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Abstract. There are few techniques available for testing if modes take specified values.
We show that standard tests of location such as the t-test and the Wilcoxon test, which
test for the mean and median respectively, can perform poorly as tests for modes when
the data is other than unimodal and symmetric. Carolan and Rayner [1] proposed a score
test of location for symmetric nonnormal data. We consider a family of distributions
similar to those considered by Carolan and Rayner [1] and propose a test for the mode
or modes of data from multimodal or skewed distributions and demonstrate by way of
simulations that it is reasonably effective.
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1. Introduction

For symmetric data the mean and median are obvious measures of location.
When the appropriate assumptions are satisfied, standard parametric and
nonparametric tests can be used to test for the mean and median. The
t-test assumes normality (which of course implies symmetry) while the
Wilcoxon signed rank test assumes just symmetry. There are also non-
parametric procedures that can be used to test for the median of asym-
metric data - the sign test for example. For more details of these tests
see Lehmann [5] or Daniel [3]. In the case of asymmetric data the data
analyst must carefully consider what exactly it is that they wish to test.
More often than not the mean is of little value as a measure of location for
skewed data and the median is more useful. On other occasions the mode
or modes of skewed data maybe of more interest. For example consider a
population which is thought to be roughly normal but with ‘contamination’
affecting some observations, leading to a skewed or multimodal sample. If
the underlying population without the contamination is of interest then
the mode of the sample may give the best idea of the true location. In this



2 A. M. CAROLAN AND J. C. W. RAYNER

paper we suggest one possible model for skewed or multimodal data and
use it to develop tests for the location of modes.
Carolan and Rayner [1] proposed a test of location for nonnormal sym-

metric data based on the model,

g (x;µ, σ,θ) = C (θ) exp

(
k∑

i=3

θihi (x;µ, σ)

)
f (x;µ, σ) . (1)

In (1) f (x;µ, σ) is the normal probability density function with mean µ and
variance σ2, hi (x;µ, σ) = Hi

(
x−µ

σ

)
is the normalised Hermite-Chebyshev

polynomial of degree i, orthonormal on f (x;µ, σ); θ = (θ3, θ4, . . . , θk)
T

is a vector of parameters and C (θ) is a normalising constant. For C (θ)
to exist and for (1) to define a proper probability density function it is
required that k, the order of the highest order polynomial included in the
model, be even and that θk < 0 so that gk(x) → 0 as x → ±∞. The idea
is that instead of the data following a N(µ, σ2) distribution, they follow a
‘smooth alternative’ to normality. The greater k, the more complex and
potentially nonnormal the model may be. Carolan and Rayner [1] derived
a score test of H0 : µ = µ0 against K : µ �= µ0 for data from this model.
In particular they considered the symmetric case where only θ4 is included
in the model.
Here we will consider a variation of the model (1) and how the score

test behaves when skewed distributions are permitted: that is, the model
includes a term involving θi for at least one odd i. In the symmetric case
µ and the mean both take the same value but when θ3 (or any odd degree
term) is included in (1), the model becomes skewed and there is no clear
interpretation of the parameter µ as a measure of location. Replacing the
Hermite polynomials in (1) by simple powers of (x − µ) leads to a model
where it can easily be shown that µ represents the mode: see Section 2.
Preliminary results suggested some numerical instability in estimating the
parameter σ so for ease of computation a further alteration was made to
the model, the parameter σ being replaced by θ2;

(
θ2 − 1

2

)
replaces 1

2σ2 as
the coefficient of (x − µ)2 in the exponent. Under this reparameterisation
θ2 = 0 corresponds to σ = 1 and θ2 → 1

2 corresponds to σ2 → ∞. So the
model we use in this paper is

gk (x;µ,θ) = C (θ) exp

(
k∑

i=2

θi (x − µ)i
)

f (x;µ, 1) , (2)

again with k even and θk < 0 (k being the order of highest order polynomial
included in the model). Curves of some probability density functions of
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this form are given in several subsequent figures throughout this paper. In
Section 2 we show that when we restrict θ2 to take values less than 1

2 , the
parameter µ represents the mode or modes of the distribution. The other
parameters in the model θ3, . . . , θk−1 can take any real values. In Section
3 we discuss how, for data from such a model, we can use score and Wald
tests to test for the location of modes. Section 4 gives some examples of
how these tests perform for particular data sets. Simulation results for size
and power properties are presented in Section 5.

2. Modes of the Distribution and the Region of Unimodality

In this section we demonstrate that when θ2 < 1
2 , the parameter µ is a

mode of the distribution specified by (2). We also find the region of the
parameter space where the distribution is unimodal.
First we show µ is a mode. Differentiating (2) with respect to x we get

dgk

dx
=

(
k∑

i=2

iθi (x − µ)i−1 − (x − µ)

)
gk (x;µ,θ) .

Clearly when x = µ, dgk

dx = 0 so there is a stationary point at µ. Also

d2gk

dx2
=

(
k∑

i=2

iθi (x − µ)i−1 − (x − µ)

)2

gk (x;µ,θ)

+

(
k∑

i=2

i (i − 1) θi (x − µ)i−2 − 1

)
gk (x;µ,θ) .

So when x = µ,

d2gk

dx2
= (2θ2 − 1) gk (µ;µ,θ) .

This is negative whenever θ2 < 1
2 since gk (x;µ,θ), being a probability den-

sity function, is positive for all x. So if we restrict θ2 < 1
2 then gk (x;µ,θ)

has a local maximum at x = µ and µ is a mode. Without this restriction µ
can take the value of both local maxima and local minima. Multimodality
is possible because there are stationary points other than at x = µ. The
region of the parameter space where gk(x) is unimodal is that where(

k∑
i=2

iθi (x − µ)i−1 − (x − µ)

)
gk (x;µ,θ) = 0
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9θ2
3 − 32θ4

(
θ2 − 1

2

)
< 0.

Some examples of this region for different values of θ2 are sketched in
Figure 1. For k > 4 the region where gk (x) is unimodal involves higher
degree polynomials and cannot be so easily defined. Considerable deviation
from normality can be modeled by the k = 4 model which we will use here.

3. Applying the Score and Wald Tests to Skewed Data

A detailed exposition of the score and Wald tests is given in Cox and
Hinkley [2]. Deriving a score test of H0 : µ = µ0 against K : µ �= µ0 based
on (2) follows the same steps as in Carolan and Rayner [1]. Maximum
likelihood estimates under the null hypothesis are calculated numerically
and substituted into the score vector and information matrix from which
the score statistic Ŝ is calculated. The score statistic is given by

Ŝ = {Uµ (γ̂0)}T {Σ (γ̂0)}−1{Uµ (γ̂0)}

where γ is the vector of all parameters and is partitioned into the parameter

of interest here, µ, and nuisance parameters, θ; that is γ =
(
µ,θT

)T

. Also
U (γ̂0) is the score vector with γ replaced by γ̂0, its estimate under the null
hypothesis; Uµ (γ̂0) is the component of the score vector which relates to
the parameter of interest and Σ (γ) = Iµµ (γ) I−1

θθ (γ) Iθµ (γ) where I (γ) is
the information matrix. Again subscripts µ and θ refer to the parameters
of interest and nuisance parameters respectively. Under H0, Ŝ will be
asymptotically chi-squared distributed with one degree of freedom.
Model (2) permits multimodal distributions which make tests of location

based on the mode difficult to interpret. Such a distribution with, say, m
modes, can be rewritten in m different ways with the parameter µ taking
the value of a different mode in each case (see Section 4 for an example).
So testing µ = µ0 against µ �= µ0 really tests whether or not there is
‘a mode’ rather than ‘the mode’ at µ0. A distribution with m modes at
µ1, µ2, . . . , µm say, can often be reasonably well approximated by a distri-
bution with m+1 modes at µ1, µ2, . . . , µm, µm+1 where the spurious mode
at µm+1 is the result of sampling variation or involves only a small devi-
ation from the true shape of the distribution. For example µm+1 may be
a mode of negligible height outside the range of the data. This flexibility
of our model can cause problems for the score test, especially for small
sample sizes and if the choice of k is too large. In particular, if the data
has fewer modes than the maximum permitted by the choice of k, then
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because of spurious modes the score test may not be effective in detecting
large deviations from the null hypothesis. For this reason we would expect
our test to perform best for a large sample from a m-modal distribution
with clearly defined modes and with the choice of k permitting a maximum
of m modes. In general gk can have up to k

2 modes, noting that k is always
chosen to be even.
In order to try and avoid these problems with multimodal distributions

we have investigated restricting the maximum likelihood estimation in the
calculation of the score statistic to the regions of the parameter space where
gk(x) is unimodal. We will denote this statistic by ŜR. In Section 5 we
present simulation results, for data from a truly unimodal distribution,
which show the test size to be about right, but the power very poor. As µ
becomes more distant from µ0 a large proportion of the parameter estimates
fall on the boundary of the unimodal region.
A second possible solution is to consider the Wald test. The Wald test,

with test statistic,

Ŵ = (µ̂ − µ0)
T Σ (γ̂) (µ̂ − µ0) ,

is asymptotically equivalent to the score test and, as we will see, is some-
what more convenient in our case. Because the Wald test requires only the
calculation of the unconditional maximum likelihood estimates and not
maximum likelihood estimates under the null hypothesis, it avoids some of
the problems mentioned above. Given the freedom to estimate all param-
eters, maximum likelihood estimation is more likely to fit a distribution
with the correct number of modes than if µ is fixed at an unreasonable
value. Also in the case of the score test, when µ takes an unreasonable
value there can be numerical problems in finding the maximum likelihood
estimates under the null hypothesis, γ̂0, as well as in the calculation of
{Σ (γ̂0)}−1. Estimation under the full model, while slightly more computa-
tionally time consuming (one extra parameter needs to be estimated), will
encounter such problems less frequently.
As mentioned above if the fitted distribution is multimodal there may be

more than one set of parameter estimates which identify the same distri-
bution - which set do we choose in calculating Ŵ? There are a few obvious
ways of proceeding. First, if it is known the population is unimodal, then
it is sensible to choose the µ̂ which corresponds to the largest mode of the
fitted distribution. The Wald statistic calculated in this fashion will be
denoted ŴM . This test will ignore smaller secondary modes of the fitted
distribution which, given the assumption of unimodality, must be spurious.
This version of the Wald test will be appropriate if there is prior knowledge
to suggest the assumption of unimodality is reasonable or if a test for the
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number of modes has been performed and unimodality accepted (for an
example of such a test see Silverman [8]). If on the other hand there is
no information available about the hypothesised mode or the number of
modes, it would appear reasonable to proceed with the Wald test using the
parameter estimates with µ̂ closest to the hypothesised value µ0 - this will
give the smallest possible value of the statistic. This statistic calculated
using the nearest µ̂ will be denoted ŴN . In this case the misidentifica-
tion of a unimodal distribution as multimodal is simply an example of a
type II error and will become less likely as the sample size is increased.
Such misidentification should occur a lot less frequently when uncondi-
tional maximum likelihood estimates are used rather than the estimates
under the null hypothesis as in the score test.
Other choices of µ̂ in evaluating the Wald statistic may apply in particular

instances - for example if it were hypothesised that µ0 is the left most mode
of the underlying distribution then in calculating Ŵ we would choose the
left most value of µ̂. This flexibility of the Wald test makes it much easier
to apply and interpret than the score test. The score test will be most
similar to the application of the Wald test using the ŴN statistic.
In the next section we give some examples of how the score and Wald

tests perform in particular cases of data from unimodal and multimodal
distributions.

4. Examples

In this section we consider three different situations and how the score test
and Wald test for modes perform in each. First, in Section 4.1, applying
these tests to a clearly bimodal distribution we demonstrate an instance
where both techniques appear to behave reasonably well. For unimodal
data we give an example in Section 4.2 that shows the score test to be
somewhat less effective. We also show how the score test with restricted
parameter space performs for the same example. In Section 4.3 we consider
a real data set to show how the Wald test maybe applied in practice.

4.1. Example of Score Test and Wald Test with Bimodal Data

Consider a sample of 100 observations from g4 (x;µ,θ) where µ = 0 and
θ = (0, 0.25,−0.03)T . This distribution and histogram of the sample are
shown in Figure 2. This distribution has two modes, at 0 and 4.322,
and could have been written as g4 (x;µ�,θ�) with µ� = 4.322 and θ� =
(−0.121,−0.269,−0.03)T . In Figure 3 we have plotted values of the score
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statistic and Wald statistic as the hypothesised mode, µ0, is varied. We
expect both to take small values in the region of the modes and large
values elsewhere. Note that the asymptotic critical value for a 5% level
test is χ2

1,0.05 = 3.84. This plot exhibits some interesting behaviour. The
score statistic behaves well in the region of the true modes, 0 and 4.322,
returning small non-critical values. As µ0 moves away from both modes it
appears that the test is performing reasonably well with the score statistic
increasing in magnitude. When µ0 falls in the intervals [-4, -3], [1.2, 3.2]
and [6.4, 7] the maximum likelihood estimate of θ2 is greater than 1

2 . So the
restriction that θ2 < 1

2 (forcing θ̂2 = 0.4999 in our implementation) leads
to the score statistic becoming unstable and in the majority of these cases
it falls outside the range of the plot. This behaviour is not too unreason-
able; θ̂2 → 1

2 suggests that for the particular choice of µ0 being considered
the model proposed in (2) is not applicable and therefore we would hope
for large values of Ŝ. These problems are avoided altogether by the Wald
test which requires estimation under the full model. As mentioned in the
previous section computational and numerical difficulties are far less likely
to arise than in the score test case where maximum likelihood estimation
is required with µ fixed at what maybe a unreasonable value. Because the
Wald statistic is just a quadratic function of the distance between µ0 and
the nearest µ̂ it behaves in a far more predictable fashion than the score
statistic.

4.2. Example of Score and Wald Tests with Unimodal Data

Now consider data from a skewed but unimodal distribution. Choosing
µ = 0 and θ = (0, 0.2,−0.03)T in g4 (x;µ,θ) gives us such a distribution.
For unimodality we require

9θ2
3 − 32θ4

(
θ2 − 1

2

)
< 0.

In this case

9θ2
3 − 32θ4

(
θ2 − 1

2

)
= −0.12 < 0,

so the distribution is indeed unimodal. This can be seen in Figure 4 where
the probability density function and a histogram of 100 observations from
this distribution are plotted.
Figure 5 shows the values of Ŝ, ŜR and ŴM for various values of µ0 for

a sample of size 100 . In the case of the unrestricted score statistic, there
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are again intervals where the choice of µ0 forces θ̂2 → 1
2 and very large

values of Ŝ result. It also appears that as µ0 takes some larger positive
values, outside the range of the majority of the data (for example, the
interval [2.4, 4]), there is still sufficient flexibility in the model to allow Ŝ
to take reasonably small values. In this particular case these values of Ŝ
are still large enough to be significant at the 5% level but do suggest a
possible weakness of the score test. This behaviour is typical, can often
be more extreme and does lead to poor power properties. As mentioned
in the previous section, the model with k = 4 permits up to two modes.
So for a small sample of unimodal data a hypothesised mode distant from
the true mode can often be accommodated by the model without a major
distortion in the shape of the distribution. Again the Wald test appears
to be better behaved than the score test and just as effective in detecting
deviations from the true mode.
Using the score test with the parameter estimates restricted to the region

where the distribution is unimodal improves its performance in this case.
In the next section we conduct a small simulation study to show that the
power of the score test with the restricted parameter space is actually quite
poor. This is due mainly to erratic behaviour of the score statistic when
one or more of the parameters lie on the boundary of the permissible region.

4.3. Peruvian Indian Pulse Rates

Here we consider applying the Wald test for the location of modes to a
real set of data. We use data from Hand et al. [4], (originally from Ryan
et al. [7]) that gives the pulse rate for 39 Peruvian Indians. No further
information is given regarding the sample. A histogram of the data (Fig-
ure 6) shows it to be quite skewed. It may be that the skewed nature of
the data is due to elderly or ill people in the sample. If we had previous in-
formation regarding heart rates for young healthy Indians we maybe more
interested in comparing the old benchmark to the mode of this new data
set rather than to its mean or median. For the sake of this example let
us assume that it is known that a healthy heart rate for a healthy young
Peruvian Indian is around 65. A naively conducted t-test of H0 : µ = 65
against K : µ �= 65 yields a p-value of 0.0012. If we use the Wald test
for modes with the nearest mode method we obtain a p-value (based on
500 bootstrap simulations) of 0.58. These p-values lead to clearly different
conclusions. The reason for this is clear in Figure 6. The skewed nature
of the data has dragged the mean away from the peak in the distribution.
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simulations can be performed far more efficiently for the Wald test than
for the score test. Because of this, far more points have been used for the
Wald test power curves (200 points for unimodal data and 400 for bimodal
data) than for the score test curves (11 points for unimodal data and 16
points for bimodal data). Of course this advantage is only relevant for
simulation studies such as ours. The Wald test does require the estimation
of one more parameter than the score test and so should be slightly slower
in most practical applications. However as we have already noted the score
test, because it requires estimation under what may be an unreasonable null
hypothesis, is more prone to estimation problems and numerical instability
than the Wald test.
First we apply the score and Wald tests to repeated simulations from the

two distribution used in Section 4. Sample sizes of 20, 50, and 100 were
used. Figures 7 and 9 show the power of the 5% level score test for data
from these two distributions. Figures 8 and 10 give the same curves for the
Wald test. We use the WN version of the Wald test for the bimodal data
where we are interested in detecting both modes and the WM version for
the unimodal data where smaller secondary modes in the fitted distribution
can be assumed to be spurious. Test sizes for these tests are presented in
Table 1.

5.1. Simulation Results for the Score and Wald tests for Data
from a Multimodal Distribution

The power curves for both the score and Wald tests in the bimodal data
(Figures 7 and 8) show two minima corresponding to the two modes at 0 and
4.32. This is an unusual shape for a power curve but is not unreasonable
given that we are interested in detecting all modes and so ideally there will
be a low probability of rejecting H0 if either of the modes is close to the
hypothesised mode. For this reason, in Table 1, two ‘sizes’ are reported
for each test in the case of the bimodal distribution. As expected both the
tests become more powerful and the test sizes approach their asymptotic
levels as sample size increases. The power functions for the score and Wald
test have a very similar shape in this case and there appears to be little
difference in their performance.
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Table 1. Actual sizes of the score and Wald tests with a nominal test size of α = 0.05 for
1000 simulated samples of size 20, 50 and 100 from g4 (x;µ, θ) with θ = (0, 0.2,−0.03)T

and θ = (0, 0.25,−0.03)T .

θ Mode n Ŝ ŴN ŴM

(0, 0.2,−0.03)T 0 20 0.10 . 0.18
(unimodal) 50 0.06 . 0.12

100 0.04 . 0.08
(0, 0.25,−0.03)T 0 20 0.05 0.08 .
(bimodal) 50 0.04 0.05 .

100 0.05 0.04 .
4.32 20 0.05 0.11 .

50 0.07 0.06 .
100 0.05 0.05 .

5.2. Simulation Results for the Score and Wald tests for Data
from a Unimodal Distribution

For unimodal data there is only one minimum in each power function,
as expected. Again as sample size is increased both tests become more
powerful and sizes approach their asymptotic levels. Examining the test
sizes in Table 1 it appears that the score test is performing better than
the Wald test. This is due mainly to a test bias in the case of the Wald
test. In both cases the test sizes based on the asymptotic χ2 approxima-
tion do not appear satisfactory for sample sizes of less than 50. In these
cases, for both the unimodal and multimodal data, we would recommend
a resampling approach to obtain p-values. Bootstrap p-values can be ob-
tained by resampling from the fitted model and looking at the quantiles of
the empirical distribution of the test statistic. This of course can be quite
computationally time consuming. In terms of power, especially for small
sample sizes, the score test (Figure 9) performs poorly when µ is distant
from 0. As µ increases past a value around 1.2 (the true value of µ being 0)
the power even starts to decrease. Although the unimodal data does come
from a g4 distribution, at small sample sizes there is insufficient informa-
tion in the data for the score test to discern between unimodal distributions
with µ taking the value of the true mode and bimodal distributions with
µ at a spurious mode and a second mode at the true value. As the sample
size increases, distributions with spurious modes no longer have likelihood
comparable to the true density, so the test becomes more powerful. The
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Table 2. Actual powers of the t, Wilcoxon and Wald tests with a nominal test size of
α = 0.05 for 2000 simulated samples of size 50 from N(0,1).

µ ŴM ŴM ŴM t-test Wilcoxon test
θ2, θ3, θ4 θ2, θ4 θ2

0 0.14 0.08 0.06 0.05 0.05
0.2 0.19 0.33 0.30 0.29 0.27
0.4 0.33 0.81 0.81 0.79 0.77
0.6 0.51 0.99 0.99 0.99 0.98
0.8 0.69 1 1 1 1

5.3. Effect of Over Parameterisation

Care should be taken to keep the number of parameters in the model to
the smallest reasonable value so as to reduce the risk of misidentifying a
unimodal distribution as multimodal - especially if the score test is being
used. The importance of a good choice of k is demonstrated clearly in
Table 2 where we present powers of the Wald test (again WM is used since
the data is known to be unimodal) along with the corresponding powers
of the t and Wilcoxon tests for data from a normal distribution. Using
the Wald test with parameters θ2, θ3 and θ4 represents a considerable over
parameterisation and poor size and power properties result. When just
θ2 and θ4 are used the fitted distribution is forced to be symmetric and
there is a considerable improvement, although the test size is still slightly
higher than the nominal size. When just θ2 is used the Wald test should
be asymptotically equivalent to the optimal test for normal data - the t-
test. Applying a smooth goodness of fit test (see Rayner and Best [6])
may give some indication of the degree of departure from normality and
an appropriate choice of k. In any case for skewed data it is necessary
to include at least θ2, θ3 and θ4. On the other hand using more than
these three parameters may be computationally impractical, especially if
resampling is required. So if there is evidence of skewness and a test for
modes is required then, unless the data is extremely multimodal, we would
recommend using θ2, θ3 and θ4.
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5.4. Conclusion

Standard tests of location like the t-test and Wilcoxon test provide poor
tests for the modes of a skewed or multimodal distribution. Here we have
shown that, for data that can be well approximated by a distribution of
the form given by (2), the score and Wald tests based on this model are
reasonably effective in identifying the modes. Using the score test with the
parameter space restricted was shown not to have any benefit in terms of
power over the unrestricted score test for unimodal data. The score and
Wald tests were seen to have similar performances in terms of size and
power. The fact that maximum likelihood estimates under the full model
will often be useful in their own right and the advantages of the Wald
test in terms of flexibility and interpretation suggest the Wald test may be
the more appropriate of the two. The tests used in this paper have been
implemented in S-PLUS. The authors would be happy to make their code
available to any interested reader.
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