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Abstract. Numerically integrated ephemerides of the Solar System and the Moon require very

accurate integrations of systems of second order ordinary di�erential equations. We present a

new family of 8-9 explicit Runge-Kutta pairs and assess the performance of two new 8-9 pairs on

the equations used to create the ephemeris DE102. Part of this work is the introduction of these

equations as a test problem for integrators of initial value ordinary di�erential equations.

1. Introduction

An ephemeris of the planets and the Moon consists of tabular information from
which accurate positions and velocities of the celestial bodies can be calculated
for any value of astronomical time on a prescribed range. Modern ephemerides
typically contain accurate values of the position and velocity at equally spaced
astronomical times, and the coeÆcients of Chebyshev polynomials for interpolation
between the values.
The information in an ephemeris can be obtained by numerically integrating a

system of ordinary di�erential equations that model all signi�cant gravitational
attractions between the bodies. To take full advantage of the accuracy of modern
astronomical observations and to distinguish between competing analytical theories
for the motion of the bodies, the global error in the integrations must be very small.
Another characteristic of the integrations is that they often span a large interval of
astronomical time, necessitating many integration steps.
The accumulated round-o� error in an integration will in general grow as an

integration proceeds. If the integration is done in double precision arithmetic, the
accumulated round-o� error may be far larger than the required accuracy. This
diÆculty can be overcome by using 80-bit arithmetic or even quadruple precision.
The ordinary di�erential equations for ephemerides are non-sti� and hence explicit

Runge-Kutta (ERK) pairs are suitable methods for performing the integrations.
Pairs consist of formulae of orders p and q, where q < p and is typically p� 1. The
computational e�ort required to advance a step with a pair can be measured by
the number of derivative evaluations, known as stages, performed on the step. For
conciseness, we refer to a pair of s stages as an s-stage q � p pair.

y This work was supported by the University of Auckland Research Committee.
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Of the many ERK pairs available, the 13-stage 7-8 pair of Prince and Dormand
[6] has proven to be as eÆcient as any other on many problems when using double
precision arithmetic, except possibly for low accuracy requirements.
In particular, the pair is noticeably more eÆcient than 8-9 pairs. We investigate

whether this result holds for numerically integrated ephemerides. In section two, we
summarise the derivation of two families of 8-9 pairs, one of which is a new family,
and present a near optimal pair from each family. In section three, we compare the
performance of the two new pairs and the 7-8 pair of Prince and Dormand on the
model equations of DE102. We end in section four with a discussion of our work.

2. Order nine pairs

2.1. De�nitions

Consider the initial value problem

y
0 = f(x; y); y(x0) = y0; (1)

where 0 � d=dx, f : R�Rn ! R
n and the solution y(x) is suÆciently di�erentiable.

The 8-9 ERK pairs we investigate have s-stages and generate an order nine ap-
proximation yi and an order eight approximation byi to y(xi), i = 1; 2; : : : ; according
to

yi = yi�1 + h

sX
j=1

bjfj ; (2)

byi = yi�1 + h

sX
j=1

bbjfj ; (3)

where h = xi � xi�1 and

fj = f(xi�1 + hcj ; yi�1 + h

j�1X
k=1

ajkfk); j = 1; : : : ; s; (c1 = 0):

We refer to cj ; j = 1; : : : ; s, as the abscissae, aij ; j = 1; : : : ; i�1; i = 2; : : : ; s, as the

interior weights, bj , bbj , j = 1; : : : ; s, as the exterior weights, and to the abscissae,
the interior weights and the exterior weights collectively as the coeÆcients of the
pair. To ensure the one step nature of the pairs, we restrict the abscissae to the
interval [0; 1].
When the coeÆcients of the pair are chosen so that yi and byi are order nine and

eight respectively, some coeÆcients are available as free parameters, leading to a
family of pairs and not a unique pair. Individual pairs from this family are obtained
by assigning values to the free parameters. Since we are interested in doing very
accurate integrations, we have chosen the values so that the local error introduced
on a single step is close to the minimum possible when using small stepsizes.
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This error for the step from xi�1 to xi can be written as (for, example [3], page
151)

h
10
X
t2T10

e10(t)D10(t) +O(h11);

where T10 is the set of rooted trees of order ten, e10(t) is the principal error coef-
�cient for tree t, and D10(t) is the elementary di�erential for t. The elementary
di�erential is formed from the partial derivatives of f with respect to x and y and
evaluated at (xi�1; yi�1).
The principal error coeÆcient for tree t can be written as

e10(t) =
�(t)

10!
((t)

sX
k=1

bk�k(t)� 1);

where �(t) and (t) are positive integers, and �k(t) is a function of the interior
weights and abscissae.
Numerical experiments have shown (see, for example [6]) that decreasing the

size of the principal error coeÆcients will in general improve the eÆciency of the
method. Hence, we choose the free parameters so that the error coeÆcients are
close to their minimum value.
We use two measures of the size of the principal error coeÆcients

E
2
10 =

" X
t2T10

e
2
10(t)

#1=2
; E

1

10 = max
t2T10

fje10(t)jg : (4)

2.2. Sixteen stages

Verner [9] derived a family of 16-stage 8-9 pairs with c2, c5, c9, c10, c11, c13, c14
and a11;6 as free parameters (To simplify what follows, we have interchanged the
coeÆcients for the fourteen and sixteenth stages, this can be done without changing
the properties of the pairs.) The order nine formula in the pairs uses the �rst �fteen

stages and the order eight formula uses all sixteen stages. The coeÆcients bj ;bbj ,
j = 2; : : : ; 7, b16, bb14 and bb15 are identically zero.
Verner presented the coeÆcients of a pair from this family which had c2 = 1=12,

c5 = (2 + 2
p
6)=15, c9 = 1=2, c10 = 1=3, c11 = 1=4, c13 = 5=6, c14 = 1=6 and

a11;6 = 0. The pair has E2
10 = 6:1� 10�5 and E

1

10 = 3:1� 10�5, and has been used
when comparing the numerical performance of 8-9 pairs with pairs of other orders.
However, the pair was intended as an illustration of the derivation and not as an
optimal or near optimal pair.
To assess in a problem-independent way if the 8-9 family of Verner contains more

eÆcient pairs, and if so, how much more eÆcient, we performed a minimisation of
E
2
10 over the free parameters, subject to the constraint that the coeÆcients of the

pair be no larger than M in magnitude. This constraint is commonly used when
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selecting a pair from a family and is intended to prevent the selection of a pair with
poor round-o� error properties. Although no one value of M is used, it is often 20
or 30 and we chose 30.
We performed the minimisation using an interactive grid search and obtained a

minimum value for E2
10 of 7:5� 10�7 when working with a grid size of 0:001. The

pair we obtained had c2 = 0:020, c5 = 0:311, c9 = 0:312, c10 = 0:105, c11 = 0:587,
c13 = 0:879, c14 = 0:916 and a11;10 = �0:150 (as a matter of preference we have
used a11;10 in place of a11;6 as a free parameter). The algorithms in [9] can be used
to �nd the remaining coeÆcients. The pair has E110 = 2:8� 10�7.
A slightly smaller value of E2

10 is possible if a smaller grid size is used, but since
the number of derivative evaluations varies approximately as the ninth root of E2

10,
the gain in eÆciency is small. A signi�cantly smaller value of E2

10, approximately
twice as small, is possible if the abscissae are not constrained to the interval [0; 1],
but this choice means the pair is no longer a one step method.
An estimate of the eÆciency of the new pair relative to that of Verner can be

calculated by using E
2
10 for the two pairs. To do this, we assume the global error

for a �xed t and stepsize is proportional to E
2
10. The relative eÆciency is then

estimated as �
3:1� 10�5

7:5� 10�7

�1=9
= 1:63 : : : :

This suggests the new pair will be approximately 63 percent more eÆcient than the
pair of Verner at small stepsizes, raising the possibility of it being competitive with
pairs of other orders.

2.3. Seventeen stages

The work of Sharp and Smart [7] for 4-5 and 5-6 ERK pairs shows a gain in eÆciency
is possible if an extra stage is used to form the pair. The extra stage means more
free parameters are available, permitting a smaller value of E2

10, but this is at the
expense of increasing by one the number of function evaluations required to take a
step.
To investigate if a gain in eÆciency was possible for 8-9 pairs, we derived a family

of 17-stage 8-9 pairs. The family has six more free parameters (three abscissae,
three interior weights) than the 16-stage 8-9 pairs.
We impose, as is commonly done for high order ERK pairs (see, for example [9],

[11]), the following conditions on the coeÆcients of the pair

c
k+1

i

k + 1
=

i�1X
j=1

aijc
k

j
; k = 0; : : : ; �i � 1; i = 1; : : : ; s; (5)

aij = 0; if �i > �j + 1; j = 1; : : : ; i� 1; i = 1; : : : ; s: (6)

The imposition of these conditions reduces the number of independent order con-
ditions and their nonlinearity in the interior weights.
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The conditions can be represented by the stage-order vector � = [�1; �2; : : : ; �s�1]
T .

The 16-stage pairs have � = [5; 1; 2; 3; 3; 4; 4; 5; 5; 5; 5; 5; 5; 5; 5]T ; to obtain � for the
17-stage pairs, one positive integer less than �ve must be inserted. We examined
three choices and found that inserting a 4 after the second 4 to give

� = [5; 1; 2; 3; 3; 4; 4; 4; 5; 5; 5; 5; 5; 5; 5; 5]T

led to the largest number of free parameters.
With � speci�ed, the derivation is similar to that for the 16-stage pairs, the main

di�erence being fewer constraints on the abscissae for the �rst nine stages. We took
c2, c5, c6, c7, c9, c10, c11, c12, c14, c15, a8;7, a11;10, a12;10, a12;11 as free parameters;
other choices are possible, but the number of free parameters remains the same.
The abscissae c3, c4, c8, c16 and c17 are constrained as

c3 =
2

3
c4; c4 =

3c6 � 4c5
4c6 � 6c5

c6;

c8 = c9
20c6c7 � 15c6c9 � 15c7c9 + 12c29
5(3c29 � 4c6c9 + 6c6c7 � 4c7c9)

; c16 = c17 = 1:

(7)

The expression for c13 is the same as for c12 in the 16-stage pairs except c8, c9, c10
and c11 are replaced by c9, c10, c11 and c12 respectively.
We performed a minimisation of E2

10 for the new family using an interactive grid
search and steepest descent (a grid search by itself was impracticable because of
the large number of free parameters) and obtained a pair with E

2
10 = 1:0 � 10�7

and E
1

10 = 3:6� 10�8. The value of the free parameters to four decimal places are
c2 = 0:0757, c5 = 0:3617, c6 = 0:4139, c7 = 0:1074, c9 = 0:7607, c10 = 0:6068, c11 =
0:1531, c12 = 0:8333, c14 = 0:9733, c15 = 0:9888, a8;7 = �0:0001, a11;10 = �0:0078,
a12;10 = 0:0067 and a12;11 = �0:0026. Equations (7) together with � given above
and the algorithms in [9] can be used to �nd the remaining coeÆcients.
In a similar way to that for the two 16-stage pairs, E2

10 can be used to estimate
the relative eÆciency of the new 16-stage and 17-stage pairs. We get�

7:5� 10�7

1:0� 10�7

�1=9
16

17
= 1:18 : : : ;

where the factor (16/17) is the ratio of the number stages. Hence we expect the
new 17-stage pair to be about 18 percent more eÆcient than the new 16-stage pair
for small stepsizes.

2.4. Generalised

The families of 8-9 pairs described in the previous sub-section are readily generalised
to include either one or two extra free parameters.
One generalisation is to replace bbj , j = 1; : : : ; s by the convex linear combination

�bj + (1 � �)bbj . This substitution is equivalent to making one of the previously
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identically zero bb a free parameter. The local error estimate for the pair is changed,
but since bj , j = 1; : : : ; s � 1 remain the same, the principal error coeÆcients of
the order nine formulae and hence E2

10 (and E
1

10) are unchanged.
The second generalisation is based on a transformation obtained by Verner [10]

for two families of 8-stage 5-6 ERK pairs. Verner showed the family of Prince and
Dormand [6] which has c2, c3, c5, c6, b8 and bb7 as free parameters can be obtained
from the family of Verner [9] which has c2, c3, c5 and c6 as free parameters using a
simple transformation on the last two rows of interior weights.
This transformation generalises (Verner, private communication) to other families

of pairs, including the 8-9 pairs in this paper. This means b16 and bb15, previously
zero in the 16-stage 8-9 pairs, and b17 and bb16, previously zero in the 17-stage 8-9
pairs, can be free parameters.
The introduction of these two free parameters changes the local error estimate

and the principal error coeÆcients of the order nine formula. However, as is the
case for the 5-6 pairs in [9], the change in E

2
10 and E

1

10 is small for near optimal
pairs.

3. DE102

Newhall, Standish and Williams [5] presented DE102, an ephemeris of the Solar
System and the Moon, obtained by integrating a system of 33 second order ordinary
di�erential equations of the form

y
00 = f(t; y; y0): (8)

The system (8) consists of equations of motion for the nine planets, the Moon
and three equations for the lunar physical librations. The motion of the Sun is
found from the de�nition of the Solar System barycentre. The equations contain
contributions from point-mass interactions, �gure e�ects for Earth and the Moon,
Earth tides and perturbations from the �ve asteroids (1) Ceres, (2) Pallas, (4)
Vesta, (7) Iris and (324) Bamberga.
The calculations required for one evaluation of the second derivative for (8) are

described in Figure 1. A fuller description is given in [5] and by inference in the
program DE118i.ARC of Moshier, available on the internet.
The model equations used in DE102 can be generalised in a number of ways. For

example, terms modelling the deformation of the Moon's surface by the Earth and
perturbations from other asteroids can be included. However, the model equations
of DE102 have proven suÆciently accurate and re�nements to DE102 (see, for
example [8]) have been in the coordinate systems used, and in the observations
used to de�ne the initial conditions and physical constants.
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1. Initialise

a) Calculate the heliocentric position and velocity for the asteroids and transform to ap-

proximate barycentric values. These values are corrected once the correct position of the

Sun is known.

b) Calculate the distance between the bodies. The distances involving the Sun or asteroids

are estimates only. These distances are corrected once the correct position of the Sun is

known.

c) Use �xed-point iteration to �nd the correct position and velocity of the Sun and aster-

oids, then correct the distances involving the Sun or asteroids.

d) Calculate the cube of the distances between all bodies.

2. Point-mass acceleration

a) Calculate the Newtonian acceleration of all bodies.

b) Calculate the post-Newtonian acceleration of the planets and the Moon.

3. Figure of the Moon

a) Form the rotation matrix for the transformation from space to body coordinates.

b) Calculate the e�ect of the point-mass Earth on the lunar �gure and add this to the

lunar acceleration.

c) Calculate the torque on the Moon due to the gravitational interaction between the

lunar �gure and the external point-mass Earth.

d) The acceleration from b) induces an acceleration in the Earth - add this to the Earth's

acceleration.

e) Calculate the e�ect of the point-mass Sun on the lunar �gure and add this to the lunar

acceleration.

f) Calculate the torque on the Moon due to the gravitational interaction between the lunar

�gure and the external point-mass Sun.

g) Calculate the acceleration of the libration angles.

4. Figure of the Earth

a) Calculate the e�ect of the point-mass Moon on the Earth's �gure and add this to the

Earth's acceleration.

b) The acceleration from a) induces an acceleration in the Moon - add this to the lunar

acceleration.

c) Calculate the contribution to the acceleration of the Moon and the Earth due to the

Earth tides.

d) Calculate the e�ect of the point-mass Sun on the Earth's �gure and add this to the

Earth's acceleration.

The accelerations in this section are adjusted for the precession and nutation of the equinox

and obliquity of the ecliptic.

Figure 1. A summary of the calculations required for one evaluation of the second derivative in

the mathematical model of DE 102.
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4. Numerical experiments

We conducted numerical tests of the two new 8-9 pairs and the 7-8 pair of Prince
and Dormand on the model equations described in the previous section. The results
are illustrated below. The pairs are denoted by PD78 (Prince and Dormand 7-8),
P16 (new 16-stage) and P17 (new 17-stage).
A computer which performed quadruple precision in hardware was unavailable

and hence we used the the multiprecision Fortran90 package MPFUN90 of Bailey
[1], with the precision level set at 35 digits, approximately that of quadruple pre-
cision. The multiprecision version of our program was 270 times slower than our
double precision version which makes the use of MPFUN90 impractical for long
integrations.
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Problem DE102: integration interval is [0,20]
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Figure 2. A log-log graph of the number of derivative evaluations against the norm of the end-

point global error for DE102 with a integration interval of 20. Prince and Dormand 7-8 pair -

dashed line, new 16-stage pair - dotted line, new 17-stage pair - solid line.

The coeÆcients of the 7-8 pair as speci�ed in [6] are accurate to approximately
18 digits. We recalculated the coeÆcients in 100 digit arithmetic using the values
of the free parameters in [6] and used these coeÆcients, rounded to 35 digits. The
global error in a numerical solution was obtained by calculating a more accurate
solution and taking the di�erence between the two solutions.



RUNGE-KUTTA PAIRS FOR EPHEMERIDES 191

The �rst example is for an integration interval of 20 and local error tolerances
of 10i, i = �14; : : : ;�22. Figure 2 contains the log-log graph of the number of
derivative evaluations against the norm of the end-point global error (the data
points have been joined for clarity).
Pair P17 is more eÆcient than P16 suggesting the eÆciency is improved by adding

a stage. The gain in eÆciency varies from 15 to 20 percent, in good agreement with
that predicted using E

2
10. The pairs P16 and P17 are more eÆcient than PD8

for global errors smaller than (approximately) 10�16, and 10�18:5 respectively. In
addition and as can be expected from the order of the pairs, the eÆciency of the 8-9
pairs relative to the 7-8 pair increases as the global error decreases. For example,
P17 is 16 percent more eÆcient for a global error of 10�20 and 29 percent more
eÆcient for a global error of 10�22.
The second example is for an integration interval of 50 using the same local error

tolerances as in the �rst example. The results are given in Figure 3. P16 was
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Figure 3. A log-log graph of the number of derivative evaluations against the norm of the end-

point global error for DE102 with a integration interval of 50. Prince and Dormand 7-8 pair -

dashed line, new 17-stage pair - solid line.

excluded because our test results such as those in Figure 2 showed P16 was less
eÆcient than P17 for the local error tolerances we were using.
The eÆciency of P17 relative to PD78 as a function of the global error is similar to

that for the �rst example, except for a minor di�erence at the larger global errors.
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The global errors are larger than in the �rst example, a result which is consistent
with a larger interval of integration.

5. Discussion

The main aim of our work was to investigate if 8-9 explicit Runge-Kutta pairs
were more eÆcient than lower order pairs, principally 7-8 pairs, for numerically
integrated ephemerides. We derived a new family of 8-9 pairs, obtained near optimal
8-9 pairs from this family and an existing one, and compared the performance of
these pairs and the 7-8 pair of Prince and Dormand on the model equations of the
ephemeris DE102.
Our testing showed the 8-9 pairs were usually more eÆcient than the 7-8 pair.

The gain in eÆciency was not large, but given the amount of CPU time required
to produce ephemerides, the gain is signi�cant. Our testing also showed that near
optimal 17-stage 8-9 pairs can be more eÆcient than near optimal 16-stage 8-9
pairs.
As part of this work we introduced the model equations of DE102 as a test problem

for integrators of initial value ordinary di�erential equations. This problem, in
addition to being a realistic one, has several interesting numerical aspects. For
example, the position and velocity of the Sun is found by solving a system of
nonlinear (algebraic) equations. As in [5], we used �xed point iteration; the question
arises as to whether there is a better way to solve the equations.
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