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Operations researchers have always assumed that when a product’s unit cost is constant and its
demand curve is known and stationary, a retailer of the product would find it optimal to replenish
the inventory with a fixed quantity and to sell the product always at a fixed price. We present,
with proof, a model that shows that, in such a case, an e-tailer is better off using a continuously
increasing price strategy than using a fixed price strategy within each inventory cycle. Sensitivity
analysis shows that this strategy is particularly profitable when demand is highly price sensitive
and the inventory ordering and carrying costs are high.
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1. Introduction

When a retailer of a product buys the product at a constant unit cost, incurs a fixed cost
per order, stores the product at a constant carrying cost per unit of inventory per year, and
faces a deterministic and constant demand rate over an infinite horizon, the economic order
quantity (EOQ) model tells us that the retailer’s optimal strategy is to buy a fixed quantity
every time he or she buys. Ignoring inventory related costs, classical price theory tells us that
when a product’s demand is price sensitive but the demand curve is known and stationary,
the retailer’s optimal strategy is to charge a single price throughout the year. Whitin [1] was
the first one to integrate the concepts of inventory theory with the concepts of price theory to
investigate the simultaneous determination of price and order quantity decisions of a retailer.
Although he never stated so explicitly, Whitin [1] assumed that when all assumptions of the
EOQ model are valid except that demand is price sensitive, with a known and stationary
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demand curve, a retailer’s optimal strategy would be, once again, to buy a fixed quantity every
time he buys and to sell it at a single price throughout the inventory cycle.

Kunreuther and Richard [2] sought to show that when demand is price elastic,
centralized decision-making (using simultaneous determination of optimal price and order
quantity)was superior to the common practice of decentralized decision-making whereby the
price decisions of a retailer were made by the marketing department and given that price,
the order quantity decisions were made by the operations department. Although Kunreuther
and Richard [2] were perhaps unaware of Whitin’s [1] paper, their model was very similar
to Whitin’s [1] model. Assuming a known and stationary demand curve along with the
remaining conditions of the EOQ model, they asserted: “given constant marginal costs of
holding and purchasing the goods, the firm will want to maintain the same price throughout
the year” [3, page 173]. Thus, Kunreuther and Richard [2] explicitly stated their assumption
that the retailer’s selling pricewould be constant throughout the year.What they did not realize
is that, even though marginal holding costs are constant per unit, a firm’s holding costs at any
particular time within an inventory cycle are a function of inventory on hand, which itself is a
function of the time from the beginning of the inventory cycle. As our research shows, in this
situation, a constant price throughout the year is not optimal.

Over the five decades since Whitin’s [1] work, numerous authors [4–10] have used
Whitin’s [1] and Kunreuther and Richard’s [2] models as foundations to their own models.
However, none of these authors have questioned Whitin’s [1] and Kunreuther and Richard’s
[2] assumption that the retailer’s optimal strategy would be to sell the product at a single
price throughout the inventory cycle. Considering a situation of price sensitive demand, Abad
[10, 11] found that, in the case of a temporary sale with a forward buying opportunity, a
retailer’s optimal strategy is to charge two different prices during the last inventory cycle of the
quantity bought on sale—a low price at the beginning of the inventory cycle and a higher price
starting somewhere in the middle of the cycle. Yet, Abad [10, 11] did not consider a similar
strategy in every regular inventory cycle of a product with price sensitive demand.

In this paper, we show that, when demand is price-sensitive, Whitin’s [1] and Kun-
reuther and Richard’s [2] assumption of a single price throughout an inventory cycle leads
to suboptimal profits for the retailer. During an inventory cycle, a retailer’s inventory level
and carrying costs are a declining function of time. When a retailer faces a price-insensitive
demand, his selling price is set arbitrarily, since any optimizing model would push the price
to infinity. In other words, in that situation, price is not seen as a decision variable for any
mathematical model. Given an arbitrary price (and corresponding demand), the retailer’s only
strategy is to minimize his inventory ordering and holding costs by using the EOQ model.
However, in today’s e-commerce environment, when demand is price sensitive, an e-tailer
(e.g., Amazon.com) can adopt a continuously increasing price strategy to minimize the impact
of the time-dependent inventory carrying costs. An e-tailer can easily quote different prices for
a product to an on-line shopper depending on the time at which the shopper is ready to order
the product.

The idea underlying our continuously increasing price strategy is to charge a relatively
low selling price at the beginning of an inventory cycle when the on-hand inventory is large.
The low price would generate high demand. Consequently, the inventory level as well as
the marginal inventory carrying costs would decline rapidly. However, as the inventory cycle
progresses, and as the on-hand inventory and the marginal carrying costs decline, the e-tailer
can charge increasingly higher prices to maximize profit.
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With the widespread use of revenue management or yield management techniques [12–
16] in the airline, car rental, and hotel industries today, a time-dependent (or dynamic) pricing
strategy has become commonly adopted. Revenue management techniques are typically
applied in situations of fixed, perishable capacity and a possibility of market segmentation
[15]. However, in recent years, retail and other industries have begun to use dynamic pricing
policies in view of their inventory considerations. Elmaghraby and Keskinocak [17] present
a comprehensive review of the academic literature on dynamic pricing in the presence of
inventory considerations. They find that the bulk of academic literature on dynamic pricing
is focused on two market environments. The first is an environment where there is no
opportunity for inventory replenishment over the selling horizon and demand is independent
over time. In the second environment, inventory replenishment is possible, but customers
behave myopically and are unconcerned about future price decreases. Our research is not
related to either of these two environments.

Elmaghraby and Keskinocak’s [17] review suggests that the paper of Rajan et al. [18]
may be the only study in the available literature that is relevant to the scope and purpose of our
study. Rajan et al. [18] also focus on the price changes that can occur during a seller’s inventory
cycle. However, they focus on a seller who sells a single perishable product that deteriorates
over time and may or may not experience a reduction in its value due to that deterioration.
We show that even for a nonperishable product with replenishment possibility, a dynamic
pricing strategy makes sense. We present a model that shows that, when the demand curve for
a nonperishable product is known and stationary, a retailer is better off using a continuously
increasing price strategy within each inventory cycle. Because the continuously increasing
price policy we are envisioning is likely to be practical primarily in online retail environments,
we say that an e-tailer is better off using a continuously increasing price strategy within each
inventory cycle.

The applicability of our model and many other models we have referenced here may
be limited by the fact that they all assume deterministic customer behavior and any lack of
competitive reactions to one’s actions. To the extent that customer behavior is stochastic and
competitors do react to a firm’s actions, these models may be oversimplifications of reality. On
the other hand, without some simplification no theoretical or practical model can be built.

In what follows, first we recapitulate Whitin’s [1] and Kunreuther and Richard’s [2]
fixed price strategy model. In the next section, we present our own model. Then, we provide
a mathematical proof that the retailer’s profit under the continuously increasing price strategy
is higher than the profit under the fixed price strategy. Next, we provide several numerical
examples considering a linear demand curve and varied values of relevant parameters. The
final section provides the conclusions of our analysis along with some directions for future
research.

2. The fixed price model

Both papers of Whitin [1] and Kunreuther and Richard [2] consider a situation where all the
other assumptions of the EOQ model are valid but demand is price sensitive, with a known
and stationary demand curve. Whitin’s [1] notation is different fromKunreuther and Richard’s
[2] notation. There are also some minor differences in the details of the two models. However,
the following captures the basics of both the models. Although the model is applicable to any
form of the demand function, for simplicity, we use a linear demand function.
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Let the following notations hold, C = retailer’s known and constant unit cost of buying
the product, S = retailer’s known and constant ordering cost per order, I = retailer’s carrying
costs per dollar of inventory per year, P1 = retailer’s selling price per unit in this model.

It is assumed that P1 > C, D1 = retailer’s annual demand as a function of the selling
price, P1. D1 = a − bP1, where a and b are nonnegative constants, a representing the theoretical
maximum annual demand (at the hypothetical price of $0 per unit) and b representing the
demand elasticity (i.e., the reduction in annual demand per dollar increase in price).

Note that since D1 must be positive for the conceivable range of values of P1, a > bP1

for that range of values of P1, and since P1 > C, it follows that a > bC. Let T = the duration
of retailer’s inventory cycle, and Q = retailer’s order quantity per order in this model. Then,
Q = D1T1. Then Z1 = retailer’s profit per year under this model

Z1 =
(
P1 − C

)
D1 − IC

(
D1T

2

)
− S

T

=
(
P1 − C − ICT

2

)
(
a − bP1

) − S

T
.

(2.1)

Differentiating Z1 with respect to P1 and T, the first-order conditions for the maximization of
this function are

P1 =
(
1
2

)(
a

b
+ C

)
+
ICT

4
, (2.2)

T =
{

2S
IC

(
a − bP1

)
}1/2

. (2.3)

From (2.2) and (2.3), we can see that T satisfies the 3rd degree polynomial

T3 − 2
[
a − bC

bIC

]
T2 +

8S
I2C2b

= 0. (2.4)

Assuming T1 is a positive root of (2.4), substituting the optimal price from (2.2) and T1 from
(2.4) in (2.1), we obtain Z1, the retailer’s optimal profit from this model, as

Z1 =
(
b

4

)[(
a

b

)
− C −

(
ICT1
2

)]2
− S

T1
. (2.5)

We have verified that the second-order conditions (not presented here) fulfil the
requirements for a local maximum of the annual profit. Thus, by solving for (2.2) and (2.3)
simultaneously, one can obtain the optimal values of the price and the inventory cycle time.
Unfortunately, to obtain a closed form solution to these equations, one must solve a cubic
equation that has three possible roots for the value of T. Of course, we would be interested
in only the real root(s). Depending on the coefficients of the cubic equation, the closed
form solutions may be of real numbers and/or complex numbers. Hence, in our numerical
examples, we rely on Excel Solver to obtain the real and optimal solution to this problem. Of
course, when there are multiple real solutions to a cubic equation, Excel gives only one of those
solutions. In theory, one should use a software such as MathCAD to obtain all of the possible
solutions and then determine which one is the global optimal. We did carry out this strategy for
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several numerical examples. In all the cases, what we found was that only one (if any) of the
three solutions results in a real and feasible, hence optimal, solution. Therefore, in Excel Solver,
we input feasibility conditions such as price must be greater than unit cost, order quantity must
be positive, and annual profit must be positive. Excel also needs reasonable starting values of
the decision variables. Once care is taken to input these conditions and reasonable starting
values, in our experimentation, Excel Solver has never failed to return the best real solution (if
any). Hence, we believe that practicing managers would be adequately served by the use of
Excel Solver. They need not worry about obtaining all real roots of the cubic equation.

3. The continuously increasing price model

We retain all of the assumptions of the foregoing model, except that now we assume that the
retailer uses a continuously increasing price strategy within each inventory cycle.

Let us add the following notation: t = time elapsed from the beginning of an inventory
cycle, P2(t) = the retailer’s selling price at time t = f+gt, where f and g are nonnegative decision
variables, and f > C. f represents the retail price at the beginning of each inventory cycle and
g represents the annual rate of increase in the retail price throughout an inventory cycle.

Given that price is a function of time, now the retailer’s annual demand rate will also be
a function of time. Hence, we should redefine demand as

D2(t) = a − bP2(t) = a − bf − bgt. (3.1)

Also let X(t) = retailer’s inventory at time t, T = the duration of retailer’s inventory cycle.
Since at the beginning of the inventory cycle, the retailer orders a quantity Q to meet the

cycle time demand, then

Q = X(0) =
∫T

0
D2(t)dt =

∫T

0
(a − bf − bgt)dt = (a − bf)T −

(
bg

2

)
T2, (3.2)

and at time t, the retailer’s on-hand inventory is given by

X(t) =
∫T

0
D2(t)dt −

∫ t

0
D2(t)dt

= (a − bf)T −
(
bg

2

)
T2 − (a − bf)t +

(
bg

2

)
t2.

(3.3)

Let Y = retailer’s profit per inventory cycle. Y is given by

Y =
∫T

0

[
P2(t) − C

]
D2(t)dt − IC

∫T

0
X(t)dt − S. (3.4)

When simplified, this yields

Y = (a − bf)
(
f − C − ICT

2

)
T + (a − 2bf + bC)

gT2

2
+ bg(IC − g)

T3

3
− S. (3.5)
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Thus, the retailer’s annual profit under this model, Z2, is given by

Z2 =
Y

T
= (a − bf)

(
f − C − ICT

2

)
+ (a − 2bf + bC)

gT

2
+ bg(IC − g)

T2

3
− S

T
. (3.6)

To derive the first-order conditions for the maximization of Z2, differentiating Z2 with respect
to f and equating it to zero, we obtain

f∗ =
(
1
2

)(
a

b
+ C

)
+
(
IC

4
− g∗

2

)
T. (3.7)

Differentiating Z2 with respect to g and equating it to zero, we obtain

f∗ =
(
1
2

)(
a

b
+ C

)
+
(
IC

3
− 2g∗

3

)
T. (3.8)

From (3.7) and (3.8), we can see that the optimal values of g and f are given by

g∗ =
IC

2
,

f∗ =
(
1
2

)(
a

b
+ C

)
.

(3.9)

An interesting thing to note here is that the optimal value of the price increase per year,
g∗, is one half of the cost of carrying one unit for one year. In other words, the retailer’s optimal
selling price at the beginning of the cycle will be f∗ while his optimal selling price for a unit
at the end of the cycle will be (f∗ + ICT/2). This makes intuitive sense. A unit in stock at the
beginning of an inventory cycle, if unsold, will be carried (on an average) over one half of the
duration of the cycle. Hence, it would cost the retailer ICT/2 to carry it, whereas a unit in stock
at the end of the cycle will not incur any additional carrying cost since it will be simply sold.
Hence, the retailer can afford to charge the amount ICT/2 less for a unit at the beginning of the
cycle (and save that carrying cost if the unit sells immediately) compared to the price for a unit
at the end of the cycle. In the process, the retailer benefits from the greater demand generated
by that lower price in the early part of an inventory cycle.

Differentiating Z2 with respect to T, equating it to zero, and substituting the optimal
values of f and g from (3.9), we see that, in this model, T satisfies the 3rd-degree polynomial

T3 +
[
3(bC − a)
2bIC

]
T2 +

6S
bI2C2

= 0. (3.10)

Given that (3.10) is a cubic equation, we have three possible roots for the value of T.
Of course, we would be interested in only the real root(s). As we said in the context of the
fixed price model, there is no simple closed form solution to obtain the real root(s) of a cubic
equation. Hence, in our numerical examples, we rely on Excel Solver to obtain the real and
optimal solutions to this problem. As in the case of the fixed price model, we input several
feasibility conditions and provide reasonable starting values for the decision variables. We are
happy to report that, in our experimentation with this model also, Excel Solver has never failed
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to return the best real solution (if it exists). Hence, we believe that practicing managers would
be adequately served by the use of Excel Solver.

We tried to verify whether the second-order conditions of this model (not presented
here) fulfil the requirements for a local maximum of the annual profit. Unfortunately, the
results are not conclusive. They indicate either a local maximum or an inflection point. Thus,
once again, in theory, we will have to first obtain a numerical solution to T and then verify if
that solution gives a local maximum for the retailer’s profit by perturbing the solution value of
T and checking its impact on the profit value. In our numerical experiments with this model,
the solution given by Excel Solver was always a local optimum (if it existed) rather than an
inflection point.

Note that if T2 is a positive solution of (3.10), substituting optimal f∗, g∗, and T2 in (3.6),
we get Z2, the optimal profit from this model, as

Z2 =
(
b

4

)[(
a

b

)
− C

]2
+
(
b

4

)[(
a

b

)
− C

]
ICT2 +

(
b

4

)(
ICT2

2

3

)
−
(

S

T2

)
. (3.11)

Now let us prove that Z2 of (3.11), the retailer’s optimal profit from the continuously
increasing price model, is greater than or equal to Z1 of (2.5), the retailer’s optimal profit from
the fixed price model.

4. Proof of Z2 ≥ Z1

To simplify (2.4) and (3.10), let us define

u =
2(a − bC)

bIC
,

v =
8S

I2C2b
.

(4.1)

Note that v is clearly greater than zero. Also, we have noted that for both D1 and D2 to
be positive, we must have a > bC. It follows that u > 0.

Now we can rewrite (2.4) and (3.10) as

T3 − uT2 + v = 0, (2.4′)

T3 − 3
4
uT2 +

3
4
v = 0. (3.6′)

We are interested in the real positive roots of (2.4′) and (3.6′) since the maximizing cycle time
T for the profit functions (2.1) and (3.6) are among these roots, respectively.

The following lemmas present some interesting results on these positive real roots. For
convenience, let us designate the left-hand side of (2.4′) as φ1 and the left-hand side of (3.6′) as
φ2.

Lemma 4.1. Equation (3.6′) has two distinct positive real roots if and only if u3 > 12v.

Proof. From the first- and second-order conditions for the maximization of φ2, we see that φ2

has a local maximum at T = 0 and a local minimum at T = (u/2). Note that at T = 0, the
polynomial φ2(0) = (3/4)v > 0. Also, limT→∞φ2(T) = ∞.
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Since the only local minimum of φ2(T) is at T = u/2 > 0 with value φ2(u/2) = (−u3/16)+
(3/4)v, we see that (3.6′) can have two distinct positive real roots if and only if (−u3/16) +
(3/4)v < 0, that is, if and only if u3 > 12v.

Lemma 4.2. If u3 > 12v, then (2.4′) has two distinct positive real roots.

Proof. The polynomial φ1(T) = T3 − uT2 + v behaves similar to φ2(T) at points T = 0 and
infinity. Also, φ1(T) has a local minimum only at T = (2/3)u. The local minimum of φ1(T)
is φ1((2/3)u) = (−4u3/27) + v, and with u3 > 12v, this minimum is negative. Thus, in this case,
(2.4′) has two distinct positive real roots.

Observe that the functions φ1 and φ2 provide the same type of information about Z1 and
Z2 as the first derivatives of Z1 and Z2 do. Figure 1 shows the general forms of φ1 and φ2 as
functions of T.

As can be seen from Figure 1, at the smaller roots, T1 and T2, of (2.4′) and (3.6′),
respectively, φ1 and φ2 are declining with an increase in T. Thus, at T1 and T2 we have local
maxima of the profit functions Z1 and Z2, respectively. At the larger roots of (2.4′) and (3.6′),
φ1 and φ2 are increasing which indicates local minima of Z1 and Z2 at those values of T. Since
our research is focused on the maximization of Z1 and Z2, in the remainder of this paper, we
only consider the smaller positive roots of (2.4′) and (3.6′).

We next state a lemma that gives a lower bound for these roots.

Lemma 4.3. If u3 > 12v and T1 and T2 are the smaller of the two positive roots of (2.4′) and (3.6′),
respectively, then

√
v/u < T1, T2.

Proof. Since u3 > 12v, then
√
v/u < (1/2)u < (2/3)u. Consider the interval (

√
v/u, (2/3)u);

note that φ1(
√
v/u) > 0 and φ1((2/3)u) < 0. Since φ1(T) is continuous on the interval

(
√
v/u, (2/3)u), we see that the root T1 ∈ (

√
v/u, (2/3)u). Therefore,

√
v/u < T1.

We can similarly prove that
√
v/u < T2.

Lemma 4.4. If u3 > 12v and T1 and T2 are the smaller of the two positive roots of (2.4′) and (3.6′),
respectively, then T1 < T2.

Proof. We prove this lemma by contradiction.
Condition u3 > 12v insures the existence of two positive roots of (2.4′) and (3.6′).
Suppose T2 ≤ T1, then

φ1
(
T2
)

= T3
2 − uT2

2 + v

= T3
2 − 3

4
uT2

2 − 1
4
uT2

2 +
3
4
v +

1
4
v

=
(
T3
2 − 3

4
uT2

2 +
3
4
v

)
− 1
4
uT2

2 +
1
4
v

= ϕ2
(
T2
) − 1

4
uT2

2 +
1
4
v = −1

4
uT2

2 +
1
4
v,

(4.2)

where φ2(T2) = 0.
Because T1 is the smallest positive root of φ1(T), and T2 ≤ T1, we must have φ1(T2) ≥ 0,

which implies that −(1/4)uT2
2 + (1/4)v ≥ 0, but this requires that T2 ≤

√
v/uwhich contradicts

Lemma 4.3. Therefore, T1 < T2.
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v

3v/4

(0,0)
(v/u)1/2

T
T1

T2
u/2 2u/3

φ2

φ1

Figure 1: φ1 and φ2 as functions of T.

Theorem 4.5. Suppose a > bC and 8(a − bC/bIC)3 > 96S/I2C2b.
Let T1 be the smallest positive real root of (2.4′), and let T2 be the smallest positive real root of

(3.6′), then the maximized profit of (3.11) is larger than the maximized profit of (2.5).

Proof. To show that difference Z2 − Z1 is positive, we need to show that

Z2 − Z1 =
b

4

(
a − bC

b

)
IC

[
T2 − T1

]
+
b

4
I2C2

[
T2
2

3
− T2

1

4

]
+ S

[
1
T1

− 1
T2

]
> 0. (4.3)

For that to be true, it suffices to show that T1 < T2.
Using the substitution u = 2(a − bC/bIC), and v = 8S/I2C2b in (2.4′) and (3.6′), we can

apply Lemma 4.4 to see that T1 < T2.
Thus, we have established that the maximized profit under the continuously increasing

price strategy is larger than the maximized profit under the fixed price strategy.

Corollary 4.6. Let P ∗
1 be the optimal price given by (2.2). For f∗ and g∗ given by (3.9), respectively,

and the optimal times T1 and T2 in Theorem 4.5, one has the inequality f∗ < P ∗
1 < f∗ + g∗T2.

Proof. From (2.2) and (3.9), we see that P ∗
1 − f∗ = ICT1/4 > 0. Thus P ∗

1 > f∗.
On the other hand, since T2 > T1,

f∗ + g∗T2 − P ∗
1 =

1
2

(
a

b
+ C

)
+
IC

2
T2 − 1

2

(
a

b
+ C

)
− ICT1

4
=
IC

4
(
2T2 − T1

)
> 0. (4.4)

Corollary 4.6 implies that the range of optimal prices over the inventory cycle in the
continuously increasing price model includes the optimal price for the fixed price model. The
numerical example in Table 1 below also confirms the above result.

5. Numerical example: base case

Consider a situation where the retailer’s cost of a product is $7 per unit. The theoretical
maximum annual demand is 50,000 units and annual demand declines at the rate of 5000 units
for each dollar’s increase in the price. The ordering costs are $400 per order and the carrying
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Table 1: A numerical example.

Assumptions common to both models
C = $7/unit; a = 50, 000 units/year; b = 5000 units/year;

S = $400/order; I = $40/dollar/year
Optimal decisions and consequences under the two models

Fixed price
model

Continuously
increasing price
model

Percent
difference
between the
two models

Optimal
decisions

Cycle time (T) 0.2053 years 0.2093 years 1.95%
Price at the beginning of
the cycle (f ) $8.64/unit $8.50/unit −1.62%
Price increase rate per
year (g) None $1.40/unit NA

Consequences

Order quantity (Q) 1392 units/order 1416 units/order 1.72%
Price at the end of the
cycle (= f + gt) $8.64/unit $8.79/unit 1.74%

Annual demand 6790 units/year 6775 units/year −0.22%
Profit per cycle [Y(T)] $1487.96/cycle $1524.47/cycle 2.45%
Profit per year (Z) $7249.24/year $7284.32/year 0.48%

costs are $0.40 per dollar of inventory per year. We will refer to this set of assumptions as the
base case.

Table 1 summarizes the base case assumptions, the optimal decisions and the conse-
quences under the twomodels. As can be seen there, in the fixed price model, the optimal retail
price is $8.64 per unit and the optimal inventory cycle time is 0.2053 years. This means that the
retailer would order 1392 units per order and would obtain a per cycle profit of $1487.96. The
retailer’s annual demand is 6790 units and his profit under this strategy is $7249.24 per year.

In the continuously increasing price strategy model, the optimal retail price is $8.50 per
unit at the beginning of the cycle and that price increases at the rate of $1.40 per year. The
optimal cycle time is 0.2093 years. This means that the retail price at the end of the cycle is
$8.79 per unit, the retailer would order 1416 units per order, and his per cycle profit under this
strategy would be $1524.47. The retailer’s annual demand would be 6775 units and his annual
profit would be $7284.32.

In addition to reporting these numbers, Table 1 also presents the percent differences
between the two models for each relevant decision and consequence. Observe that, in percent
terms, the differences are small. In comparison with the fixed price strategy, the continuously
increasing price strategy results in a slightly longer cycle time. At the beginning of an inventory
cycle, under the continuously increasing price model, the retail price is smaller than what it
is under the fixed price model. However, by the end of the cycle, the retail price under the
continuously increasing price model is larger than what it is under the fixed price model. As a
result, the annual demand is smaller under the continuously increasing price model. The per
cycle profit shows a 2.45% improvement in the continuously increasing price model compared
to the per cycle profit under the fixed price model. However, the annual profit is only 0.48%
greater under the continuously increasing price model. Although this increase in the annual
profit is modest, it is clear that, for an e-tailer, the continuously increasing price strategy is more
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Table 2: Sensitivity analysis.

Changed assumption (s)
A comparison of the annual profit under the two models

Fixed price model Continuously
increasing price model

Percent
difference
between the
two models

None (base case) $7249.24/year $7284.32/year 0.48%
C = $7.70/unit $2993.58/year $3048.31/year 1.83%
a = 55, 000 units/year $15,339.34/year $15,364.48/year 0.16%
b = 5500 units/year $2568.27/year $2623.70/year 2.16%
S = $440/order $7059.27/year $7098.11/year 0.55%
I = $0.44/dollar/year $7059.27/year $7098.11/year 0.55%

profitable than the fixed price strategy. Furthermore, in a competitive market, every modest
increase in profit is desirable.

Arguably, one may wonder if the magnitude of the profit difference between the two
models is worth all the fuss. Similarly, one may also argue that the continuously increasing
price strategy model may be costlier to implement because it is more complex and because
it would call for additional efforts in communicating the pricing strategy to the consumer.
However, in a computerized environment, this model is no more difficult to program than the
fixed price model, and for an e-tailer to quote a time-dependent price is no more costly than
quoting a fixed price when a customer is shopping at the e-tailer’s website.

The specific numerical results we have obtained are a function of the numerical
assumptions we have made. Hence, in order to identify the circumstances under which
the continuously increasing price strategy would be particularly desirable, we carried out a
sensitivity analysis, as described in the following section.

6. Sensitivity analysis

Table 2 summarizes the results of an analysis where we increased the value of each one of
our parameters, one at a time, by 10% while maintaining the values of the other parameters
constant. In each case, Table 2 shows the consequences of these changes on the retailer’s annual
profits under the two models and the percentage increase in the annual profit that the retailer
obtains by using the continuously increasing price strategy as against using the fixed price
strategy. For comparison purposes, the first row of Table 2 repeats the profit results of the two
models in the base case.

While other things remaining unchanged from the base case, when the retailer’s unit
cost for the product goes up by 10% (from $7 per unit to $7.70 per unit), a retailer who uses
the fixed price strategy would obtain an annual profit of $2993.58 while a retailer who uses the
continuously increasing price strategywould realize a profit of $3048.31. Thus, in this situation,
the continuously increasing price strategy affords an increase of 1.83% over the profit provided
by the fixed price strategy. When these results are compared with the base case results, we
can conclude that, while other things remaining the same, when a retailer’s product cost
increases, the continuously increasing price strategy becomes substantially more desirable to
use.
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Table 2 also indicates that, while other things remaining unchanged, if the theoretical
maximum demand increases by 10%, the advantage of the continuously increasing price
strategy reduces substantially to only 0.16% compared to the profit a retailer can make using
the fixed price strategy. On the other hand, when demand elasticity increases by 10%, the
continuously increasing price strategy seems to be the most desirable compared to all the cases
of sensitivity analysis we have presented. In this case, it provides an annual profit that is 2.16%
higher than the profit provided by the fixed price strategy. Other things remaining unchanged,
when the ordering cost increases by 10%, the advantage of the continuously increasing price
strategy goes up slightly to 0.55% compared to its base case advantage of 0.48%. In terms of
the retailer’s profits from the two strategies, the impact of a 10% increase in inventory carrying
costs is identical to that of a 10% increase in the ordering costs.

Thus, while other things remaining the same, high price elasticity favors the continu-
ously increasing price strategy the most, followed by high unit cost and then by high ordering
and carrying costs. It seems appropriate to conclude that the continuously increasing price
strategy is particularly desirable for e-tailers of undifferentiated commodities (high price
elasticity), and e-tailers whose suppliers have considerable pricing power (high product cost).
It should also be attractive to e-tailers of imported products (high ordering costs), e-tailers
who also manufacture the product (high set up costs), e-tailers of perishable products (high
carrying costs), and e-tailers of products subject to sudden obsolescence (high carrying costs).
Note that Rajan et al. [18] have studied the case of perishable products in greater depth.
Our findings are consistent with Rajan et al.’s [18] finding that perishable products that only
deteriorate but do not lose any value call for an increasing price within an inventory cycle.
However, Rajan et al. [18] also found that if a perishable product loses value (i.e., the product
simply could not be sold at its original selling price), then it may be optimal to reduce its
price as time increases within an inventory cycle. We have not considered the case of products
losing any value. On the other hand, we have shown that even for a nonperishable product,
the increasing price strategy is optimal within an inventory cycle.

Of course, our sensitivity analysis focused on changes in one parameter at a time. When
several parameters are favorable to the continuously increasing price strategy, the gains offered
by this strategy need not remain modest.

7. Conclusion

Traditionally, operations researchers (Whitin [1], Kunreuther and Richard [2], and others) have
assumed that when a product’s demand curve is known and stationary, a retailer of the product
would find it optimal to buy a fixed quantity every time he buys and to sell the product at
a fixed price throughout the year. We find that this assumption leads to suboptimal pricing
policy. Instead, we have shown that, within each inventory cycle, a continuously increasing
price strategy is more desirable than the fixed price strategy. Our model resulted in an optimal
increase per year of one half of unit holding cost, which made intuitive sense.

A continuously increasing price strategy might have been deemed impractical in the
past. However, today’s e-tailers can easily adopt this strategy. Elmaghraby and Keskinocak’s
[17] review of dynamic price models indicates that a number of industries are already using
continuously changing pricing strategies.

Our numerical example suggests that often the advantage of a continuously increasing
price strategy is only modest. However, sensitivity analysis shows that this strategy is
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particularly desirable when demand is highly price sensitive or when an e-tailer’s supplier
commands great pricing power. E-tailers facing high inventory ordering and carrying costs
will also find this strategy fairly attractive.

While the continuously increasing price strategy may not be practical for a brick-and-
mortar retailer, such a retailer could use the dual price strategy model developed by Joglekar
[3]. Contending that, during any inventory cycle, the retailer’s inventory carrying costs are a
declining function of time, Joglekar [3] showed that a retailer who sets two different prices at
two different points in an inventory cycle obtains a greater profit than a retailer using a single
fixed price throughout the cycle. Our numerical analysis of Joglekar’s [3]model (not presented
here) showed that a continuously increasing price strategy is superior to his model. However,
Joglekar’s [3] model’s gains are only slightly inferior to the model we have presented here.
Hence, a brick-and-mortar retailer may be well served by that model.

There are several directions in which this research can be extended. First, we have
assumed that the e-tailer obtains the product from a vendor. The model can be easily extended
to a situation where the e-tailer is also a manufacturer of the product. We have already cited
numerous works that have continued to use the single price assumption. Clearly, each one of
those models needs to be revisited in light of our findings here. Finally, a number of recent
models considering the coordination pricing and order quantity decisions across a supply
chain [19–22] have assumed a fixed price for each participant of the supply chain. These
models also need to be updated by considering a continuously increasing price strategy.
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