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Abstract. An efficient optimum solution is presented for a real-life employee days-
off scheduling problem with a three-week cycle. Over a given work cycle, each worker
is given 14 successive workdays and 7 successive off days. This three-week days-off
timetable is referred to as the (14, 21) schedule. Given different labor demands for
each day of the week, the primary objective is to minimize the number of workers. The
secondary objective is to reduce transportation cost by minimizing the number of active
days-off patterns. The solution technique utilizes the dual LP solution to determine the
minimum number of workers and feasible days-off assignments, without using linear or
integer programming. The simple solution technique eliminates the need to use integer
programming for this particular scheduling problem.
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1. Introduction

Employee scheduling is a complicated multiple-objective problem, involv-
ing such diverse considerations as varying manning requirements, costs,
availabilities, skills, and personal preferences. The efficient scheduling of
the workforce can greatly reduce the labor cost, which is generally a signif-
icant proportion of total cost for most organizations. Days-off scheduling
is a problem that arises in establishments that have seven-day workweeks,
such as restaurants, power stations, and hospitals. The problem is to sat-
isfy the continuous work requirements with employees who cannot work
continuously. Therefore, the number of employees assigned to each days-
off pattern must be determined, in order to satisfy all daily labor demands
with the minimum number or cost of employees.

This paper is concerned with the (14, 21) days-off scheduling problem,
which has a three-week or 21-day cycle. During a given cycle, each employee
is assigned one work stretch of 14 consecutive workdays and a break of 7
consecutive days off. This is an actual work schedule used by a major oil
company to schedule employees in remote areas. The main advantage of
this schedule is the reduced cost of transportation to remote work locations.
Under the (14, 21) schedule, each employee gets only one 7-day break
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instead of the usual three weekends off during the three-week cycle. The
(14, 21) timetable is designated as a restricted work schedule; it is only
applicable to employees in remote work locations.

The primary objective of the (14, 21) days-off scheduling problem is to
minimize the workforce size, i.e., total number of employees assigned. In
order to reduce transportation cost, we must add a secondary objective,
which is that of minimizing the number of active days-off patterns (i.e.,
patterns to which some employees are actually assigned). All employees
assigned to the same off days pattern will be transported together, usu-
ally by aircraft flights. Since the company owns its private aircraft fleet,
transportation cost depends on the number of flights, not on the number
of employees on each flight. Therefore, total transportation cost is propor-
tional to the number of active days-off patterns.

Subsequent sections of this paper are organized as follows. First, re-
cently published days-off scheduling approaches are surveyed, then integer
programming models of the (14, 21) problem and its dual are presented.
Subsequently, procedures for determining the minimum workforce size and
assigning workers to days-off patterns are developed. Finally, conclusions
are given.

2. Literature Survey

Workforce scheduling problems are traditionally classified into three types:
shift scheduling, days-off scheduling, and tour scheduling. Shift (or time-of-
day) scheduling determines each employee’s work and break hours per day.
Days-off (or days-of-week) scheduling determines each employee’s work-
days and off days per week or multiple-week work cycle. Tour scheduling
combines the shift and days-off scheduling problems by determining each
employee’s daily work hours and weekly workdays. Nanda and Browne
(1992) provide a thorough survey of literature on all three problem types.
The focus in this paper is on days-off scheduling methodologies published
since 1990.

A great deal of interest has been directed at the (5, 7) days-off problem,
in which two consecutive days off are given per week. Alfares and Bailey
(1997) establish a lower bound on the workforce size for the (5, 7) problem,
which is used within an integrated project manpower and activity schedul-
ing algorithm. Alfares (1998) develops an expression for the minimum
workforce size, and includes it as a constraint in the linear programming
(LP) relaxation of the integer programming model.

Hung and Emmons (1993), who analyzed compressed workweek schedul-
ing, develop an optimal algorithm for the 3-4 workweek, assuming D work-
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ers are required everyday. Their multiple-shift, hierarchical-workforce model
allows shift rotation and worker substitution. Alfares (1997) develops a
single-shift optimum solution technique for 3-day workweeks. Burns et al.
(1998) present a set-processing methodology for 3-day and 4-day workweeks
with work stretch constraints. Billionnet (1999) uses integer programming
to schedule a hierarchical workforce to satisfy varying labor demands over
the week, giving each worker n off-days per week.

Hung (1991) presents a single-shift model for compressed workweeks, with
the objective of minimizing the workforce size. This days-off scheduling
model is based on two assumptions: (1) D workers are required on weekdays
and E workers on weekends, where D ≥ E, and (2) each worker must have
A out of B weekends off. Under the same assumptions, Narasimhan (1996)
considers multiple worker types, giving each worker two days off per week.
Emmons and Burns (1991) also consider a workforce composed of n worker
types, but assume a constant labor demand for all days of the week.

Nanda and Browne (1992, pp. 94-97) optimally solve the general (r,
n) scheduling problem by the first period principle algorithm, giving each
employee r consecutive work periods in a cycle of n periods. Although
the first period principle algorithm can be adapted to the (14, 21) days-off
scheduling problem, it has two significant disadvantages. First, it cannot
guarantee that the minimum number of days-off patterns are used. Second,
it involves six-steps with lots of calculations that include assigning employ-
ees day by day for several cycles. The solution presented in this paper
is vastly simpler, and it produces the minimum number of active days-off
patterns.

2.1. Mathematical Programming Models

The integer linear programming model shown below represents the (14, 21)
days-off scheduling problem. Objective function (1) includes two prioritized
goals. The primary goal is to minimize the total number of workers. The
secondary goal is to minimize the number of active days-off patterns (i.e.,
the number of patterns to which some employees are actually assigned).
The small value of its coefficient ε indicates the smaller weight of the sec-
ondary objective. Labor demand constraints (2) ensure that daily labor
demands are satisfied for every day during the three-week cycle. As typical
of most real-world situations, daily labor demands (r1, ..., r7) are allowed
to vary from day to day of the week, but are constant from week to week.
Logical constraints (3) are necessary to ensure that vj is equal to 1 if xj is
positive, and vj is equal to 0 if xj is equal to 0.
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MinimizeZ =
21∑

j=1

xj + ε
21∑

j=1

vj (1)

subject to:

21∑
j=1

aijxj ≥ ri, i = 1, . . . , 21 (2)

Mvj ≥ xj , j = 1, . . . , 21 (3)
xj ≥ 0 and integer, j = 1, . . . , 21 (4)

vj = 0 or1, j = 1, . . . , 21 (5)

where

aij = 1 if i is a workday for days-off pattern j, 0 otherwise.
Matrix A = {aij} is shown in Table 1

xj = number of workers assigned to weekly days-off pattern j,

i.e., number of workers whose first day off isj
ε = small constant (ε � 1)

vj = logical variable: vj = 1 if xj > 0, and vj = 0 if xj = 0
M = large constant (M � 1)
ri = minimum number of workers required on day i,

where rk = rk+7 = rk+14, k = 1, . . . , 7

The model formulated above is a non-trivial pure integer programming
(IP) problem, with 42 constraints and 42 integer variables. Half of the
variables (x1, ..., x21) are general integer, while the other half (v1, ..., v21)
are binary. The size and pure-integer nature of this model make optimum
solution by integer programming inefficient. Computational experiments
have been carried out on a small number of initial test problems with dif-
ferent characteristics. Optimum solutions have been attempted using both
Hyper Lindo r© and Excel Solver r© on a 450-MH Pentium II with 128MB of
memory. In many cases, several hours were insufficient to obtain optimum
integer programming solutions. Thus, an efficient optimum method will be
presented next to solve this scheduling problem.

In order to develop this method, the first step taken is to simplify the
above IP model. First, the secondary objective of minimizing the number
of active days-off patterns will be temporarily ignored. Therefore, all the
variables (v1, ..., v21) and constraints (3) and (5) relevant to this objective
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Table 1. Days-off matrix A = {aij} for the (14, 21) schedule

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

2 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

3 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

4 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

5 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

6 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

7 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

8 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

9 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

10 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

11 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

12 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

13 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

14 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1

15 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1

16 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1

17 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1

18 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1

19 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1

20 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1

21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

will be removed from the model. The secondary objective will be consid-
ered again at a later stage in the development of the solution. For now,
however, the simplified model includes only constraints (2) and (4), which
are imposed on the new objective function:

Minimize W =
21∑

j=1

xj (6)

where W is the workforce size, i.e., number of workers assigned to all 21
days-off patterns.

The dual of the LP relaxation of the simplified days-off scheduling model,
defined by (2) and (6), with dual variables y1, ..., y21, is:
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Maximize W =
21∑

i=1

riyi (7)

subject to
21∑

i=1

aijyi ≤ 1, j = 1, . . . , 21 (8)

yi ≥ 0, i = 1, . . . , 21 (9)

3. The Minimum Workforce Size

Given a one-week varying daily labor demands rk, k = 1, . . . , 7, the min-
imum workforce size W can be determined using the dual model shown
above, without integer programming. To solve the dual problem we allo-
cate the unit resource - right hand side of constraints (8) - among the 21
dual variables in order to maximize the dual objective W . Based on a com-
plete enumeration of all dual solutions, the optimum solution is obtained
by allocating the unit right hand side of (8) to only three dual variables:
ym, ym+7, and ym+14, where m = 1, . . . , 7. Matrix A shown in Table 1 in-
dicates that only two of these three variables are active or present in each
constraint (8).

Consequently, we can assign a value of 1/2 to each of the three variables
ym, ym+7, and ym+14. Since rm = rm+7 = rm+14, substituting into (7) pro-
duces the workforce size as W = 3rm/2. Given that the objective in (7) is
maximization, we must choose m such that rm = rmax = max{r1, . . . , r7}.
Hence, the workforce size W is determined by multiplying the maximum
daily labor demand rmax by 3/2. We must round up W in case it is not an
integer; thus we obtain the following expression for the minimum workforce
size:

W =
⌈

3
2

rmax

⌉
(10)

where dae is the smallest integer greater than or equal to a

4. Days-Off Assignments

The optimum dual solution developed above will be used to determine
days-off assignments x1, . . . , x21. The principles of complementary slack-
ness and basic primal-dual relationships will be used to obtain the solution
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of the primal (original) problem. At optimality, the primal and dual ob-
jective functions are equal. Thus for both primal and dual problems, the
optimum value of the workforce size is the same, which is W = d3rmax/2e.
Utilizing this information in the original model defined by (1) to (5), with
the objective of minimizing the number of active days-off patterns, the
optimum solution is given by:

xk = xk+7 = drmax

2
e,

xk+14 = brmax

2
c, k = 1, . . . , 7 (11)

where bac is the largest integer less than or equal to a
Proof is provided in the Appendix that Equation system (11) represents

a feasible and optimum solution to the (14, 21) days-off scheduling problem
defined by equations (1) to (5). The value of k can be any integer from 1
to 7, which provides flexibility in choosing the active days-off assignments.
For example, rmax = 7 in a certain work location. If we choose k = 1, then
the solution is given as x1 = x8 = 4, and x15 = 3. The solution defined by
(10) and (11) can be implemented by the following simple rules:

1. Assign a workforce of a size equal to three-halves the maximum daily
manpower requirement (rounded up to the next integer).

2. Make one trip on the same day of the week to deliver workers to and
from the work site.

3. Transport half the maximum daily manpower requirement (rounded up)
in two of the trips and the remainder in the third trip of the three-week
cycle.

5. Conclusions

An efficient optimum solution technique has been presented for scheduling
employees using a real-life days-off schedule with a three-week cycle. The
days-off timetable is referred to as the (14, 21) schedule. This schedule
is mainly used for scheduling employees in remote work location, where
transportation cost is high. Each employee is given one break consisting of
seven consecutive days instead of the usual three weekends off during the
three-week cycle. As typical of most real-life staffing situations, daily labor
demands are assumed to vary between weekdays, but remain constant from
week to week.
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The primary objective of the solution technique is to minimize the work-
force size. The secondary objective is to reduce transportation cost by
minimizing the number of active days-off patterns, i.e., patterns to which
some employees are assigned. The optimum solution by integer program-
ming has been found to be inefficient. Therefore, an optimum, simple
solution method has been developed. This method does not involve linear
or integer programming, but utilizes the dual solution and primary-dual
relationships. The solution method is simple enough to use manual calcu-
lations.
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Appendix

Proof of feasibility and optimality of the solution defined by Equa-
tion (11)

The solution specified by (11) is feasible since, as seen from Table 1, two of
the three variables (xk, xk+7, xk+14) are always present in each constraint
(2), or

ai,k + ai,k+7 + ai,k+14 = 2, i = 1, ..., 21, k = 1, . . . , 7 (A.1)

Therefore, the left-hand side of each constraint (2) is at least equal to
rmax, since

21∑
j=1

aijxj = ai,kxk + ai,k+7xk+7 + ai,k+14xk+14

= ai,k

⌈rmax

2

⌉
+ ai,k+7

⌈rmax

2

⌉
+ ai,k+14

⌊rmax

2

⌋
≥

⌈rmax

2

⌉
+

⌊rmax

2

⌋
= rmax (A.2)

The solution defined by (11) is optimal in terms of both prioritized goals
in (1). First, (11) gives the minimum workforce size W defined by (10),
since

W = xk + xk+7 + xk+7 =
⌈rmax

2

⌉
+

⌈rmax

2

⌉
+

⌊rmax

2

⌋
=

⌈
3
2
rmax

⌉
(A.3)

Second, (11) provides the minimum number of active days-off patterns,
which is three (xk, xk+7, xk+14). If we assign only two active days-off
patterns xm and xn, the left-hand side of constraints (2) will be equal to
ai,mxm +ai,nxn. As Table 1 shows, for any two columns m and n in matrix
A, there will be at least one row i for which eitherai,m or ai,n is equal to
zero. Thus, the left-hand side value will be only xm for some constraints
(2) and only xn for some other constraints (2). Since xm + xn = W , the
maximum value of min(xm, xn) = bW/2c ∼= 3

4rmax, which is less than
rmax, making the solution infeasible.

Hence, with only two active days-off patterns, there will be some days in
which insufficient workers are assigned to meet labor demands. Needless
to say, this will be also the case if there is only one active days-off pattern.
Thus, the minimum number of active days-off patterns required to produce
a feasible solution is three.
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