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Abstract. An understanding of the flow of heat in grain store structures, in particular,
within the peripheral layer, is important from many industrial perspectives. To analyse
the heat transfer within such regions a mathematical model known as the two-stage heat
transfer model is proposed. This model makes a distinction between the air and grain
within the grain bulk, and thus takes into consideration the fact that the rate of heat
transfer through the grain is different to that through the interstitial air surrounding the
grain. Such a model lends itself to a solution via Laplace transforms and approximate
analytical results are obtained for small and large times. In addition, the Stehfest
numerical algorithm is used for the inversions and very good agreement is obtained
between the two approaches. The present model is compared to a previously developed
double-diffusivity heat transfer model by the authors, and good agreement is obtained.
At present, no experimental data is available to validate the model as it is very difficult to
measure the air and grain temperatures separately, particularly in the peripheral layer.
The proposed model provides insight into the potential difference existing between the
air and grain temperatures.
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1. Introduction

An understanding of the flow of heat within a grain store is very important
from many industrial perspectives. The peripheral layer, the 150mm -
200mm layer of grain in contact with the store structure or the headspace
air, is of particular importance as many grain storage problems occur there,
including:

• caking, the formation of crust or mould, on the surface of the grain
bulk,
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• aeration, the pumping of ambient air through a static grain bulk, does
not influence temperature and relative humidity within these regions,

• passive heat disinfestation may occur within such regions when exposed
to long periods of direct sunlight,

• appearance of insect pests, such as Psocids, which are causing consid-
erable problems for the Australian grain industry.

In this paper we model the heat transfer that occurs in such regions, and in
particular within the peripheral layer alongside the vertical grain store wall,
where there occur considerable diurnal temperature fluctuations. Many
problems occur here, so an understanding of the difference between the
air and grain temperatures is very important. For instance, with Psocids,
their microclimate determines where they dwell, so that an understanding
of the temperature on the surface of the grain kernel, and its vicinity, are
particularly important.
Our analysis is based on a mathematical model of temperature profiles
within such regions. Accordingly, a mathematical model known as the two-
stage heat transfer model, and based on McNabb [10], is proposed. This
model predicts the heat transfer in the peripheral layer and differentiates
between the air and grain, thus taking into consideration the fact that the
heat transfer in the grain is different to that in the surrounding air, allowing
us to predict the air and grain temperatures separately.
Currently, there is no experimental data available to validate the model
as it is difficult to measure the air and grain temperatures separately, par-
ticularly in the peripheral layer. The proposed model will at least provide
some insight into the differences between the two temperatures. This will
assist in solving some of the problems faced by the grain industry, such as
predicting the most likely habitat of the Psocids, thus leading to potentially
more efficient insect control.
In the next section a brief literature review is presented of some of the
the main results in the area of double-porosity pertaining to this work.
In section 3 the two-stage heat transfer model is formulated. In Section 4
Laplace transforms are used to find a semi-analytical solution to the model.
In Section 4.1 approximate analytical solutions are obtained for the inverse
Laplace transforms for small and large time. In Section 4.2 some results
are presented by using the Stehfest [15] algorithm to obtain the inversions
numerically. In Section 5 the present two-stage model is compared to a
previously developed double-diffusivity heat transfer model by Antic and
Hill [1].
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2. Literature Review

Similar double-porosity models exist for the modelling of the propagation
of pressures in a porous medium, in particular within the groundwater,
geothermal and petroleum industries. McGuinness [9] extended McN-
abb’s double-porosity model for the pressure response of a naturally frac-
tured reservoir of single-phase fluid to allow for blocks of varying sizes.
Moench [12], in his study of doubly-porous groundwater reservoirs, incor-
porated the effects of a thin layer of low permeable material or fracture
skin which may be present at fracture-block interfaces. Babcock et al. [2]
developed a model for longitudinal dispersion mechanisms during steady
flow of a fluid through unconsolidated spherical beads which include a stag-
nant fluid film surrounding the particle. Skopp and Warrick [14] studied
miscible displacement by considering there to be a mobile phase and a sta-
tionary phase, whereby solute transfer occurs through the mobile phase via
convection, and through the stationary phase via diffusion.
Vortmeyer and Schaefer [19] formulated a dual-region model for an adia-
batic packed bed with gas flowing through it. The main difference between
this model and the two-stage model proposed in this paper is that it uses
the same coordinate system to describe both the gas and solid phases,
and hence assumes an average temperature for the solid phase rather than
considering the specific geometry of the solid phase and thus allowing the
temperature to be determined at various points within.
Pruess’ [13] MINC method is conceptually similar and is a generalisa-
tion of the double-porosity concept originally proposed by Barenblatt [3]
and introduced into petroleum literature by Warren and Root [20], among
others, in the form of the double-porosity model. The MINC method is a
numerical method for simulating transient nonisothermal, two-phase flow
of water in a fractured porous medium.
Vargas and McCarthy [17] developed a novel Thermal Particle Dynamics
(TDP) simulation technique which incorporates both contact mechanics
and contact conductance theories in order to model the dynamics of flow
and heat conductance through granular materials.
Davis [6] used a two-stage approach based on McNabb [10] to model
pyritic oxidation within a waste rock dump, where it is assumed that oxy-
gen transport is the rate-limiting step in the oxidation process. He consid-
ered the difference in predictions between a dump assumed to comprise of
particles of a single or average size, and a dump where a range of particle
sizes is considered.
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3. The Two-Stage Heat Transfer Model

The two-stage heat transfer model is adopted from McNabb [10] in order
to solve the problem of heat transfer in a grain store. McNabb [10] first
proposed a two-stage model for the modelling of the propagation of pres-
sures in a porous medium with its permeability affected by a homogeneous
distribution of fissures which effectively partition the medium into blocks of
a particular geometry. This results in there being two pressures associated
with the medium, one with the fissures, and one with the blocks.
McNabb observed that in order to model such systems in their most
general form the problem of dimensionality must be confronted. Three
variables are needed to locate the block within the system, and then another
four variables, three of space and one of time, are required to describe the
block itself. For certain cases of these problems a factorisation can be
achieved such that the two problems, the fissures and the blocks, can be
essentially uncoupled. This then lends itself to a method of solution via
Laplace transforms.
The two-stage model is based on the assumption that in the neighbour-
hood of every point x in the fissure system, there is associated a block, and
within each block there is associated a specific geometry with a different
spatial coordinate system y. Hence, the model composes of two diffusion
equations, one for the pressure change in the fissures, and another for the
pressure change in the blocks. These two diffusion equations are coupled
together by the changes in fissure pressure acting as a boundary condition
for the blocks located in its neighbourhood.
It is assumed that the fissure permeability is high enough compared to the
block permeability so that the pressure drop in the fissure system across a
typical block is negligible. Furthermore, it is assumed that the fissure sys-
tem is in contact with the block system everywhere, that is, it is continuous,
with pressure changes reaching the blocks only via the fissure system, and
with the blocks acting as distributed sources of fluid to the fissure system.
Thus, the corresponding equations are:

φfµc
∂Pf

∂t
= Kf

∂2Pf

∂x2
+ F (x, t), (1)

φbµc
∂Pb

∂t
= Kb

∂2Pb

∂y2
, yεVx, (2)

F (x, t) =
Kb

Vx

∫ ∫

Sx

∂Pb

∂y
· dσ, yεSx, (3)

Pb(x, y, t) = Pf (x, t), yεSx, (4)
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This model is sometimes referred to as the fruitcake model because it is
analogous to modelling diffusion in a fruitcake which consists of a cake mix
(or highly permeable fissures) and the fruit (or less permeable blocks).
To adopt the McNabb approach for the grain store heat transfer prob-
lem, we begin by making the assumption that the grains are all uniform
in size, and that they are spherical in shape. This is a legitimate assump-
tion to make, in particular for the case of canola, which is currently of
particular interest to the Australian grain industry. We also assume that
convective currents are negligible as it is observed that there is effectively
no air movement within the peripheral layer. Thus, the one-dimensional
two-stage heat transfer model is:

∂Ta

∂t
= Ka

∂2Ta

∂x2
− F (x, t)

ρaca
, (5)

∂Tg

∂t
= Kg

(

∂2Tg

∂r2
+
2

r

∂Tg

∂r

)

, (6)

F (x, t) =
3κg(1− φa)

r

∂Tg

∂r
, r = a, (7)

Tg(x, r, t) = Ta(x, t), r = a, (8)

with the following initial and boundary conditions:

Ta(x, 0) = Ta0, Tg(x, r, 0) = Tg0, and Ta(0, t) = Tb,

where Ta(x, t) represents the temperature in the air at position x and at
time t, and Tg(x, r, t) represents the temperature in the grain at position r
at time t, and in the neighbourhood of x.
Equation (5) describes the temperature in the air, with a sink term F ,
equation (6) describes the temperature in the grain, equation (7) is the sink
term, describing the transfer of heat from the air to the grain through the
surface of the grain, and equation (8) is a continuity boundary condition
stating that on the surface of the grain, the air and grain temperatures
are in equilibrium. The model distinguishes between the air and grain
whereby heat flows through the air to the grains, and is then transferred
into the grain through its surface. The actual grain geometry is taken into
consideration with a separate spatial coordinate system used to represent
the temperature at various points within each grain kernel. Hence, there
are two separate spatial coordinate systems used, one for the grain bulk
(macroscopic) and one for the grain kernel (microscopic).
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4. A Solution Via Laplace Transforms

The two-stage model lends itself well to a solution technique involving
Laplace transforms. The method of solution is as follows: We begin by first
solving (6) for Tg using (8) as the boundary condition. We then calculate
(7) from the previously calculated value of Tg, which gives an expression
for the sink term F . We then substitute this into (5) and finally solve for
Ta.
We begin by taking Laplace transforms with respect to time and then
use a factorisation approach in Laplace transform space which allows us to
separate into functions of (x, s) and (r, s). Upon taking Laplace transforms
with respect to time of (5)–(8), and assuming zero initial conditions, we
have

∂2T a

∂x2
=
1

Ka

(

sT a +
F (x, s)

ρaca

)

, (9)

1

r2
∂

∂r

(

r2
∂T g

∂r

)

=
s

Kg
T g, (10)

F (x, s) =
3κg(1− φa)

a

∂T g

∂r
(x, a, s), (11)

T g(x, a, s) = T a(x, s), (12)

where

T a(x, s) = L {Ta(x, t)} =
∫ ∞

0

e−stTa(x, t) dt,

T g(x, r, s) = L {Tg(x, r, t)} =
∫ ∞

0

e−stTg(x, r, t) dt.

We now assume a factorisation. The physical significance of this factorisa-
tion is that the structure of the grain is independent of its position within
the grain bulk. The mathematical significance is simply that we can sepa-
rate into functions of x and r. The factorisation is as follows:

T g(x, r, s) = T a(x, s)φ(r, s), (13)

where φ(r, s) is such that

1

r2
∂

∂r

(

r2
∂φ

∂r

)

=
s

Kg
φ, r < a, (14)

φ = 1, r = a,
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lim
r→0

(

r2
∂φ

∂r

)

= 0.

The solution to (14) can easily be found to be

φ(r, s) =
a

r

sinh
(

r
√

s/Kg

)

sinh
(

a
√

s/Kg

) .

Hence, (11) becomes

F (x, s) =
3κg(1− φa)

a
T a(x, s)

∂φ

∂r
(a, s).

Now,

∂φ

∂r
=
a
√

s/Kgcosh
(

r
√

s/Kg

)

rsinh
(

a
√

s/Kg

) −
asinh

(

r
√

s/Kg

)

r2sinh
(

a
√

s/Kg

) ,

hence,
∂φ

∂r
(a, s) =

√

s

Kg
coth

(

a
√

s/Kg

)

− 1
a
.

Thus, (11) becomes

F (x, s) =
3κg(1− φa)

a
T a(x, s)

[
√

s

Kg
coth

(

a
√

s/Kg

)

− 1
a

]

.

Therefore, for (9) we have

∂2T a

∂x2
=

T a

[

1

Ka

(

s+
3κg(1− φa)

aρaca

[
√

s

Kg
coth

(

a
√

s/Kg

)

− 1
a

])]

. (15)

Now, using the transformed boundary conditions

T a(0, s) =
Tb

s
, lim

x→∞
T a(x, s) = 0,

we can easily find the solution to (15) to be

T a(x, s) =
Tb

s
e−x

√
p, (16)

and from (13) we have

T g(x, r, s) =
Tb

s
e−x

√
p
asinh

(

r
√

s/Kg

)

rsinh
(

a
√

s/Kg

) , (17)
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where

p =
1

Ka

(

s+
3κg(1− φa)

aρaca

[
√

s

Kg
coth

(

a
√

s/Kg

)

− 1
a

])

.

Inversions of equations (16) and (17) cannot be done analytically, so in the
next section we obtain small and large time approximations to them.

4.1. Small and large time analytical approximations

To obtain semi-analytical solutions to the inverse Laplace transforms of
(16) and (17), we consider small and large time approximations.
We begin by considering small time approximations, which corresponds
to the limit as s→∞.
Now,

lim
s→∞

p =
1

Ka

[

s+
3κg(1− φa)

aρaca

( √
s

√

Kg

− 1
a

)]

as lims→∞ coth(s) = 1.
Hence,

lim
s→∞

p =
1

Ka

(

s+m1

√
s−m2

)

where

m1 =
3κg(1− φa)

aρaca
√

Kg

and

m2 =
3κg(1− φa)

a2ρaca
.

Now,

(

s+m1

√
s−m2

)1/2
= s1/2

[

1 +

(

m1√
s
− m2

s

)]1/2

≈ s1/2

[

1 +
1

2

(

m1√
s
− m2

s

)]

= s1/2 +
m1

2
− m2

2
√
s

≈ s1/2 +
m1

2
.
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Hence,

lim
s→∞

T a(x, s) ≈
Tb

s
exp

{

− x√
Ka

(

s1/2 +
m1

2

)

}

=
Tb

s
exp

{

− x√
Ka

s1/2

}

exp

{

− xm1

2
√
Ka

}

.

Now,

lim
s→∞

sinh
(

√

s/Kg

)

a

sinh
(

a
√

s/Kg

)

r
=
1/2

(

er
√

s/Kg − e−r
√

s/Kg

)

a

1/2
(

ea
√

s/Kg − e−a
√

s/Kg

)

r

≈ a

r
e(r−a)

√
s/Kg .

Hence,

lim
s→∞

T g(a, r, s) =
Tb

s
exp

{

− x√
Ka

s1/2

}

exp

{

xm1

2
√
Ka

}

a

r
e(r−a)

√
s/Kg

=
aTb

rs
exp

{

− xm1

2
√
Ka

}

exp

{(

(r − a)
√

Kg

− x√
Ka

)

√
s

}

.

Upon inverting, we get

lim
t→0

Ta(x, t) = Tbexp

{

− 3xκg(1− φa)

2aρaca
√

Kg

√
Ka

}

erfc

{

x

2
√
Ka

√
t

}

,

and

lim
t→0

Tg(x, r, t) =

aTb

r
exp

{

−3xκg(1− φa)

2aρaca
√

Kg

√
Ka

}

erfc

{

− 1

2
√
t

(

(r − a)
√

Kg

− x√
Ka

)}

.

We now consider large time approximations, which corresponds to the
limit as s→ 0. Now, for small x, coth(x) ≈ 1/x+ x/3 + O(x3), hence

lim
s→0

p

=
1

Ka

(

s+
3κg(1− φa)

aρaca

[

√

s

Kg

(

1

a
√

s/Kg

+
a
√

s/Kg

3

)

− 1
a

])

=
1

Ka

(

s

[

1 +
κg(1− φa)

Kgρaca

])

,
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thus,

lim
s→0

T a(x, s) =
Tb

s
exp

{

−xs1/2

(

1

Ka

[

1 +
κg(1− φa)

Kgρaca

])1/2
}

.

Now,

lim
s→0

asinh(r
√

s/Kg)

rsinh(a
√

s/Kg)
=

a
(

er
√

s/Kg − e−r
√

s/Kg

)

r
(

ea
√

s/Kg − e−a
√

s/Kg

)

=
0

0
,

so that from L’Hopital’s Rule we find

lim
s→0

a
(

r/
√

Kg1/2s
−1/2cosh

(

r
√

s/Kg

))

r
(

a/
√

Kg1/2s−1/2cosh
(

a
√

s/Kg

)) = 1,

hence,

lim
s→0

T g(a, r, s) = lim
s→0

T a(x, s).

Upon inverting, we get

lim
s→0

T g(a, r, s) = lim
s→0

T a(x, s)

= Tberfc

{

x

2
√
t

(

1

Ka

[

1 +
κg(1− φa)

ρacaKg

])1/2
}

.

We observe that for large times, the air and grain temperatures are equiv-
alent due to equilibrium (steady state temperature) being reached, that is,
Ta = Tg = Tb as limit t→∞.

4.2. Some results

As the performance of the Stehfest algorithm is well known for diffusion
problems, we use it to determine the inverse Laplace transforms of T a(x, s)
and T g(x, r, s), equations (16) and (17).
The following is a list of the parameter values used: Tb = 10

◦C, Ta0 = 0
◦C,

Tg0 = 0
◦C, Ka = 2.2E-05m

2s−1, Kg = 8.3E-08m
2s−1, ρa = 1.177Kgm

−3,

ca = 1005JK
−1
g

◦C−1, κg = 0.001Jm
−1s−1◦C−1, a = 0.015m, r = 0.0001m,

φa = 0.6, Np = 18 (the Stehfest parameter).
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The scenario we envisage is that of a silo wall being heated by ambient
temperature Tb with the air and grain at some initial temperature, Ta0 and
Tg0, respectively.
Results pertaining to large time approximations are not illustrated as
they equal the boundary temperature Tb, as has been shown analytically
in the previous section, and agreement is found to be exact, to graphical
accuracy. Results illustrating the agreement between the numerical and
semi-analytical solutions for small and large time are also not shown as the
agreement is found to be exact, to graphical accuracy.
Figure 1 illustrates the variation of the numerical temperatures Ta (—)
and Tg (– –) with distance up to 30 seconds. There is a difference between
the two, with the heat penetrating noticeably further through the air than
the grain after the same amount of time has elapsed.
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Figure 1. Numerical temperatures Ta (—) and Tg (– –) vs distance up to 30 seconds

Figure 2 illustrates the variation of the temperature profiles of Ta and
Tg, up to 1000 seconds at a distance of 0.002m from the wall. It illustrates
the change in shape with time of the temperature profiles of air and grain
at the point x = 0.002m. Due to the lag between the two, the temperature
of the air approaches the steady-state temperature faster, as expected.
Also, as a result of the two temperatures being modelled differently, their
profiles are different in shape. Furthermore, the model predicts that as time



158 A. ANTIC AND J. M. HILL

increases, the air and grain temperatures reach a steady-state temperature,
the boundary temperature Tb.
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Figure 2. Numerical temperatures Ta (—) and Tg (– –) vs time at x = 0.002m

5. Two-Stage Model Versus Double-Diffusivity Model

Antic and Hill [1] developed a double-diffusivity heat transfer model for pre-
dicting temperatures in grain stores, and in particular, within the periph-
eral layer. The double-diffusivity heat transfer model in its most general
form is:

∂Ta

∂t
= Ka

∂2Ta

∂x2
− k1Ta + k2Tg,

∂Tg

∂t
= Kg

∂2Tg

∂x2
+ k3Ta − k4Tg,

where k1 = ka/(ρaca), k2 = kg/(ρaca), k3 = ka/(ρgcg), and k4 = kg/(ρgcg).
A semi-analytical solution was obtained by the Heat Balance Integral Method
(HBIM), and was found to be in very good agreement with an explicit
FTCS finite difference numerical solution. We note that it can be shown
that Xi ≈ ci

√
t, for i = a, g and c constant, where Xi represents the pene-

tration depth through the air or grain path.
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The model is based on a heat transfer variant of the theory of double-
diffusivity as proposed by Hill [8]. The double-diffusivity model originates
from Barenblatt et al [3]. Both the two-stage model and the double-
diffusivity model are dual region models in that they identify air and grain
temperatures separately within the grain bulk. The microscopic configu-
ration of the grain bulk is important to both models for obtaining a well-
defined macroscopic description, but they differ in how they identify this
microstructure. The fundamental assumption behind the double-diffusivity
model is that there exist two connection pathways such that both the air
and grain occupy each point within the grain bulk, with the temperature of
that point being the average of the two temperatures. Heat transfer takes
place along either the air path or the grain path, with the possibility of the
heat being transferred from one path to the other. The main problem with
such an assumption, as outlined in Davis and Hill [5] who reviewed the
approaches of Barenblatt [3] and McNabb [10] for the modelling of flow in
fissured rocks by considering their suitability to particular problems, is that
it assumes that any infinitesimally small volume of the grain bulk is occu-
pied by both air and grain, meaning that it is impossible to know whether
a particular point lies within either the air or the grain. The two-stage
model does not suffer such a problem. It too considers a double-porosity
mechanism, but uses a greater level of detail for the temperature of the
grain particles. In the double-diffusivity model the grain particle is treated
as a lump with one uniform temperature throughout, whereas the two-stage
model identifies a separate spatial coordinate system with the grain, that
is, it considers the variation in temperature with distance from the surface
of the grain kernel.
We now compare the numerical results obtained for the double-diffusivity
heat transfer model [1], with the numerical results of the two-stage heat
transfer model. The volume-averaged grain temperature is used. The same
parameter values are used as in Section 4.2, along with ρg = 513, cg = 1380,
and ka = 0.01, kg = 0.01.
Figure 3 illustrates the variation of the two-stage and double-diffusivity
numerical temperatures Ta, (—) and (- -), and Tg, (– –) and (· · ·), respec-
tively, vs distance up to 30 seconds. We observe that both the air and grain
temperatures of the two-stage model lag behind the double-diffusivity heat
transfer model. This is due to the fundamental differences in how the two
models define the air and grain temperatures. Both models predicts that
there exists a difference in the air and grain temperatures, with one lagging
the other. In Figure 4 we observe that this lag decreases as time increases,
and hence, the two models effectively predict the same values.
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Figure 3. Two-stage and double-diffusivity numerical temperatures Ta, (—) and (- -),
and Tg , (– –) and (· · ·), respectively, vs distance up to 30 seconds

Figure 4 illustrates the variation of the two-stage and double-diffusivity
numerical temperatures Ta, (—) and (- -), and Tg, (– –) and (· · ·), re-
spectively, up to 700 seconds at a distance of 0.002m from the wall. Once
again, we observe that both the air and grain temperatures of the two-
stage model lag behind the double-diffusivity heat transfer model, which
approach the steady-state temperature faster. We also note that the profile
of the two-stage heat transfer model grain temperature prediction is differ-
ent to that of the double-diffusivity heat transfer model. This is primarily
due to the fundamental differences in how the two models define the grain
temperature. Both models predict that as time increases, the air and grain
temperatures reach a steady-state temperature, the boundary temperature
Tb.

6. Conclusions

An understanding of the flow of heat in the peripheral layer between the
grain bulk and the grain store wall is very important from many indus-
trial perspectives. Here we have proposed using the two-stage heat transfer
model, which takes into account the fact that the rate of heat transfer
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Figure 4. Two-stage and double-diffusivity numerical temperatures Ta, (—) and (- -),
and Tg , (– –) and (· · ·), respectively, vs time at x = 0.002m

through the grain is different to that through the interstitial air surround-
ing it, and where the grains are assumed to be well-defined as spheres.
On comparing the two-stage model with the previously proposed double-
diffusivity model of the authors [1], we find that models predict that there
exists a difference in the air and grain temperatures of the grain bulk. We
observe that the predictions of the air and grain temperatures of the two-
stage model lag behind those of the double-diffusivity heat transfer model,
but this lag decreases as time increases. This is related to the fundamental
differences existing between the two models, particularly, with how they
define not only the microstructure of the air and grain, but the interaction
between the air and grain. Investigating the temperature profiles within
the peripheral layer via experimentation is difficult due to the small scales
involved, and it is even more difficult to measure the air and grain temper-
atures separately. The main motivation behind this modelling is the lack
of experimental data which is currently available. The results obtained are
physically reasonable, and at least provide some insight into the potential
differences existing between the air and grain temperatures.
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Nomenclature

Ta is the temperature of air

Tg is the temperature of grain

Ka is the thermal diffusivity of air

Kg is the thermal diffusivity of grain

ka is the effective heat transfer coefficient of air

kg is the effective heat transfer coefficient of grain

κa is the thermal conductivity of air

κg is the thermal conductivity of grain

ρa is the density of air

ρg is the density of grain

ca is the specific heat of air at constant pressure

cg is the specific heat of grain at constant pressure

Ta0 is the initial temperature of the air

Tg0 is the initial temperature of the grain

Tb(t) is the boundary temperature

r is the spatial coordinate system in the grain

a is the radius of the grain

Φa is the fraction of grain bulk volume occupied by air

Pf (x, t) is the fluid pressure in the fissure system at position

x at time t

Pb(x, y, t) is the pressure change in the block at position y at

time t located in the neighbourhood of position x

Φf is the porosity of the fissure system

Φb is the porosity of the blocks

µ is the dynamic viscosity of the fluid

c is the compressibility of the fluid at constant pressure

Kf is the permeability of the fissure system

Kb is the permeability of the blocks

Vx is the volume of block in the neighbourhood of x

Sx is the surface of the block in the neighbourhood of x
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