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Abstract. Rapid and dramatic changes in climate and glacial conditions have taken
place during the last 2.5 million years of the earth’s history. Huge ice sheets expanded
and contracted periodically, at times covering large areas of North America and Europe.
Global sea levels dropped and rose 100 m to 150 m in response to the growth and
melting of glaciers, causing continental coast lines to move far into present sea areas and
then retreated again. We will use a simple conceptual model to demonstrate that these
climate and glacier fluctuations can be a consequence of a supercritical Hopf bifurcation
in models of the “ocean-land-atmosphere” system.
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1. Introduction

Dramatic changes have taken place during the last 2.5 million years of
the earth’s climatic history. Very cold and comparatively warmer phases
alternating in quick succession have caused large ice sheets to expand and
contract. Continents at times extended far into present sea areas as sea
levels periodically dropped and rose 100 m to 150 m in response to the
growth and melting of glaciers. Continents and islands that today are
separated by oceans were during these intermittent ice ages connected by
land bridges, and large parts of present-day desert areas were covered with
vegetation.

With additional information obtained during the last few decades, a more
detailed interpretation of past events has been made possible [1]. The early
and middle Eocene climate was very warm, and no glaciers existed even
in the high-latitude polar regions. Available records from central Europe
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show a gradual cooling from about 40 million years ago to the present
time. About 2.5 million years ago dramatic climate fluctuations started (see
fig. 1). From then on, throughout the late Pliocene and the Pleistocene,
mid-latitude glaciers existed providing a fluctuating ice coverage over sig-
nificant areas of the earth’s surface. The amplitudes of these fluctuations
increased considerably 0.9 million years ago, when the largest mid-latitude
ice sheets formed and left their imprints.
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Figure 1. Mean annual temperature in central Europe for the last 50 million years
(adapted from Andersen and Borns [1], fig. 1-19 ).

During the coldest phases, the true ice ages or glacials, ice sheets ex-
panded over large areas of North America and Europe. Some of the coldest
periods representing the glacial phases had mean annual temperatures in
the order of 10 − 20◦C lower than today in areas beyond the ice sheets
in parts of Europe and USA. In parts of the subtropics and continental
tropics temperatures were about 4 − 7◦C lower, while along the marine
equator, they were only slightly lower, or no lower, than today [1]. During
the intermediate warmer phases, the interglacials, the climate and glacier
conditions were about the same as they are today, although in the warmest
parts of some interglacials the mean summer temperatures were in the or-
der of 2◦C warmer than today in much of Europe and North America.
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Indications for these glacier fluctuations are found both in oxygen-isotope
and in terrestrial stratigraphy data [1].

Since the discovery of these climate and glacial fluctuations, scientists
have speculated about their causes, and numerous theories have been pro-
posed [1]. Some of the best known suggest the variations are a consequence
of: 1. astronomic factors; 2. sun-spot activity; 3. ocean currents; 4. atmo-
spheric composition; 5. volcanic dust or dust from disintegrated meteorites
in the atmosphere; 6. surges of the Antarctic Ice Sheet; 7. rising or falling
of parts of the earth’s crust; 8. solar-terrestrial magnetic coupling; 9. fluc-
tuation of the upper atmospheric jet-streams; 10. asteroid impacts; 11. in-
teraction between ocean currents and atmospheric circulation; and 12. the
“snowblitz” theory. (This recently formulated theory suggests a series of
harsh winters and cool summers started the glaciations.) Objections have
been presented against all of these theories, and many of them have been
rejected outright as being too unlikely. A requirement that most of them
fail to fulfil is an explanation of the fairly regular pattern of glacials and
interglacials, as shown by the oxygen-isotope data [1].

A theory that seems to fit this pattern best is the astronomic Milankovitch
theory, which attributes the climate and glacier fluctuations to eccentric-
ity of the earth’s orbit (which varies in 100 000 years cycle), the obliq-
uity (which varies between about 24.5◦ and 22.5◦ with 41 000 years pe-
riod) and the precession (which varies with 23 000/19 000 years period).
However, some serious objections have also been raised against this the-
ory [1]. First of all, the theory requires glacial and climate fluctuations
in the northern hemisphere to be out-of-phase with the fluctuations in the
southern hemisphere whereas most field observations indicate that in fact
the fluctuations are in phase in both hemispheres. Secondly, the calcu-
lated changes in energy-input to the earth’s atmosphere and surface due to
the Milankovitch-predicted changes are too minor when compared with the
magnitude of the actual changes. And thirdly (and of most importance),
according to this theory climate oscillations should have occurred through-
out all of earth’s history, whereas in fact the global climate seems to have
been quite stable throughout most of it [1].

Presently available data [1] indicates the possibility for at least two dif-
ferent global climate regimes on earth. The first of them, observed for
most of the earth’s history, is a quite stable regime similar to that of the
early and middle Eocene. The second, that which has prevailed throughout
the late Pliocene and the Pleistocene, is an unstable regime whose distinc-
tive feature is a succession of alternating warm and cold phases. Figure 1
demonstrates how the global climate shifts from one regime to the other.
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Our aim in this paper is to demonstrate that these climate and glaciers
oscillations can be associated with a supercritical Hopf bifurcation in the
global climate system. The term supercritical Hopf bifurcation refers to
the shifting stability of an equilibrium leading to the development of a
periodic orbit (a stable limit cycle) from a stable equilibrium point, as
a parameter crosses a critical value. It implies rising stable oscillations
of increasing amplitude in a system, once in a stable equilibrium state.
Moreover, minor variations of a parameter’s value can lead to dramatic
change in the behaviour of such system. Qualitative descriptions of the
climate and glacier dynamics during the Pliocene and the Pleistocene, and
especially the fairly regular pattern of glacials and interglacials with their
increasing in time amplitudes fit quite well the general pattern of behaviour
of systems subject to a supercritical Hopf bifurcation.

2. Model

Water is by far the most abundant and important substance at the earth’s
surface. There are 1.4 billion km3 of it in its three phases: liquid water,
ice, and water vapour. At present the earth’s water is distributed as shown
in the table 1.

Of course, the water distribution has varied during the Pleistocene. For
instance, during the last glacial maximum 18,000 years ago, sea level dropped
about 130 m, accounting for a transfer of about 47×106 km3 of water (equal
to about 3.5% of the oceanic water volume) from the oceans onto the land
in form of ice and snow [3], while during interglacials practically all of the
continents were ice-free.

We assume that long-term global water stocks are divided between two
large interacting reservoirs labelled here as O (for ocean) and L (for land)
(see fig. 2). The reservoir O contains all ocean water of total mass u,
including the ice of the ocean ice sheets. The reservoir L contains water of
total mass v stored on land as snow and ice. Thus these reservoirs combined
contain about 99.3% of the earth’s surface water (see table 1).

Both reservoirs interact with the earth’s atmosphere. We neglect the
atmospheric water vapour (and thermal energy) content as small compared
with the volumes of the oceans and the continental ice and snow.

We assume that these two reservoirs continuously exchange water mass
and heat, and that there is a long term mean thermal energy content for
each of them. The latter assumption is quite justified for long terms, since
the thermal equilibrium in the systems ocean—air above and land—air
above can be achieved comparatively quickly. (By long term we mean
averaged over decades but varying slowly from one millennium to the next.)



LONG-TERM GLOBAL CLIMATE DYNAMICS 205

Table 1. Distribution of water on the earth’s surface (adapted from
Berner and Berner [2], p. 13).

Reservoir Volume (106 km3) Percent of Total

Oceans 1370 97.25
Continental ice sheets 29 2.05

and glaciers
Groundwater 9.5 0.68
Lakes 0.125 0.01
Soil moisture 0.065 0.005
Atmosphere 0.013 0.001
Rivers 0.0017 0.0001
Biosphere 0.0006 0.00004

Total 1408.7 100
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Figure 2. Global water balance.
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The global water mass V at the earth’s surface has remained fairly con-
stant over geological time [2], p. 19, so that

u + v = V = constant. (1)

Variation of the water distribution during the Pleistocene is due to a con-
tinuous mass exchange between the oceans and the continental glaciers.
Evaporated ocean water is transported onto the land as precipitation (rain,
hail or snow). Snowfall tends to increase the mass of the continental ice
sheets, while the rain-water and glacial melts quickly run off into the oceans
through the continental river systems. Hence the function v(t) satisfies

v̇ = s−m (2)

where s(t) is the rate of snowfall on the land, m(t) is the rate at which the
ice and snow reserves melt.

The primary energy source for the earth’s surface is solar radiation. It
forms 99.98% of the total energy flux to the earth’s surface. (Geothermal
heat provides some 0.018% and tidal energy adds another 0.002% of the
total energy flux [2], p. 20 .) Consequently, solar radiation is the dominant
influence on circulation of the atmosphere and oceans and the only energy
source that will be considered in this paper.

Both reservoirs are continuously absorbing incoming short-wave (from
0.3 to 5 µm [5], p. 26) solar radiation of intensity k at rates EO and EL,
converting it to stored thermal energy. Both reservoirs are also continuously
emitting energy, re-radiating it at rates lO and lL as longer-wave (from 4 to
100 µm [5], p. 26) infrared earth’s radiation into open space. We assume
the heat exchange between the reservoirs is mainly via latent heat transfer.
Latent heat is injected into the atmosphere above the oceans as water
vapour. There it could be transported onto the continents as precipitation,
and subsequently released by condensation (and even further by freezing
in the case of snowfall) into the atmosphere. The heat must be also spent
to melt the continental ice or snow . Hence the heat fluxes to and from the
reservoirs O and L satisfy the equations

q̇O = EO − γvp−W (p)− lO, (3)
q̇L = EL + γvp + γms− γmm− lL, (4)

where qO(t), qL(t) are the heat contents of the reservoirs O and L; p(t) is
the total precipitation (snowfall s(t) plus rainfall r(t)) rate; γv, γm are the
latent heats of vaporisation and melting for water; W (p) is the heat spent
on work to transport the water of mass p from the ocean onto the land.
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The system (2), (3), (4) is in equilibrium when

s = m, EO = W (p) + lO + γvp, EL = lL − γvp.

For the purpose of further discussion we make some conjectures and as-
sumptions that allow us to define the functions of the system (2), (3), (4)
and the relationships governing the variables.

Assume that the total flux of water from the oceans onto the land (the
total precipitation rate p) is proportional to the difference between the
mean ocean temperature tO and the mean land temperature tL, i.e.

p = s + r = a(tO − tL). (5)

The total precipitation is composed of rain and snow with a constant ratio
of the snow s(t) to the total precipitation p(t), i.e.

s = δp, where δ ∼= 0.5. (6)

We neglect the work W (p) spent on the transportation of the precipita-
tion, i. e.

W (p) = 0, (7)

since a comparatively small part (about 0.7% [2], p. 27) of the incoming
solar radiation is converted into the energy of motion of ocean currents,
winds, and waves.

The rate of snow melting m(t) depends on the temperature of the atmo-
sphere above the land tL and (since ice and snow melts on its surface) on
the size of the ice surface area rather than the ice mass. Hence

m = btLvκ, where 0 < κ < 1. (8)

The rates of heat emission lO, lL are directly proportional to the temper-
ature in the reservoirs

lO = ctO, lL = ctL. (9)

We assume that the rate of absorption of solar radiation by the ocean is
proportional to the solar radiation intensity at the earth’s surface k only,
i. e.

EO = kα. (10)

Of course, the rate of the solar radiation absorption by the ocean depends
on the ocean’s surface area. However, since the continental shelf in the
tropics is narrow, the tropical area of the oceans remains fairly constant as
the ocean’s level varies from 100 m to 150 m.
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The rate of the absorption of solar radiation by the land is proportional to
the solar radiation intensity k, and (since white snow reflects more than 70%
of the incoming solar radiation in contrast to 10-20% from some forests)
depends inversely on the ice and snow surface area. We define it by the
expression

EL = kβ

(
1− vκ

M

)
, where M > 0. (11)

The mean temperatures dependence of both reservoirs is assumed to be
given by the expressions

COtO = qO, CLtL = qL, (12)

where CO is the total mean heat capacity of the oceans water and CL is the
total mean heat capacity of the reservoir L. The heat qL is stored mainly
by the atmosphere, and CL is the total heat capacity of the atmosphere in
the reservoir L at the constant volume.

Under the assumptions (5)–(12) the equations (2), (3), (4) take the form

v̇ = aδtO − aδtL − btLvκ, (13)

ṫO = k
α

CO
+

γva

CO
tL − (γva + c)

CO
tO, (14)

ṫL = k
β

CL
− k

β

MCL
vκ +

γa

CL
tO − γa + c

CL
tL +

bγm

CL
tLvκ, (15)

where γ = γv + δγm. The condition

B2 − 4AC > 0, (16)

where

A = c(c + 2aγv), B = αaγv + β(aγv + c) + cσ, C = ασ, σ =
aβδ

Mb
,

ensures that the system (13), (14), (15) has two equilibria Q1 and Q2 given
by

v̄ =
[

aδ(α− ct∗)
bt∗(c + aγv)

] 1
κ

, t̄O =
α + aγvt∗

c + aγv
k, t̄L = t∗k. (17)

Here

(t∗)i =
B ±√B2 − 4AC

2A
(i = 1, 2).

(The sign “+” for Q1 and “−” for Q2.) It is easy to see that t∗ and v̄ do
not depend on k while t̄O and t̄L depend on k linearly.
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It is reasonable to demand that both of the equilibria Q1, Q2 be located
in the positive area of the phase space. If the equilibria Q1, Q2 exist, then
both t̄O, t̄L are positive. The condition

α− ct∗ > 0 (18)

provides that v̄ > 0 holds for both equilibria. If conditions (16) and

2αc + 4αaγv −B > 0

hold, then (18) is equivalent to the condition

(2αc + 4αaγv −B)2 −B2 + 4AC

= [2αc + 3αaγv − β(aγv + c)− cσ]2

−[aαγv + β(aγv + c) + cσ]2 + 4cασ(c + 2aγv)
= 4α(c + 2aγv)[α(aγv + c)− β(aγv + c)− cσ] + 4α(c + 2aγv)cσ
= 4α(α− β)(c + 2aγv)(c + aγv) > 0,

which holds provided
α > β. (19)

We assume for further discussion that both conditions (16) and (19) hold.
These conditions seem to be realistic.

3. Supercritical Hopf bifurcation

A basic feature of the system (13), (14), (15) is it has possibilities for the
occurrence of a supercritical Hopf bifurcation.

Theorem 1 If

η̄ =
b(γva + c)(CO + CL)t∗

CO
− bσ

aγv + c

( α

t∗
+ aγv

)
< 0,

then the system (13), (14), (15) with the conditions (16), (19) admits a
supercritical Hopf bifurcation of the equilibrium Q1 to a stable closed orbit,
with the solar radiation intensity k as the bifurcation parameter. If η̄ ≥ 0,
then the equilibrium Q1 is stable for all k > 0.
The equilibrium Q2 is unstable for all k > 0.

Proof: According to the Hopf bifurcation theorem [6], p. 18-25 a su-
percritical Hopf bifurcation occurs when a pair of isolated nonzero, simple
complex conjugate eigenvalues λ(k), λ(k) of the linearised system crosses
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the imaginary axis from left to right at k = kcr at nonzero speed, i.e.,
Reλ(kcr) = 0 and d(Re λ(k))

dk

∣∣∣
k=kcr

> 0, while the rest of the spectrum

remains in the open left-half plane.
Linearization of the system (13), (14), (15) in the neighbourhood of the

equilibrium Qi = (v̄, t̄O, t̄L)i (i = 1, 2) gives

v̇ = −κbt̄Lv̄κ−1v + aδtO − (aδ + bv̄κ)tL, (20)

ṫO = −γva + c

CO
tO +

γva

CO
tL, (21)

ṫL = −κv̄κ−1

CL
(
kβ

M
+ bγmt̄L)v +

a

CL
γtO − aγ + c + bγmv̄κ

CL
tL. (22)

The characteristic equation of the linearised system (20), (21), (22) is

λ3 + a1λ
2 + a2λ + a3 = 0, (23)

where
a1 = η1k + ξ1, a2 = η2k + ξ2, a3 = η3k,

and

η1 = κbt∗v̄κ−1, ξ1 =
γva + c

CO
+

γa + γmbv̄κ + c

CL
,

η2 =
κv̄κ−1

CL
η̄, ξ2 =

(aγv + c)(c + bγmv̄κ) + acγ

COCL
,

η3 =
κv̄κ−1

COCL

[
bc(c + 2aγv)t∗ − bασ

t∗

]
= ±κv̄κ−1b

COCL

√
B2 − 4AC,

“+” refers to Q1 and “−” to Q2.
Since η3 < 0 and, consequently, a3 = η3k = −λ1λ2λ3 < 0 for the equi-

librium Q2, then for all k > 0 either one of the eigenvalues, or all three of
them have positive real part. Consequently, the equilibrium Q2 is unstable
for all k > 0. We will further consider only the equilibrium Q1.

For all positive parameters of the system (13), (14), (15) in the equilib-
rium Q1 the inequalities η1, η3, ξ1, ξ2 > 0 and a1, a3 > 0 hold. The coeffi-
cient η2 depends on the sign of η̄ and could be either positive or negative.
However, even if η2 < 0, we still have a2 > 0 for 0 < k < ξ2

|η2| .
The conditions of the Hopf bifurcation theorem are satisfied if ai > 0 (i =

1, 2, 3) and ∆ = a1a2 − a3 = 0. The first conditions, ai > 0, are just the
Routh-Hurwitz conditions for all roots of the characteristic equation (23)
to be in the open left-half plane, and the second property, ∆ = a1a2−a3 =
0,together with ai > 0 are sufficient conditions for the existence of one
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negative real root and a pair of pure imaginary roots [4], p. 197. The
second condition

∆ = a1a2 − a3 = d1k
2 − d2k + d3 = 0 (24)

is satisfied at k = k1 and k = k2 given by

k1 =
d2 −

√
d2
2 − 4d1d3

2d1
, k2 =

d2 +
√

d2
2 − 4d1d3

2d1
. (25)

Here
d1 = η1η2, d3 = ξ1ξ2

and

d2 = η3 − ξ1η2 − ξ2η1

= −bκv̄κ−1

COCL

(
C

t∗
+ γm ((aγv + c)bv̄κ + acδ) t∗

)
− ξ1η2.

Since η1 > 0 always, the sign of d1 depends on the sign of η2 (which can
be either negative or positive); and d3 > 0 always since ξ1, ξ2 > 0 .

A supercritical Hopf bifurcation occurs when two complex conjoint eigen-
values cross the imaginary axis from left to right, i.e. when ∆ = a1a2 − a3

change sign from positive to negative. Depending on the sign of η̄ (which
can be either negative or positive), there are three possibilities.

1. If η̄ > 0, then η2 > 0, and hence d1 = η1η2 > 0 while d2 < 0. In this
case both the roots k1, k2 of the equation (24) are either real negative, or
complex with negative real part. For all k > 0 the Hurwitz determinant
∆ is positive and ai > 0 (i = 1, 2, 3). Hence for all k > 0 all roots
of the characteristic equation (23) are located in open left-half of the
complex plane. Consequently, the equilibrium Q1 is always stable, and
no supercritical Hopf bifurcation is possible in this case.

2. If η̄ = 0, then η2 = 0 and d1 = 0 too. Consequently, the equation (24)
has the only root k0 given by

k0 =
d3

d2
=

ξ1ξ2

η3 − ξ2η1
.

In this case

d2 = η3 − ξ2η1 = −bκv̄κ−1

COCL

(
C

t∗
+ γm ((aγv + c)bv̄κ + acδ) t∗

)
< 0,
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hence k0 < 0 too. For all k > 0 the Hurwitz determinant ∆ is positive
and ai > 0 (i = 1, 2, 3). Hence for all k > 0 all roots of the character-
istic equation (23) are located in open left-half of the complex plane.
Consequently, the equilibrium Q1 is always stable, and no supercritical
Hopf bifurcation is possible in this case as well.

3. If η̄ < 0, then η2 < 0, hence d1 < 0 and d3 > 0. In this case the equa-
tion (24) always has two real roots k1, k2 given by (25). Furthermore, k1

is always positive while k2 < k1 is always negative. In this case for k > 0
the equilibrium Q1 is stable in the interval 0 < k < k1. At kcr = k1

the Hurwitz determinant ∆ changes sign from positive to negative, and
a supercritical Hopf bifurcation occurs. Since ∆ = a1a2 − a3 = 0 at
k = k1, and a1, a3 are always positive, then a2 = a3/a1 > 0 too at point
k = k1. Hence the inequality 0 < k1 < ξ2/|η2| holds.

This completes the proof.

4. Discussion

According to the theorem, the bifurcation is triggered by an increase of the
solar radiation intensity. This fact might appear to be surprising. However,
this was expected and predicted by the authors. In an ice age an enormous
quantity of ice was deposited in the continental glacials. To evaporate
and transport these volumes of water onto the continents the global water
pumping machine must be provided with some excess of energy, and the
Sun is the primary energy source for the earth’s surface. This explains
also why the solar radiation intensity k have been chosen as a bifurcation
parameter.

We should note that the increase of k does not necessarily imply the rise
of the Sun’s activity. In fact, the matter is not how much the Sun radiates
but how much reaches the earth’s surface. A number of factors can lead
to the increase of parameter k value. Thus, apart from variation of the
Sun’s activity and the earth’s position corresponding to the Sun, the rise
of the solar radiation intensity on the earth’s surface can be a consequences
of the earth’s atmosphere evolution. Since we have no evidence that the
Sun’s activity or the earth’s position varied considerably, the authors are
inclined to believe the last possibility.

It is notable that at present only about 55% of incoming solar radiation
reaches the earth’s surface [2], p. 21. The rest, 45% (!), is absorbed or re-
flected by the atmosphere. It can be assumed (for example, the greenhouse
effect theory) that the variation of the atmosphere’s transparency (due to
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the composition or the physical properties) can cause the variation of these
figures and consequently, the variation of the parameter k value.

In the case of the suggested model, the variation of the earth’s atmosphere
transparency (which depends on the composition, density or other physical
properties) can affect the system behaviour in two different ways. First, it
can decrease or increase the portion of the incoming solar radiation which
reaches the earth’s surface, and in consequence cause the Hopf bifurcation.
Second, it can increase or decrease the portion of the longer-wave earth’s
radiation which leaves the earth’s atmosphere. Though it does not follow
directly from our analysis, this can stabilise or destabilise the system as
well.

The above-considered model comprises two factors, each of which might
destabilise the global climate. Firstly, the absorption of the solar radia-
tion by land is inversely dependent on the area of ice-coverage. Secondly,
the ice and snow melts from its surface and not in its volume. A third
factor—the possible inverse dependence of the portion of snow in the total
precipitation—though indicated, was not included in the model for the sake
of simplicity and manageability.

Apart of the parameter k, the model combines twelve other parameters.
Variation of some of these other parameters could (technically at least)
trigger the bifurcation. However, it is extremely unlikely that these other
parameters had any significant variation for say last 20 million years.

5. Conclusion

The prime aim of this paper was to demonstrate that a Hopf bifurcation in a
model of the global climate system could (or rather must) cause dramatic
changes in the global climate similar to those observed throughout the
Pliocene and the Pleistocene. We would like to stress again that available
records demonstrate that throughout geological history the global climate
has exhibited two very different types of behaviour. For most of geological
history the global climate seems to have been quite stable. However, during
more recent times, climate stability had shifted giving rise to climate be-
haviour which could be described as “unstable” and “chaotic”, and whose
distinctive feature is a recurrent succession of the very cold phases altering
with comparatively warm periods. Such behaviour, connected with chang-
ing stability and the development of violent oscillations, fits the general
pattern of supercritical Hopf bifurcations.

In the multi-variable systems the events could get a further development.
While a single bifurcation leads to the birth of a stable limit cycle (re-
sponsible for self-oscillations in a system), possible further bifurcations in
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a high-dimensional dynamical system might lead to very complicated be-
haviour usually described as “chaotic”.

The actual mechanisms, which govern the earth’s climate, still remain
for the most part a mystery. The specific interactions between parts of the
hyper-complex global mechanical and thermodynamical “ocean-atmosphere-
land” system are hard to determine as the available evidence is far too de-
ficient. Under the circumstances, simple conceptual qualitative modeling
is a start towards understanding its nature. We do not pretend that the
extremely simple model suggested above in this paper is able to explain ad-
equately all aspects of climate dynamics. Furthermore, we deliberately lim-
ited our presentation to a simple, even naive, model in order to demonstrate
qualitative (and only qualitative) features of global ocean-atmosphere-land
interactions, and how these interactions could lead to climate behaviour
known from field data.

In conclusion we would like to add that we have considered only one
destabilising mechanism here. In reality many others destabilising mech-
anisms are possible. For instance, the role of atmospheric carbon dioxide
is not yet clear, though it is known that its contents in the atmosphere
correlates with temperature [1], p. 28.
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