n, . . . , XK
n )

Rn

∑
y1,...,yK

f(y1, . . . , yK)K−M

× M !
K∏
yi!

i=1

K∏
i=1

(
Xi

n

Ln

)yi
n K∏

i=1

(
Xi

n

Ln

)−yi
n

∣∣∣∣∣Gn−1, X
1
n, . . . , XK

n

]∣∣∣∣∣Gn−1

]

=
∑

y1,...,yK

f(y1, . . . , yK)K−M M !
K∏
yi!

i=1

E

[
φ(X1

n, . . . , XK
n )

Rn

∣∣∣∣∣Gn−1

]

=
∑

y1,...,yK

f(y1, . . . , yK)K−M M !
K∏
yi!

i=1

.

The term E

[
φ(X1

n,...,XK
n )

Rn

∣∣∣∣∣Gn−1

]
= 1, by the proof of lemma 1. This com-

pletes the poof.
Write

pn(x1, . . . , xK) = E[I(X1
n = x1, . . . , XK

n = xK) | Yn].

Using Theorem 2

pn(x1, . . . , xK) =
E[I(X1

n = x1, . . . , XK
n = xK)Γ−1

n | Yn]
E[Γ−1

n | Yn]

: =
qn(x1, . . . , xK)∑

k1,...,kK

q(k1, . . . , kK)

where E[.] and E[.] are the expectations under P and P respectively and
I(.) is the indicator of the set (.).
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Expression qn(x1, . . . , xK) is an unnormalized conditional probability dis-
tribution of (X1

n = x1, . . . , XK
n = xK) given the observations up to time n

.

Theorem 3 Let π0(x1, . . . , xK) be the initial probability distribution of
(X1

0 , . . . , XK
0 ). Then, the unnormalized conditional probability distribution

of (X1
n, . . . , XK

n ) given Yn is given by the recursion:

qn(x1, . . . , xK)

= KM
K∏

i=1

(
xi

Ln

)Y i
n ∑

z1,...,zK

Rn(Un, z1, . . . , zK , x1, . . . , xK)qn−1(z1, . . . , zK),

(11)

where Rn is given by (9).

Proof. Let f : ZK
+ → R be a Borel test function. Then we have

E[f(X1
n, . . . , XK

n )Γ−1
n | Yn] ∆=

∑
x1,...,xK

f(x1, . . . , xK)qn(x1, . . . , xK). (12)

However, recall that γ−1
n =

Rk

φ(X1
k , . . . , XK

n )
KM

K∏
i=1

(
Xi

k

Lk

)Y i
k

where

Rn = φ
(
α1 ◦X1

n−1 + Un −X1
n, α2 ◦X2

n−1 + (1− α1) ◦X1
n−1

−X2
n, . . . , αK ◦XK

nk−1 + (1− αK−1) ◦XK−1
n−1 −XK

n

)
and that (X1

n, . . . , XK
n ) has distribution φ(.) under P . Hence

E[f(X1
n, . . . , XK

n )Γ−1
n | Yn] = E[f(X1

n, . . . , XK
n )Γ−1

n−1γ
−1
n | Yn]

=
∑

x1,...,xK

f(x1, . . . , xK)KM
K∏

i=1

(
xi

Ln

)Y i
n φ(x1, . . . , xK)

φ(x1, . . . , xK)

× E
[
φ
(
α1 ◦X1

n−1 + Un − x1, . . . , αK ◦XK
n−1

+ (1− αK−1) ◦XK−1
n−1 − xK

)
Γ−1

n−1

∣∣∣Yn−1

]
The expectation is simply∑

z1,...,zK

φ(α1 ◦ z1 + Un − x1, . . . , αK ◦ zK

+ (1− αK−1) ◦ zK−1 − xK)qn−1(z1, . . . , zK).
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Therefore∑
x1,...,xK

f(x1, . . . , xK)qn(x1, . . . , xK)

=
∑

x1,...,xK

f(x1, . . . , xK)KM
K∏

i=1

(
xi

Ln

)Y i
n

∑
z1,...,zK

φ(α1 ◦ z1 + Un − x1, . . . , αK ◦ zK

+(1− αK−1) ◦ zK−1 − xK)qn−1(z1, . . . , zK).

Since f is arbitrary the result follows.

4. Parameters Estimation

In this section, we shall use the so-called (EM) expectation maximization
algorithm: see Dempster et al. [4] to re-estimate the parameters of our
model.
We assume that the demand distribution φ(j1, . . . , jK) has finite support
in each argument, that is, 1 ≤ ji ≤ D , i = 1, . . . ,K.
Our model is determined by the set of parameters:

θ
∆= {φ(j1, . . . , jK); αi, i = 1, . . . ,K ji ≤ D}, (13)

which given the observed history Yn we wish to update to a new set of
parameters

θ̂
∆= {φ̂(j1, . . . , jK); α̂i, i = 1, . . . ,K ji ≤ D},

by maximizing the conditional pseudo-log-likelihood to be defined below.
Write

Hn = σ{Xi
k, Y i

k , Di
k, i = 1, . . . ,K; l = 1, . . . , L, k ≤ n}, (14)

Zn = σ{Y i
k , Di

k, i = 1, . . . ,K; l = 1, . . . , L, k ≤ n} (15)
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and

Mn =
n∏

k=1

D∏
j1=1

· · ·
D∏

jK=1

(
φ̂(j1, . . . , jK)
φ(j1, . . . , jK)

)I(D1
k=j1,...,DK

k =jK)

×
K∏

i=1

(
α̂i

αi

)αi◦Xi
k−1
(

1− α̂i

1− αi

)Xi
k−1−αi◦Xi

k−1

∆=
n∏

k=1

mk.

Note here that the exponents αi ◦ Xi
k−1 in the expression for Mn simply

give the number of items which survived from the previous period under
probability αi and it is not an explicit function of the parameter αi. It is
only a notation.

It can be shown that {Mn} is a mean-one Hn-martingale. Now one can
set

Eθ

[
dPθ̂

dPθ
| Hn

]
= Mn. (16)

The existence of Pθ̂ follows from Kolmogorov’s extension theorem.
The log-likelihood is given by:

n∑
k=1

D1
k∑

j1=1

. . .

DK
k∑

jK=1

I(D1
k = j1, . . . , D

K
k = jK) log φ̂(j1, . . . , jK)

+
n∑

k=1

K∑
i=1

(
αi ◦Xi

k−1

)
log α̂i

+
n∑

k=1

K∑
i=2

(
Xi

k−1 − αi ◦Xi
k−1

)
log(1− α̂i) + R(θ),

where R(θ) does not contain terms in θ̂.
The conditional log-likelihood is:

Eθ [log Mn | Zn]

=
n∑

k=1

D1
k∑

j1=1

. . .
DK∑

jK=1

I(D1
k = j1, . . . , D

K
k = jK) log φ̂(j1, . . . , jK)
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+ Eθ

[
n∑

k=1

K∑
i=2

αi ◦Xi
k−1 | Zn

]
log α̂i

+ Eθ

[
n∑

k=1

K∑
i=2

(
Xi

k−1 − αi ◦Xi
k−1

)
| Zn

]
log(1− α̂i) + R̂(θ). (17)

Write
n∑

k=1

Xi
k−1

∆= Si
n, (18)

n∑
k=1

αi ◦Xi
k−1

∆= Si
n(αi). (19)

Maximizing (17) subject to the constraint

D∑
j1,...,jN

φ̂(j1, . . . , jN ) = 1,

yields the following result.

Theorem 4 The new estimates φ̂n(.) and α̂i
n are given by the following

relations:

φ̂n(j1, . . . , jN ) =

n∑
k=1

I(D1
k = j1, . . . , D

K
k = jK)

∑
z1,...,zK

n∑
k=1

I(D1
k = z1, . . . , DK

k = zK)

, (20)

α̂i
n =

Eθ[Si
n(αi) | Zn]

Eθ[Si
n | Zn]

=
E[Si

n(αi)Γ−1
n | Zn](E[Γ−1

n | Zn])−1

E[Si
nΓ−1

n | Zn](E[Γ−1
n | Zn])−1

∆=
ρn(Si

n(αi))
ρn(Si

n)
. (21)

Remark. In order to make the above estimators useful we need to derive
recursions for ρn(Si

n(αi)) and ρn(Si
n). However finite-dimensional recur-

sions are possible for only expressions of the form

E[Si
nI(X1

n = x1, . . . , XK
n = xK)Γ−1

n | Zn] ∆= ρn(Si
n, x1, . . . , xK), (22)

etc. However∑
x1 ,...,xK

E[Si
nI(X1

n = x1, . . . , XK
n = xK)Γ−1

n | Zn] = ρn(Si
n).
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Theorem 5 Finite-dimensional recursions for
ρn(Si

n, x1, . . . , xK) and ρn(Si
n(αi), x1, . . . , xK) are as follows:

ρn(Si
n, x1, . . . , xK)

= KM
K∏

j=1

(
pj

n

)Y j
n
∑

z1,...,zK

Rn(Un, z1, . . . , zK , x1, . . . , xK)

× ρn−1(Si
n−1, z

1, . . . , zK) + qn(x1, . . . , xK)
∑

z1,...,zK

φ(z1, . . . , zK)zi,

and

ρn(Si
n(αi), x1, . . . , xK)

= KM
K∏

j=1

(
pj

n

)Y j
n
∑

z1,...,zK

Rn(Un, z1, . . . , zK , x1, . . . , xK)

× ρn−1(Si
n−1(α

i), z1, . . . , zK) + qn(x1, . . . , xK)
∑

z1,...,zK

φ(z1, . . . , zK)αizi.

Proof First note that Si
n = Si

n−1 +Xi
n−1. Now recall that Γ−1

n = Γ−1
n−1γ

−1
n

where γ−1
n can be obtained from (8). Therefore

ρn(Si
n, x1, . . . , xK) = E

[
Si

n−1Γ
−1
n−1γ

−1
n I(X1

n = x1, . . . , XK
n = xK) | Zn

]
+ E

[
Xi

n−1Γ
−1
n I(X1

n = x1, . . . , XK
n = xK) | Zn

]
(23)

Again write
Xi

n

Ln

∆= pi
n, and recall Rn from (9). In view of (8) and the

distribution assumption under P̄ , the first expectation is simply

E[Si
n−1Γn−1I(X1

n = x1, . . . , XK
n = xK)

Rn

φ(x1, . . . , xK)
KM

K∏
i=1

(
pi

n

)Y i
n | Zn]

= KM
K∏

i=1

(
pi

n

)Y i
n E[Rn(Un, X1

k−1, . . . , X
K
k−1, x

1, . . . , xK)Si
n−1Γ

−1
n−1 | Zn−1]

= KM
K∏

i=1

(
pi

n

)Y i
n [

∑
z1,...,zK

Rn(Un, z1, . . . , zK , x1, . . . , xK)

× EI(X1
n−1 = z1, . . . , XK

n−1 = zK)Si
n−1Γ

−1
n−1 | Zn−1]

= KM
K∏

i=1

(
pi

n

)Y i
n
∑

z1,...,zK

Rn(Un, z1, . . . , zK , x1, . . . , xK)

× ρn−1(Si
n−1, z

1, . . . , zK)
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The second expectation in (23) is

qn(x1, . . . , xK)
∑

z1,...,zK

φ(z1, . . . , zK)zi.

The rest of the proof is similar and is, therefore, skipped.

Note that in the model treated in this paper items were allowed to move
down one class only. It seems to be adequate to have models that allow
items items move down more than one class during the period. These
models are appropriate for periods which are long enough to allow for this
phenomena to occur.
In this paper a new discrete time discrete state inventory model for perish-
able items of a single product was introduced. Items in stock belonged to
a one of a finite number of quality classes. At each discrete time items in
the inventory may experience deterioration or get sold. Finite dimensional
filters for the number of items in each class were proposed. Further, pa-
rameters estimation of the model were also discussed.
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