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Abstract. A method is described for inverting the Laplace transform. The perfor-
mance of the Fourier method is illustrated by the inversion of the test functions available
in the literature. Results are shown in the tables.
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1. Introduction

During the past few decades, methods based on integral transforms, in
particular, the Laplace transforms, are being increasingly employed in
mathematics, physics, mechanics and other engineering sciences. Laplace
transforms have a wide variety of applications in the solution of differen-
tial, integral and difference equations. To solve such equations by Laplace
transform, one applies the Laplace transform to the equation, obtaining an
equation for the transform of the required function. The latter equation
is usually considerably simpler than the initial equation and its solution
is often a function of quite simple structure. One must then derive the
solution of the original equation from its Laplace transform, that is invert
the Laplace transform.

In the terminology of ill-posed problems, the Laplace transform is a
severely ill-posed problem. Unfortunately many problems of physical inter-
est lead to Laplace transforms whose inverses are not readily expressed in
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terms of tabulated functions, although there exist extensive tables of trans-
forms and their inverses. It is highly desirable, therefore, to have methods
for appropriate numerical inversion.

The notion of ill-posedness is usually attributed to Hadamard [9]. A
modern treatment of the concept appears in Tikhonov and Arsenin [22]. In
an ill-posed inverse problem, a classical least squares, minimum distance
or cross-validation solution may not be uniquely defined. Moreover the
sensitivity of such solutions to slight perturbations in the data is often
unacceptably large.

Ill-posed inverse problems have become a recurrent theme in modern sci-
ences; see, for example, crystallography (Grunbaum [8]), Geophysics (Aki
and Richards [2]), medical electrocardiograms (Franzone et al [7]), mete-
orology (Smith [20]), radio astronomy (Jayens [10]), reservoir engineering
(Karavaris and Seinfeld [11]) and tomography (Vardi et al [24]). Corre-
sponding to this broad spectrum of fields of applications, there is a wide
literature on different kinds of inversion algorithms, that is techniques for
solving the inverse problems.

The basic principle common to all such methods is as follows: seek a
solution that is consistent both with the observed data and prior notions
about the physical behavior of the phenomenon under study. Different
practical problems have led to unique strategies for implementation of this
principle such as the method of regularization (Tikhonov and Arsenin [22]),
(Varah [23]), maximum entropy (Jaynes [10], Mead [15]), quasi-reversibility
(Lattes and Lions [12]) and cross-validation (Wahba [25]).

Regularization methods have also been discussed by (Varah [23], Essah
and Delves [6]) and by (Bertero [3])); other methods are also available
in the literature for the numerical inversion of Laplace transform which
have been described by (Norden [16]) and (Salzer [19]). However no single
method gives optimum results for all purposes and for all occasions. For a
detailed bibliography, the reader is referred to (Piessens and Pissens and
Branders, [17, 18]). Several methods and a comparison is given by (Davis
[4]) and (Talbot [21]).

Laplace Transform an Incorrectly Posed Problem
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The problem of the recovery of a real function f(t), t ≥ 0, given its
Laplace transform ∫ ∞

0

e−stf(t)dt = g(s) (1.1)

for real values of s, is an ill-posed problem and, therefore, affected by
numerical instability.

2. McWhirter and Pike’s Method for Laplace Transform Inver-
sion

Under the assumptions that
∫ ∞

0

|g(s)|s−1/2ds and
∫ ∞

0

|f(t)|t−1/2dt are

finite, McWhirter and Pike [13, 14] show that the solution f(t) of equa-
tion (1.1) may be represented in terms of a continuous eigen-expansion as
follows:

f(t) =
1
2π

∫ ∞

−∞
dω

1
λω

{
ψ+

ω (t) + iψ−ω (t)
} ∫ ∞

0

g(s)
{
ψ+

ω (s) + iψ−ω (s)ds
}

ds

(2.1)
where ψ±ω (s) are the real and imaginary parts of

√
Γ

(
1
2 + iω

)
s−

1
2−iω

√
π

∣∣Γ (
1
2 + iω

)∣∣
(2.2)

and the eigenvalues λω are real:

λω =
∣∣∣∣Γ

(
1
2

+ iω

)∣∣∣∣ =
√

π

cosh(πω)
. (2.3)

Here Γ(z) is the complex Gamma function (see, e.g. [1, 5]).

In order to approximate (2.1) numerically, McWhirter and Pike replace
the semi-infinite interval [0,∞) by the finite interval [L1, L2], where 0 <

L1 << 1 and ∞ > L2 >> 1. By introducing a spacing H =
2π

T
, where

T = log L2 − log L1, and a discrete spectrum ωn = nH, they replace the
integral (2.1) by the finite sum

fN (t) =
1
2

a+
0

λ+
0

ψ+
0 (t) +

N−1∑
n=1

{
a+

n

λ+
n

ψ+
ωn

(t) +
a−n
λ−n

ψ−ωn
(t)

}
(2.4)
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where

a±n = Hκ±n

∫ ∞

0

g(s)s−
1
2−iωnds, n 6= 0,

a+
0 = Hκ+

0

∫ ∞

0

g(s)s−1/2ds,





(2.5)

κ+
n + iκ−n =

√
Γ

(
1
2 + iωn

)

π
∣∣Γ (

1
2 + iωn

)∣∣ , (2.6)

and λ±ωn
= ±λωn

.

The ill-posedness of the problem reflected by the very rapid decay of λωn

with increasing n. Thus the inclusion of too many terms in the expansion
(2.4) leads to large oscillations in fN (t), whereas too few terms do not
give a sufficiently accurate solution. McWhirter and Pike [14] evaluate the
coefficients a±n in (2.5) by quadrature and determine N in (2.4) by trial
and error.

3. Our Method

We are interested in finding

an = Hκn

∫ ∞

0

g(s)s−
1
2 iωnds (3.1)

where κn is complex as defined earlier, ωn is real and an are the complex
coefficients to be determined. We use the notations as ∼ represents Mellin
transform, ∧ denotes Fourier transform. Consider

g̃(λ) =
∫ ∞

0

siλ−1g(s)ds (3.2)

which is the Mellin transform of g(s), λ being complex. From (3.1) and
(3.2) we obtain

an = Hκng̃

(
−ωn − 1

2
i

)
. (3.3)

Now consider
g̃(λ) =

∫ ∞

−∞
eiλtg

(
e−t

)
dt (3.4)

which is a well-known relationship between MTs and FTs, obtained by
substituting for s = e−t in equation (3.2).
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From (3.3) and (3.4)

an = Hκn

∫ ∞

−∞
eiωnt

[
e−

1
2 tg

(
e−t

)]
dt (3.5)

which can be written as
an = HκnĜ(ωn) (3.6)

where Ĝ(ω) =
∫ ∞

−∞
G(t)e−iωtdt and G(t) = e−

1
2 tg(e−t).

From Abramowitz and Stegum [1].

Γ
(

1
2

+ iωn

)
=

∣∣∣∣Γ
(

1
2

+ iωn

)∣∣∣∣
2 ∞∑

m=1

cm

(
1
2
− iωn

)m

where the coefficients cm are given to 7 decimal places in Table 1. Thus

κn =

√
Γ

(
1
2 + iωn

)

π
∣∣Γ (

1
2 + iωn

)∣∣ =

√∣∣Γ (
1
2 + iωn

)∣∣
π

[ ∞∑
n=1

cm

(
1
2
− iωn

)m
]1/2

and
an = Hκn

∫ ∞

−∞
eiωntG(t)dt. (3.7)

Table 1

m cm m cm

1 1.0000000 11 0.0001280
2 0.5772156 12 −0.0000201
3 −0.6558780 13 −0.0000012
4 −0.0420026 14 0.0000011
5 0.1665386 15 −0.0000002
6 −0.0421977 16 −0.0000000
7 −0.0096219 17 0.0000000
8 0.0072189 18 0.0000000
9 −0.0011651 19 0.0000000
10 −0.0002152 20 0.0000000

Having written an in the form (3.7) it is sometimes possible, when g(t) is
given analytically, to evaluate an exactly from tables of Fourier transforms
(see [1, 5]). This has the advantage of removing quadrature errors from the
coefficients in the expansion (2.4) which are amplified by small eigenvalues.
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4. Numerical Examples

Example 1. McWhirter and Pike [14]

g(s) =
1

(1 + s)2
, s ≥ 0, f(t) = te−t, t ≥ 0.

We have

an = Hκn

∫ ∞

−∞
eiωnt

e−
1
2 t

(1 + e−t)2
dt.

For reasons of comparison with McWhirter and Pike [14] we choose H =
0.136 and we tabulate the error in the numerical solution (2.4) versus N in
Table 2. The optimal N is clearly 24.

Table 2

N ‖f − fN‖2
16 5.725× 10−2

20 2.877× 10−2

24 1.956× 10−2

28 2.433× 10−2

32 2.851× 10−2

36 2.980× 10−2

40 2.995× 10−2

44 2.996× 10−2

48 2.998× 10−2

Table 3

N ‖f − fN‖2
16 4.872× 10−2

20 1.873× 10−2

24 3.734× 10−2

28 4.425× 10−2

32 4.892× 10−2

36 4.932× 10−2

40 4.965× 10−2

44 4.983× 10−2

48 5.121× 10−2

Example 2. Varah [23]

g(s) =
1
2

s
(
s + 1

2

) , s ≥ 0

f(t) = 1− e−t/2, t ≥ 0

we have

an = Hκn

∫ ∞

−∞

eiωnt 1
2e−

1
2 t

e−t
(
e−t + 1

2

) .

For H = 0.136 and N = 20, the numerical solution obtained is the best
giving the least error norm and is exceedingly better than Varah’s solution.
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5. Conclusion

Our method worked very well over both the test problems and the results
obtained are shown in Tables 2 and 3. The method is easy to understand
as compared with other more technical methods and yields equally good
results.
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