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Over many years the author and others have given theories for bubbles
rising in line in a liquid. Theory has usually suggested that the bubbles will
tend towards a stable distance apart, but experiments have often showed
them pairing off and sometimes coalescing. However, existing theory seems
not to deal adequately with the case of bubbles growing as they rise, which
they do if the liquid is boiling, or is a supersaturated solution of a gas,
or simply because the pressure decreases with height. That omission is
now addressed, for spherical bubbles rising at high Reynolds numbers. As
the flow is then nearly irrotational, Lagrange’s equations can be used with
Rayleigh’s dissipation function. The theory also works for bubbles shrink-
ing as they rise because they dissolve.

1. Introduction

Consider bubbles rising in line in a liquid, with surface tension assumed
large enough to keep them spherical, and surface activity small enough to
ignore. If they remain the same constant size as they rise, their motion
presents a problem simple enough to solve analytically to leading order,
with computation needed only for such things as quadrature and solution
of linear matrix equations, in two special cases: several bubbles in Stokes
flow (Reynolds number vanishingly small) [6], and two bubbles at high
Reynolds numbers [5], [7]. Computational fluid dynamics has also proved
useful in this problem: Yuan & Prosperetti [21] dealt with two spherical
bubbles at various Reynolds numbers up to 200, and Zinchenko et al. [22]
with two deformable bubbles or drops in Stokes flow. Experiments are
mostly with lines of many bubbles, but Zinchenko et al. did find some with
two, which confirmed their theory.

Bubbles that grow or shrink as they rise were studied in Stokes flow by
Magnaudet & Legendre [15] and in inviscid flow by Chincholle [4], though
the methods needed are much older [1], [2], [3], [8]. C. A. Bjerknes wrote
several papers on hydrodynamical action at a distance from 1868 onwards,
which were summarised by Hicks [9] and published in book form by Bjerk-
nes’ son V. Bjerknes [3]. Herman [8] found the velocity potential and
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the kinetic energy for a pair of translating expanding spheres but did not
evaluate the forces acting. Basset [1], [2] simplified Herman’s method by
expanding in series of spherical harmonics centred at the centres of the
spheres instead of using exact closed-form image systems, but he did not
consider simultaneous translation and expansion. Chincholle [4] did, but
not to the order needed in the present work. Voinov & Golovin [20] pio-
neered the use of Rayleigh’s dissipation function with Lagrange’s equations
in irrotational bubble theory, and extended the proof to the case of bubbles
of varying radius.

The present paper takes the analysis to higher order, unifying much pre-
vious work. The advantage of using Lagrange’s equations is that the alter-
native, of assuming bubble velocities, finding the pressure by Bernoulli’s
theorem, and thence forces, requires more detail of flow in the wakes than
is easy to find [16]. We deal first with the simplest non-trivial case: two
bubbles many radii apart in a vertical line rising under gravity at high
Reynolds number, for which irrotational flow is a good first approxima-
tion. The velocity of expansion (negative for a shrinking bubble) will be
taken as given. In the real world, of course, it depends on whether a gas
bubble is supersaturated or undersaturated, or whether vapour is evapo-
rating or condensing, and on the diffusivities of both heat and gas in the
liquid [13], [18], [19]. Some of the theory is then extended to more than
two bubbles.

2. Lagrangian Theory

Voinov and Golovin [20] showed that if an infinite Newtonian viscous fluid
contains N spherical bubbles whose radii are aj , j = 1, . . . , N and whose
centres are at positions determined by the 3N coordinates qi, i = 1, . . . , 3N ,
and each bubble moves with Reynolds number Rj , and the flow is irrota-
tional (a good approximation if every Rj À 1, and the total kinetic energy
is T (qi, aj , q̇i, ȧj), the total potential energy is V (qi, aj), and the total rate
of viscous dissipation is D(qi, aj , q̇i, ȧj), then Lagrange’s equations reduce
to

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
+

∂V

∂qi
+

1
2

∂D

∂q̇i
= 0. (1)

The errors are of order R
−1/2
j . Voinov and Golovin also gave the additional

N Lagrange equations involving variation of the bubble radii, and included
the additional terms in them arising from the work that must be done on
the fluid to expand a bubble, but we may safely ignore them because we
take the velocity of expansion as given.
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3. Irrotational Theory for Two Bubbles

Figure 1. Two bubbles of the same radius a rising in line, showing the dimensionless
spherical coordinates (r1, θ1) and (r2, θ2) moving with each, the generalised coordinates
q1, q2, and the definition of s. O1, O2 are the bubble centres, vertically above a fixed
origin O.

Suppose that two gas bubbles are rising in the same vertical line with
centres Oi at heights qi above some fixed level, (see Figure 1), where q1 > q2

and the liquid at a great distance is at rest. We may put q3 = · · · = q6 = 0
and use i = j = 1, 2. Let the distance O1O2 = q1 − q2 between the centres
of the bubbles be a/s, where s is dimensionless, and s → 1

2 for touching
bubbles, s → 0 for bubbles very far apart. Calculations will be presented
only for s ¿ 1, again for simplicity. Suppose also that the bubbles are
in a liquid with dynamic viscosity η = ρν, where ρ is the density and ν
the kinematic viscosity, with η and ρ much larger than in the gas in the
bubbles, that surface activity is negligible, and the dimensionless number
M = gη4/ρσ3 is very small, where g is the acceleration due to gravity and
σ is the surface tension, so that the Reynolds numbers Ri = 2aq̇i/ν can be
(and are assumed to be) large while the bubbles remain close to a spherical
shape (Moore [17]). In water, for example, M is about 2.5 × 10−11 and
bubbles are nearly spherical if Ri < 400.
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Let the bubbles have the same time-varying radius a, with surfaces Si,
let the expansion velocity be ȧ = da/dt.

With the assumptions above, the flow is irrotational to leading order
everywhere in the liquid [16], and in a frame of reference at rest in the
liquid at a great distance it is generated by dipoles and sources at O1 and
O2, the images of each dipole and source in the other bubble, and so on
(Herman [8], Basset [1], [2] chapter 11).

Let P be any point in the fluid, let POi = ari, so that the ri are dimen-
sionless, let θi be the angle between POi and the upward vertical, and let
cos θi = µi. To order s4, which is as far as one need go to find the leading-
order behaviour of the system, the velocity potential φ can be written as
series φ1(r1, θ1) or φ2(r2, θ2) which converge near S1 and S2 respectively,
and which are given by

φi = −a

2

[
q̇iP1

r2
i

+ q̇j

{
±s2 − s3

(
2ri +

1
r2
i

)
P1 + s4

(
3r2

i +
2
r3
i

)
P2

}

+ 2ȧ

{
1
ri

+ s∓ s2

(
ri +

1
2r2

i

)
P1 + s3

(
r2
i +

2
3r3

i

)
P2

+
s4

2
∓ s4

(
r3
i +

3
4r4

i

)
P3

}]
, (2)

where i = 1 or 2, j = 3 − i, the upper ambiguous sign is for i = 1, the
lower one for i = 2, Pn denotes the Legendre polynomial Pn(µi), and the
sign convention is that the velocity v = +∇φ.

Lamb [12], p. 46 and 580, gave the formulae

T = −1
2
ρ

∫ ∫

S

φ
∂φ

∂n
dS, (3)

D = −η

∫ ∫

S

∂v2

∂n
dS, (4)

where v = |v| is the speed of the fluid, occupying a region with boundary
S whose normal direction drawn into the fluid is n; equation (3) requires
that φ → 0 at infinity, but the boundary S need not be at rest. In our case
S consists of the surfaces of two bubbles in an unbounded fluid. Hence, to
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order s4,

T =
πρa3

3
{q̇2

1 + q̇2
2 + 12(1 + s)ȧ2 −

6s2ȧ(q̇1 − q̇2)− 6s3q̇1q̇2 + 6s4ȧ2}, (5)

V = −4
3
πρga3(q1 + q2) + 8πσa2, (6)

D = 12πηa{q̇2
1 + q̇2

2 +
8
3
ȧ2 − 2s2ȧ(q̇1 − q̇2)− 4s3q̇1q̇2 + 2s4ȧ2}, (7)

and Lagrange’s equations for the qi (1) may be written in matrix form as
(

1 −s3

−s3 1

) (̈
q1

q̈2

)
+

18ν

a2

(
1 + α/6 s3(−2− α)

s3(−2− α) 1 + α/6

)(
q̇1

q̇2

)

+
9
a

(
0 −s4

+s4 0

)(
q̇2
1

q̇2
2

)
=

(
2g + 18s2ȧν/a2 + 9s2ȧ2/a
2g − 18s2ȧν/a2 − 9s2ȧ2/a

)
, (8)

where α = ȧa/ν is a Reynolds number based on the expansion rate ȧ. We
do not need the third Lagrange equation for the variable a because we are
assuming that ȧ is given.

If there is just one bubble, and both gravity and viscosity are neglected,
T = 1

3πρa3(q̇2 + 12ȧ2), V = 4πσa2, D = 0, so that Lagrange’s equations
give ∂T/∂q̇ = M ′q̇ = constant, where M ′ = 2

3πρa3, which is Chincholle’s [4]
result that the momentum associated with the virtual mass of the bubble is
constant. A growing bubble would thus slow down, a shrinking one would
speed up. That is what Chincholle’s French text says (his equation 14
and Section 3), but his English abstract unfortunately says “An increase
in volume accelerates it and a decrease in volume slows it down.” before
going on to describe the constancy of momentum.

If gravity and viscosity are not neglected, but the bubbles are of constant
size and so far apart that their interactions can be neglected, ȧ = 0, s → 0,
and Lagrange’s equations reduce to

q̈i +
18ν

a2
q̇i = 2g,

of which the general solution is

q̇i = u + wi exp(−18νt/a2),

where u = a2g/9ν is the terminal velocity of an isolated spherical bubble
at high Reynolds number R = 2ua/ν, wi are arbitrary constant velocities,
and a2/18ν is the “relaxation time” required for the difference between the
speed q̇i and u to decrease by a factor e.
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If we assume that the accelerations q̈i are negligible, and that s4q̇2
i may

be replaced by s4u2 because s ¿ 1 and q̇i is not far from u, equation (8)
reduces to

q̇i = f(α){u± s2ȧ(1 + 1
2α) + 2s3u(1 + 1

2α)f(α)± 1
4s4uR}, (9)

where f(α) = 1/(1 + 1
6α) and ± is interpreted as before: + for i = 1,

− for i = 2. The term ±s2ȧ implies that in the absence of other effects
each bubble would move away from the other as if in the velocity field of
the source at the centre of that other, if α is so small that 1 + 1

6α is close
to 1. The next term ±s2ȧα/2 = ±s2ȧ2a/(2ν) is the effect on the bubble
velocities of the Bjerknes force, which in this problem is a repulsion between
the bubbles even if both are growing: the attraction usually expected in
that case is for bubbles whose radius oscillates sinusoidally. The next term
in (9), involving s3u, does for the dipole images what ±s2ȧ did for the
sources, with the intriguing differences that the bubbles are both speeded
up by the same amount, and by twice the velocity that would have been
expected if the effect was purely kinematic and α = 0, but by a factor
2(1 + 1

2α)/(1 + 1
6α)2 in general. The final term, ± 1

4s4uR, is the effect on
the velocities of the inverse fourth power repulsion found by Harper [5].
It was previously given, with the wrong sign, by Jeans [10], p. 360, as an
example on Lagrangian mechanics where the formula for kinetic energy was
given, but in a form which is valid only for two spheres with the velocity of
each being positive if towards the other. Unfortunately one needs to take
the same direction along the line as positive for all the bubbles.

The upper bubble always rises faster than than the lower one according to
this theory, unless the bubbles are shrinking so fast that |ȧ| > 2su(1+ 1

2α).
The forces on the bubbles are not equal and opposite because d’Alembert’s
paradox does not apply to unsteady flow.

4. Other Effects

The foregoing theory gives the leading-order effect of each bubble on the
other subject to the assumptions there stated. As bubbles are often ob-
served coalescing, some other physical mechanism must be operating be-
sides those already considered. Obvious candidates are distortion from
spherical shape, effects due to more than two bubbles, surface activity, and
the viscous wake of upper bubbles affecting the rise of bubbles beneath
them.

When the Weber number 2ρu2a/σ is small enough for bubbles to be still
very nearly spherical, distortion cannot be important.
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If there are more than two bubbles, the image dipoles do not lead to equal
upwards velocities as they do for two, because the intermediate ones have
dipoles nearby both above and below them, but the top and bottom ones
do not. The kinetic and potential energies and the dissipation function can
all be calculated by the previous methods; if ȧ = 0 the result is, to leading
order,

T = 1
3πρa3

∑

i


q̇2

i − 6
∑

j>i

s3
ij q̇iq̇j


 , (10)

V = − 4
3πρga3

∑

i

qi + 4Nπσa2, (11)

D = 12πηa
∑

i


q̇2

i − 4
∑

j>i

s3
ij q̇iq̇j


 . (12)

where sij = a/(qi − qj), and N is the number of bubbles.
For three equally spaced bubbles, s12 = s23 = s, s13 = 1

2s, the upward
velocities (reading down the line) are

9
4s3u + 17

64s4Ru,

4s3u,
9
4s3u− 17

64s4Ru.

The second bubble always rises faster than the third, and it will tend to
catch up the first if Rs < 112/17 = 6.588, but that condition requires that
at large Reynolds number R the bubbles must be a very long way apart.

With a line of many bubbles, the general conclusion will still hold but
the detailed numbers would of course change. The second bubble will still
tend to catch up the first, and then they will rise faster than the third.
If they do not coalesce, bubbles 3 and 4 will then behave like bubbles 1
and 2, and then bubbles 5 and 6 will, and so on; such pairing off is indeed
sometimes seen in lines of bubbles [11].

In liquids which are contaminated but are so nearly pure that the bubbles
have only small stagnant caps, the second one rises slower than the first
at a low Reynolds number [14], as it would at a high Reynolds number
if the caps were small enough to have their own Reynolds numbers small.
However in more polluted liquids the bubbles behave like rigid spheres, for
which the drag and hence the effect of the wake are larger.

The most likely cause of bubble coalescence in pure liquids is then the ef-
fect of the viscous wake analysed by Katz and Meneveau [11] and Harper [7],
in which a bubble rises faster if in the fluid rising in the viscous wake of
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a preceding one, especially in experiments using polluted liquids or more
than two bubbles. However, the results of this paper cast doubt on the de-
tailed mathematics of this part of [11] and [7], because even in irrotational
flow the additional speed of rise of a bubble, due to the motion of the other
bubbles, is not what one might expect.

5. Conclusions

Expansion of bubbles due to supersaturation or boiling does not of itself
remove the discrepancy between experiment (in which bubbles in line often
coalesce) and most theory (in which they seem not to if the Reynolds
number is high). Shrinkage due to undersaturation or condensation can
make bubbles move closer together, and in a polluted liquid the second
bubble can climb up the wake of the first, in which the liquid is already
rising, to achieve the same result. However the present work shows that
this wake-climbing effect may not just be the mean across bubble n of the
wake speed behind bubble n−1 suggested by Katz and Meneveau [11]: that
property is only approximately true for the source flow due to expanding
bubbles, and it suggests about half the correct result for the image dipole
contributions. The subject clearly needs more work.
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