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We will place certain parts of the theory of statistical efficiency into the author’s opera-
tor trigonometry (1967), thereby providing new geometrical understanding of statistical
efficiency. Important earlier results of Bloomfield and Watson, Durbin and Kendall, Rao
and Rao, will be so interpreted. For example, worse case relative least squares efficiency
corresponds to and is achieved by the maximal turning antieigenvectors of the covariance
matrix. Some little-known historical perspectives will also be exposed. The overall view
will be emphasized.

Copyright © 2007 K. Gustafson. This is an open access article distributed under the Cre-
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1. Introduction and Summary

Recently, Gustafson [1–3] was able to connect the theory of statistical efficiency to his
operator trigonometry, which is a theory of antieigenvalues and antieigenvectors which
he initiated in 1967 for a different purpose. The aim of this paper is to go beyond the
[1–3] papers to provide a more overall view of these results and their implications. We will
also use this opportunity to expose some historical perspectives that have been generally
forgotten or which are otherwise little known.

The outline and summary of this paper are as follows. In Section 2, we obtain the sta-
tistical efficiency ratio of BLUE to OLSE covariance in terms of the geometry provided by
the author’s 1967 operator trigonometry. To fix ideas here, this result can be described as
giving to the [4, 5] Bloomfield-Watson-Knott solution of the Durbin conjecture, that is,
its geometrical meaning. In Section 3, we provide the reader with the basics of the oper-
ator trigonometry. This brief but adequate bibliographical citation is given from which
further detail may be obtained. To augment the reader’s intuition and appreciation for the
operator trigonometry, and because we are writing here for an audience of statisticians,
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in Section 4 we recall the origin of the operator trigonometry, that is, operator semi-
groups, with application to Markov processes. This problem essentially induced both of
the key elements of the operator trigonometry. In Section 5, we return to the topic of
statistical efficiency and provide some lesser-known historical background. This is aug-
mented in Section 6 with a look at an interesting early paper of von Neumann. From the
latter, we are able to make here an interesting new connection of statistical efficiency to
partial differential equations. In Section 7, we develop the interesting and useful distinc-
tion between what we call inefficiency vectors versus antieigenvectors. Both satisfy related
variational equations. Through this link, we may then relate in Section 8 certain consider-
ations of canonical correlations as treated in [6] by Rao-Rao to the general mathematical
setting of statistical efficiency and operator trigonometry—all three are now combined.
Section 9 concludes the paper with some further discussion of the historical view of sta-
tistical efficiency as viewed through the context of this paper.

2. The geometry of statistical efficiency

What follows was shown in Gustafson [1–3]. Considering the general linear model, we
follow Wang and Chow [7] for convenience:

y = Xβ+ e, (2.1)

where y is an n-vector composed of n random samplings of a random variable Y , X is
an n× p matrix usually called the design or model matrix, β is a z-vector composed of p
unknown nonrandom parameters to be estimated, and e is an n-vector of random errors
incurred in observing y. The elements xi j of X may have different statistical meanings
depending on the application. We assume for simplicity that the error or noise e has
expected value 0 and has covariance matrix σ2V , whereV is a symmetric positive definite
n× n matrix. Of course one can generalize to singular V and to unknown V and so on
by using singular value decomposition and generalized inverses throughout to develop
a more general theory, but we shall not do so here. We absorb the σ2 or nonidentical
row-dependent variances into V . A customary assumption on X is that n� 2p, that is,
one often thinks of X as having only a few (regressor) columns available. In fact, it is
useful to often think of p as just 1 or 2. Generally, it seems to be usually assumed that the
columns of X are linearly independent, and often it is assumed that those columns form
an orthonormal set X∗X = Ip.

The relative statistical efficiency for comparing an ordinary least-squares estimator

OLSE ̂β and the best linear unbiased estimator BLUE β∗ is defined as
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where | · | denotes determinant. A fundamental lower bound for statistical efficiency is
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where λ1 � λ2 � ···� λn > 0 are the eigenvalues of V . This lower bound is sometimes
called the Bloomfield-Watson-Knott lower bound; see Section 5 for more historical par-
ticulars. In Gustafson [1], the following new and geometrical interpretation of the lower
bound (2.3) was obtained. More specifics of the operator trigonometry, antieigenvalues,
and antieigenvectors will be given in Section 3. The essential meaning of Theorem 2.1 is
that the linear model’s statistical efficiency is limited by the maximal turning angles of the
covariance matrix V .

Theorem 2.1. For the general linear model (2.1) with SPD covariance matrix V > 0, for

p = 1, the geometrical meaning of the relative efficiency (2.2) of an OLSE estimator ̂β against
BLUE β∗ is

RE
(

̂β
)

� cos2φ(V), (2.4)

where φ(V) is the operator angle of V . For p� n/2, the geometrical meaning is

RE
(

̂β
)

�
p
∏

i=1

cos2φi(V)=
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where the φi(V) are the successive decreasing critical turning angles ofV , that is, correspond-
ing to the higher antieigenvalues μi(V). The lower bound (2.3), as expressed geometrically in
(2.4), is attained for p = 1 by either of the two first antieigenvectors of V :

x± = ±
(
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λ1 + λn

)1/2
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)1/2

x1. (2.6)

For p� n/2, the lower bound (2.3), as expressed geometrically in (2.5), is attained as
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where xi± denotes the ith higher antieigenvectors of V given by

xi± = ±
(

λi
λi + λn−i+1

)1/2

xn−i+1 +

(

λn−i+1

λi + λn−i+1

)1/2

xi. (2.8)

In (2.6) and (2.8), xi denotes the normalized ith eigenvector of V corresponding to the eigen-
value λi.

We remark that Theorem 2.1 follows rather immediately from (2.3) once one recog-
nizes that the factors on the right-hand side of (2.3) are exactly the cosines of the critical
turning angles of V . This connection was first pointed out in Gustafson [1]. In Gustafson
[3], some related trace statistical efficiency bounds were also given an operator trigono-
metric interpretation.
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3. The operator trigonometry: antieigenvalues and angles

For simplicity, let A be an n×n symmetric positive definite (SPD) matrix with eigenval-
ues 0 < λn � λ2 � ···� λ1. Then, the first antieigenvalue of A was defined to be

μ1 =min
x �=0

〈Ax,x〉
‖Ax‖‖x‖ (3.1)

and a related entity

ν1 =min
ε>0

‖εA− I‖ (3.2)

also came naturally into the theory. How that came about will be described in Section 4.
Because of the need for both μ1 and ν1, the author felt that ν1 must also be trigonometric.
Indeed it is. Gustafson [8] established the following key minmax result.

Theorem 3.1. Given a strongly accretive operator B on a Hilbert space, then

sup
‖x‖�1

inf
ε
‖(εB− I)x‖2 = inf

ε > 0

sup
‖x‖�1

‖(εB− I)x‖2. (3.3)

In particular for an SPD matrix A, one has

μ2
1 + ν2

1 = 1. (3.4)

Originally, the minimum (3.1) was called cosA for obvious reasons, and after Theorem
3.1 was realized, the minimum (3.2) could be called sinA. This is an essential critical point
to understand about the operator trigonometry. One must have both a sinA and a cosA
if one wants some kind of trigonometry. Later, the better notations cosφ(A) and sinφ(A)
were introduced so as to avoid any unwarranted confusion with cosine and sine functions
in an operator’s functional calculus. Moreover, it is clear that A does have a meaningful
operator angle φ(A) defined equivalently by either (3.1) or (3.2). This operator maximal
turning angle φ(A) is a real tangible angle in n-dimensional Euclidean space. It is attained
by A’s two (here normalized to norm 1) antieigenvectors:

x± = ±
(

λ1

λ1 + λn

)1/2

xn +

(

λn
λ1 + λn

)1/2

x1, (3.5)

where x1 and xn are any (normalized) eigenvectors from the eigenspaces corresponding
to λ1 and λn, respectively. The antieigenvectors are those that are turned to the maximal
amount when operated on by A, and they thus attain the minimums in (3.1) and (3.2).

A more general theory has been developed, and for that and further history and other
ramifications of the operator trigonometry and antieigenvalue-antieigenvector theory,
we just refer to the books of Gustafson [9], Gustafson and Rao [10], and the surveys of
Gustafson [11, 2]. One more basic ingredient which should be mentioned here is the
Euler equation

2‖Ax‖2‖x‖2(ReA)x−‖x‖2 Re〈Ax,x〉A∗Ax−‖Ax‖2 Re〈Ax,x〉x = 0 (3.6)
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which is satisfied by the antieigenvectors of A, for any strongly accretive matrix A. When
A is Hermitian or normal, this Euler equation is satisfied not only by the first antieigen-
vectors x± of A, but also by all eigenvectors of A. Thus, the expression (3.1) generalizes
the usual Rayleigh quotient theory for SPD matrices A to now include antieigenvectors
x±, which minimize it, and all eigenvectors, which maximize it.

Higher antieigenvalues μi(A) and their corresponding higher antieigenvectors were
originally defined, Gustafson [12], in a way analogous to that for higher eigenvalues in
the Rayleigh-Ritz theory. That is okay for some applications but later, Gustafson [13],
the author formulated a better general combinatorially based theory in which the higher
antieigenvectors are those stated in (2.8). To each such pair, we obtain via (3.1) a sequence
of decreasing-in-size maximal interior operator turning angles φi(V) as indicated in (2.5)
(see Gustafson [14] for more details).

It is interesting to note that antieigenvectors, including the higher ones, always occur
in pairs. In retrospect, this is a hint that there are connections of that fact to the fact that
the usual analyses of statistical efficiency also often end up at a point where one needs to
consider certain pairs of vectors. We will return to this point in Section 7.

4. The origin of the operator trigonometry: Markov processes

The author’s creation of the operator trigonometry in 1967 came out of an abstract op-
erator theoretic question. Let X be a Banach space and let A be the densely defined in-
finitesimal generator of a contraction semigroup etA on X . In other words, consider the
initial value problem

du

dt
= Au(t), t > 0,

u(0)= u0 given
(4.1)

and its solution u(t)=Utu0 ≡ etAu0 with the contraction property ‖Ut‖� 1. So one can
think of the heat equation, the Schrödinger equation, or a linear Markov process. In fact,
it was a question of introducing a stochastic time change into a Markov process etA, which
led to the following question. When can one multiplicatively perturb A to BA and still
retain the contraction semigroup infinitesimal generator property in BA? The result was
as follows, Gustafson [15], stated here in now familiar terms.

Theorem 4.1. Let A be the infinitesimal generator of a contraction semigroup on a Banach
space X . Then, BA is still an infinitesimal generator of a contraction semigroup if B is a
strongly accretive operator satisfying

sinφ(B) � cosφ(A). (4.2)

But the proof of Theorem 4.1 in Gustafson [15] did not originally involve any entity
sinφ(B) because such entities did not exist yet. The proof instead needed ‖εB − I‖ �
μ1(A) for some positive ε. By the minmax Theorem 3.1, this requirement becomes (4.2).
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Therefore, to better understand these now trigonometric entities, the author quickly
computed them for some operator classes. For the most definitive and most useful class
A a SPD matrix with eigenvalues 0 < λn � λn−1 � ···� λ1, one has

cosφ(A)= 2
√

λ1λn
λ1 + λn

, sinφ(A)= λ1− λn
λ1 + λn

, (4.3)

which are attained by the antieigenvector pair (3.5).

5. Some history of statistical efficiency

Although the theory of statistical efficiency is well documented in a number of books, and
in the 1970’s papers of Bloomfield-Watson [4], Knott [5], and others, in the writing of
Gustafson [1] this author wanted to get some original feel of the history for himself. For
one thing, it was wondered where the “Durbin conjecture” which led to the lower bound
(2.3) was explicitly stated. This was not found. But some related historical perspectives
were put into Gustafson [1, 3, Section 4]. There, for example, one finds a description of
precursor work of Plackett [16], Aitken [17], and Durbin and Kendall [18]. The latter
paper is quite explicitly geometrical, although, not operator theoretically. Plackett [16]
takes the fundamental notions all the way back to Gauss.

A second more recent historical look has revealed some further interesting historical
perspectives. In particular, the Watson [19] paper is probably the explicit source of the
“Durbin conjecture.” In fact, one finds it there, (3.5), with a footnote crediting it to J.
Durbin. However, Watson [20] admits a flaw in his [19] argument and thus the verifica-
tion of the Durbin conjecture remained an open problem until 1975.

Going back further to the two papers of Durbin-Watson [21, 22], one finds a more
classical statistical analysis of (2.1) from the point of view of χ2 distributions, which is
of course of central importance to the theory of analysis of variance. In particular, the
second paper is largely devoted to a study of the statistic

d =
∑

(Δz)2
∑

z2
(5.1)

which is to be used for testing for serial correlation within error in terms of a regression
model. We go back to the first paper (see [21, page 409]) and find that the principal issue
is “the problem of testing the errors for independence forms the subject of this paper and
its successor.” Attribution is made to earlier papers by Anderson [23] and Anderson and
Anderson [24], where possible serial correlations in least-squares residuals from Fourier
regressions were tested. In Watson [20], which is a quite useful paper historically, study
of the efficiency of least squares is said to follow that of Grenander [25] and Grenander
and Rosenblatt [26]. In fact, we have traced efficiency explicitly back to Fisher [27]. See
our further discussion in Section 9.
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6. The von Neumann connection and a new connection to
partial differential equations

In our historical search, tracing back through the two papers of Durbin and Watson [21,
22], one comes upon the interesting n×n matrix

A=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢
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1 −1 0 ··· 0
−1 2 −1 ··· 0
0 −1 2 −1 ··· 0
... ··· 0

−1 2 −1
0 −1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (6.1)

It is stated there that this results from the statistic to be used to test for serial correlation

d =
∑

(Δz)2
∑

z2
= 〈Az,z〉

∑

z2
, (6.2)

where z is the residual from linear regression. It was shown [22] that the mean and vari-
ance of the statistic d are given by

E(d)= P

n− k′ − 1
,

var(d)= 2[Q−PE(d)]
(n− k′ − 1)(n− k′ + 1)

,

(6.3)

where

P = trA− tr
(

X ′AX
(

X ′X
)−1

)

,

Q = trA2− 2tr
(
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(

X ′X
)−1

)

+ tr
(

(

X ′AX
(

X ′X
)−1

)2
,

(6.4)

where k′ is the number of columns of the matrix of observations of the independent
variables

⎡

⎢

⎢

⎣

x11 x21 ··· xk′1
...
x1n x2n ··· ck′n

⎤

⎥

⎥

⎦

. (6.5)

One wonders, or at least this author wonders, about how A came about. It turns out that
this query became quite interesting as we now explain.

A more careful reading of Durbin and Watson [21] leads to a paper of von Neu-
mann [28], and one cannot resist looking at it. As it is well known, von Neumann was a
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polymath and this paper is not an exception. An in-depth study of the statistic

η = δ2

s2
(6.6)

is carried out, where s2 is the sample variance of a normally distributed random variable
and δ2 =∑n−1

μ=1(xμ+1− xμ)2/(n− 1) is the mean square successive difference—the goal be-
ing to determine the independence or trend dependence of the observations x1, . . . ,xn.
Thus, we find this paper to be an early and key precedent to all the work done by Durbin,
Watson, and others in the period of 1950–1975.

Von Neumann’s analysis is extensive and he obtains a number of theoretical results
which, if we might paraphrase see Durbin and Watson [21, page 418], are more or less
beyond use by conventional statisticians. However, both Durbin-Watson papers [21, 22]
go ahead and use the matrix A to illustrate their theory. So one looks further into von
Neumann’s paper to better understand the origin of the matrix A of (6.1). One finds
there (see [28, page 367]) the statement: “the reasons for the study of the distribution
of the mean square successive difference δ2, in itself as well as in its relationship to the
variance s2, have been set forth in a previous publication, to which the reader is referred.”
However, it is made clear that comparing observed values of the statistic η will be used
to determine “whether the observations x1, . . . ,xn are independent or whether a trend
exists.”

Since curiosity knows no bounds, we pushed the historical trace back to the previous
publication of von Neumann, Kent, Bellison, and Hart [29]. The answer to our curios-
ity about why von Neumann became involved with this statistical regression problem is
found there. To quote (see [29, page 154]), “the usefulness of the differences between
successive observations only appears to be realized first by ballisticians, who faced the
problem of minimizing effects due to wind variation, heat, and wear in measuring the
dispersion of the distance traveled by shell.” The 4-author paper originated from the Ab-
erdeen Ballistic Research Laboratory, where von Neumann was consulting.

Returning to his analysis in von Neumann [28], we find that he begins with a now
more or less classical multivariate analysis of normally distributed variables. By diago-
nalization, a quadratic form

∑

Aμx′μ is obtained where the Aμ, μ= 1, . . . ,n, are the eigen-
values of the form (n− 1)δ2. The smallest eigenvalue An = 0 is found, with eigenvec-
tor x0 = (1, . . . ,1)/

√
n. A further analysis, using an interesting technique of assuming the

x′1, . . . ,x′n−1 to be uniformly distributed over an n− 1 unit sphere, shows that the statistic
η of (6.5) is then distributed according to

η = n

n− 1

n−1
∑

μ=1

Aμx
2
μ. (6.7)

Thus, the sought eigenvalues Aμ, μ = 1, . . . ,n, are the eigenvalues of the quadratic form
(n− 1)δ2, which is then written as

(n− 1)δ2 = x2
1 + 2

n−1
∑

μ=2

x2
μ + x2

n− 2
n−1
∑

μ=1

xμxμ+1. (6.8)
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The matrix of this form is (6.1) and it is that matrix which is also borrowed and used in
Durbin and Watson [21, 22]. Used as well are the eigenvalues

Ak = 4sin2

(

kπ

2n

)

, k = 1, . . . ,n− 1 (6.9)

which von Neumann computes from the determinant of A.

Commentary. When we first saw the matrix A in Durbin and Watson [21, 22], our take
was completely different. As this author is a specialist in partial differential equations, for
example, see Gustafson [30], we immediately see the matrix A in (6.1) as the discretized
Poisson-Neumann boundary value problem

−d
2u(x)
dx2

= f (x), 0 < x < 1,

du

dx
= 0 at x = 0,1.

(6.10)

In saying this, I am disregarding the exact interval and discrete Δx sizes.
This new connection between statistical efficiency and partial differential equations

will be further explored elsewhere, especially as it will no doubt generalize to Dirich-
let, Neumann, and Robin boundary value problems for the Laplacian operator −Δ =
∑

∂2u/∂x2 in higher dimensions. The reverse implications for a more general context of
statistical efficiency could also be interesting. Moreover, we have already worked out the
complete operator trigonometry for the two-dimensional discretized Dirichlet problem
in Gustafson [31].

We also comment in passing that a similar ballistic problem—that of control of rocket
flight—was the motivating application in Japan during the Second World War that led Ito
to develop his stochastic calculus, which is now so important in the theory of financial
derivatives and elsewhere.

7. The inefficiency equation and the Euler equation

Following Wang and Chow [7], among others, one may apply a Lagrangian method to

RE
(

̂β
)−1 = ∣∣XV−1X

∣

∣

∣

∣X ′VX
∣

∣ (7.1)

with the general case having been reduced to that of X ′X = Ip. By a differentiation of
F(x,λ)= ln|X ′V−1X|+ ln|X ′VX|− 2tr(X ′XΛ) and subsequent minimization, the rela-
tion

X ′X
(

Λ+Λ′
)=Λ+Λ′ = 2Ip (7.2)
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is obtained. Here, Λ is a p× p upper triangular matrix which is the Lagrange multiplier
with respect to the constraint X ′X = Ip. From this and further work including the simul-
taneous diagonalization of X ′V 2X , X ′VX , and X ′V−1X , one arrives at the result

RE
(

̂β
)−1 =

p
∏

i=1

x′i Vxix
′
i V

−1xi, (7.3)

where X is now the n× p column matrix X = [(x1)···(xp)] whose columns go into the
expression (7.3). The Lagrange multiplier minimization leading to (7.3) has also now
yielded the equation for the xi:

V 2xi
x′i Vxi

+
xi

x′i V−1xi
= 2Vxi, i= 1, . . . , p. (7.4)

Clearly, the span {xi,Vxi} is a two- (or one-)dimensional reducing subspace of V and
it is spanned by two (or one) eigenvectors ψj and ψk of V . Writing each column xi =
∑n

j=1αi jψj in terms of the full eigenvector basis of V , (7.4) yields the quadratic equation

z2

x′i Vxi
− 2z+

1
x′i V−1xi

= 0 (7.5)

for the two (or one) eigenvalues λj and λk associated to each xi, i= 1, . . . , p. Substituting
those eigenvalues as found from (7.5) into (7.3) brings (7.3) to the statistical efficiency
lower bound (2.3).

On the other hand, the Euler equation (3.6) from the operator trigonometry, for n×n
SPD matrices A, becomes

A2x
〈

A2x,x
〉 − 2Ax

〈Ax,x〉 + x = 0. (7.6)

Comparison of (7.5), which we call the inefficiency equation, and the Euler equation (7.6)
yield the following result.

Theorem 7.1. For any n× n SPD covariance matrix V or more generally any n× n SPD
matrix A, all eigenvectors xj satisfy the inefficiency equation (7.4) and the Euler equation
(7.6). The only other vectors satisfying the inefficiency equation (7.4) are the “inefficiency
vectors”

x
j+k
± = ± 1√

2
xj +

1√
2
xk, (7.7)

where xj and xk are any eigenvectors corresponding to any distinct eigenvalues λj �= λk. The
only other vectors satisfying the Euler equation (7.6) are the antieigenvectors

x
jk
± = ±

(

λk
λj + λk

)1/2

xj +

(

λj
λj + λk

)1/2

xk. (7.8)

For details of the proof of Theorem 7.1, see Gustafson [1, 3].
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Commentary. The statistical interpretation of relative statistical inefficiency of an OLSE

estimator ̂β in terms of (2.2) is that the design matrix X chosen for (2.1) unfortunately
contains columns of the form (7.7). That is why we called those the inefficiency vectors
of V . The most critical are of course those with j = 1 and k = n. On the other hand, the

new geometrical interpretation of relative statistical inefficiency of an OLSE estimator ̂β,
now in terms of the bound (2.3) as seen trigonometrically according to Theorem 2.1, is
now in the worst-case situation; the matrixX under consideration unfortunately contains
columns of the form (7.8). These antieigenvectors represent the critical turning angles of
the covariance matrix V . The worst case is when j = 1 and k = n.

8. Canonical correlations and Rayleigh quotients

The Euler equation for the antieigenvectors can be placed (at least in the case of A sym-
metric positive definite) within a context of stationary values of products of Rayleigh
quotients. To do so, we refer to the paper of Rao and Rao [6], and references therein. If
one considers the problem of obtaining the stationary values of an expression

x′Cx
(

x′Ax
)1/2(

x′Bx
)1/2 (8.1)

with A and B being symmetric positive definite and C being symmetric, then squaring
(8.1) gives the product of two Rayleigh quotients

〈Cx,x〉
〈Ax,x〉 ·

〈Cx,x〉
〈Bx,x〉 . (8.2)

Taking the functional derivative of (8.1) with respect to x yields the equation

x′Cx
x′Ax

Ax+
x′Cx
x′Bx

Bx = 2Cx. (8.3)

Note that if we let C = T , A= T2, B = 1, then (8.1) becomes the antieigenvalue quo-
tient (3.1). Similarly, (8.3), for the same operators and with x being normalized to ‖x‖ =
1, becomes the Euler equation (7.6). On the other hand, the full Euler equation (3.6) for
any bounded accretive operator A on any Hilbert space is more general than (8.3) in the
sense of operators treated. Moreover, one can easily put B and C operators into the coef-
ficients by a similar derivation. Thus, a general theory encompassing statistical efficiency,
operator trigonometry, and canonical correlations could be developed.

Commentary. In their analysis, Rao and Rao [6] arrive at two cases, the first case corre-
sponds to stationary values equal to 1, and the second case corresponds to smaller sta-
tionary values. As regards the second case, they note that “there can be solutions of the
form x = aei + bej ,” where the ei and ej are eigenvectors. But we now know from the op-
erator trigonometry that these are the two cases covered by our Euler equation (3.6), and
that the solutions in the second case are the antieigenvectors.
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9. Concluding discussion

Who first formulated that the definition RE(̂β) of statistical efficiency was not clear to
this author. Durbin and Kendall [18], certainly two great veterans in the field, specifically
define E to be the efficiency of t′ relative to t according to (see [18, page 151])

ρ(t, t′)=
√

var t
var t′

= √E. (9.1)

Here t =∑n
j=1 λjxj is a linear estimator of the mean. To be unbiased, the coefficients λj

must satisfy
∑

λj = 1. The variance of the estimator t is then σ2
∑

λ2
j = σ2(OP)2, where

OP is the line segment from the origin to the
∑

λj = 1 hyperplane in λ-space. Clearly, the
smallest such variance arrives when one takes the point P to be the bottom of the line
segment perpendicular to the hyperplane. Variance of t′ is just σ2(OP′)2 for any other
point P′ in the hyperplane. So E = cosφ, where φ is the angle between the lines OP and
OP′.

Durbin and Kendall [18] cite the book of Cramér [32] for statistical efficiency. There
[32, Chapter 32, page 474], Cramér makes it clear that “in the sequel, we shall exclusively
consider the measures of dispersion and concentration associated with the variance and
its multidimensional generalizations.” Then see [32, page 481], the efficiency e(α∗) is
defined to be the ratio between the variance D2(α∗) of an unbiased and regular estimate
α∗ and its smallest possible value

1

n
∫∞

−∞

(

∂ log f
∂α

)2

f dx

. (9.2)

Here, f (x,α) is a continuous frequency function. The discrete case is also worked out in
later pages. Cramér attributes the concept of efficient estimate to Fisher [27, 33]. Also
mentioned (see [32, page 488]) are (later) papers by Neyman, Pearson, and Koopman. So
the theory of statistical efficiency arises centrally out of the general theory of estimation
of variance by maximum likelihood methods, and it seems, from the early days of that
development.

In Freund’s classic textbook (Miller and Miller [34]), one finds (see page 327) that the

fact that var(̂θ) � the quantity in (9.2) is called the Cramér-Rao inequality. The denomi-
nator of (9.2) is interpreted as the information about the estimator θ which is supplied by
the sample. Smaller variance is interpreted to mean greater information. Thus, as Cramér
already made clear (see our quote above and Chapter 32 of his book), we are looking at
central tendency as measured by second moments.

We decided to bite the bullet and go back to Fisher [27, 33]. Indeed, in his first paper
see [27, page 309], he clearly defines efficiency of a statistic as “the ratio whose intrinsic
accuracy bears to that of the most efficient statistic possible; it expresses the proportion
of the total available relevant information of which that statistic makes use.” He carefully
attributes, designates, or, in any case, cites in connection with that definition a 1908 paper
by Student and a 1763 paper by Bayes. Then, we find (on page 315) that “in 1908, Stu-
dent broke new ground by calculating the distribution of the ratio which the deviation of
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the mean from its population value bears to the standard deviation calculated from the
sample.” Of course, both papers [27, 33] also contain excellent discussions of the method
of maximum likelihood and its pros and cons.

Here, this author must interject that in a classified naval intelligence task, in 1959,
he first became aware of, and implemented, the χ2 distribution for estimating goodness
of fit for combinations of normally distributed random variables. The application was
concerned with observations at several receiving sites of the bearings of received signal
from a transmitting enemy submarine. For an unclassified account of this work, see the
paper of Gustafson [35]. This author still remembers the genuine joy of operational naval
personnel as they called out that “the χ2 of the fit is. . .!” It is also perhaps an amusing
irony that 45 years later this author, through the indirect and abstract path of his operator
trigonometry, has arrived back at χ2 testing.

A second point for discussion is that in this treatment, we have not gone into the more
general theory of statistical efficiency utilizing generalized inverses. Certainly, it is natural
and essential to do so for both theory and statistical applications. For example, when V is
nonsingular, one has (e.g., see Puntanen and Styan [36]) in terms of generalized inverses

BLUE(Xβ)= Xβ∗ = X(X∗V−1X
)−
X∗V−1y,

OLSE(Xβ)= X ̂β = X(X∗X)−X∗y.
(9.3)

However, in this author’s opinion, the essential points are first seen for p = 1, that is, in
the case of X , a single regressor vector. In any case, the more general theory including
generalized inverses is now so well worked out in the mathematical statistics literature
that such a state of affairs should excuse the author from having to process it all. On
the other hand, it is equally clear that the operator trigonometry of statistical efficiency
should be extended to that setting including generalized inverses and, moreover, singular
correlation matrices V . Possibly, we shall do that in the future, but such a comprehensive
study is a task for another paper.

However, we here may “close the picture” from the other direction. From the usual
assumption X∗X = Ip, where X is an n× p semi-unitary matrix, it is instructive to take
its p orthonormal columns and conceptually add to them n− p orthonormal columns.
These may be thought of as “fictitious” additional regressors that one would like to have.
How to do so is just the procedure in the proof of the classical Schur theorem. Call any
one of these enlarged unitary regressor matrices X . Then, (9.3) is simplified to

BLUE
(

Xβ∗
)= X−1y, OLSE

(

X ̂β
)= y. (9.4)

Also, the efficiency (2.2) becomes 1, caused essentially by the unitarity of X . Although
this exercise should not surprise anyone, still it seems to this author that the generalized
inverse theory could be viewed as an “intermediate” theory dealing with how badly you
have truncated and otherwise abused the fictitiously available large set of Schur unitaries.
As a variation on this theme, for an arbitrary n×nmatrix X written in its polar form X =
U|X|, where U is the isometry from the range of the absolute value operator |X| to the
range of X , the operator trigonometry concerns itself only with the turning angles of the
Hermitian polar factor |X|. See Gustafson [14] for more on this point. Thus, the essence
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of the minimization of the Durbin lower bound (2.3) by its attainment by antieigenvector
regression vectors as described in Theorem 2.1 has to do with the polar Hermitian factor
of X , and not with its isometric factor U . So our thought experiment exercise leading
to (9.4) says that the unitary factor of the design matrix X has no effect on its statistical
efficiency.

To conclude, in this paper we have placed the theory of statistical efficiency into the
geometrical setting of the author’s operator trigonometry. There are many remaining
aspects of both together with their further interconnection, with which we have not dealt.

Addendum

In the intervening two years since the IWMS 2005 conference, on which the work herein
was first presented, I have written two further related papers that should be mentioned:
Gustafson [37, 38].

In [37], what follows are rendered trigonometric: Khatri-Rao inequality, Khatri-Rao-
Ando bound, Bartmann-Bloomfield bound, and Hotelling correlation coefficient. In [38],
I provide a complete survey of the various applications of my operator trigonometry,
from 1966 to the present.
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canonical correlations,” Sankhyā B, vol. 49, no. 2, pp. 113–125, 1987.

[7] S. G. Wang and S.-C. Chow, Advanced Linear Models: Theory and Applications, vol. 141 of Sta-
tistics: Textbooks and Monographs, Marcel Dekker, New York, NY, USA, 1994.

[8] K. Gustafson, “A min-max theorem,” Notices of the American Mathematical Society, vol. 15, p.
799, 1968.

[9] K. Gustafson, Lectures on Computational Fluid Dynamics, Mathematical Physics, and Linear Al-
gebra, World Scientific, River Edge, NJ, USA, 1997.

[10] K. Gustafson and D. K. M. Rao, Numerical Range: The Field of Values of Linear Operators and
Matrices, Universitext, Springer, New York, NY, USA, 1997.



K. Gustafson 15

[11] K. Gustafson, “Commentary on topics in the analytic theory of matrices,” in Collected Works
of Helmut Wielandt 2, B. Huppert and H. Schneider, Eds., pp. 356–367, DeGruyters, Berlin,
Germaney, 1996.

[12] K. Gustafson, “Antieigenvalue inequalities in operator theory,” in Proceedings of the 3rd Sym-
posium on Inequalities, O. Shisha, Ed., pp. 115–119, Academic Press, Los Angeles, Calif, USA,
September 1972.

[13] K. Gustafson, “Antieigenvalues,” Linear Algebra and Its Applications, vol. 208-209, pp. 437–454,
1994.

[14] K. Gustafson, “An extended operator trigonometry,” Linear Algebra and Its Applications, vol. 319,
no. 1–3, pp. 117–135, 2000.

[15] K. Gustafson, “A note on left multiplication of semigroup generators,” Pacific Journal of Mathe-
matics, vol. 24, no. 3, pp. 463–465, 1968.

[16] R. L. Plackett, “A historical note on the method of least squares,” Biometrika, vol. 36, no. 3-4, pp.
458–460, 1949.

[17] A. C. Aitken, “On least squares and linear combination of observations,” Proceedings of the Royal
Society of Edinburgh Section A, vol. 55, pp. 42–48, 1935.

[18] J. Durbin and M. G. Kendall, “The geometry of estimation,” Biometrika, vol. 38, no. 1-2, pp.
150–158, 1951.

[19] G. S. Watson, “Serial correlation in regression analysis—I,” Biometrika, vol. 42, no. 3-4, pp. 327–
341, 1955.

[20] G. S. Watson, “Linear least squares regression,” Annals of Mathematical Statistics, vol. 38, no. 6,
pp. 1679–1699, 1967.

[21] J. Durbin and G. S. Watson, “Testing for serial correlation in least squares regression—I,”
Biometrika, vol. 37, no. 3-4, pp. 409–428, 1950.

[22] J. Durbin and G. S. Watson, “Testing for serial correlation in least squares regression—II,”
Biometrika, vol. 38, no. 1-2, pp. 159–178, 1951.

[23] T. W. Anderson, “On the theory of testing serial correlation,” Skandinavisk Aktuarietidskrift,
vol. 31, pp. 88–116, 1948.

[24] R. L. Anderson and T. W. Anderson, “Distribution of the circular serial correlation coefficient
for residuals from a fitted Fourier series,” Annals of Mathematical Statistics, vol. 21, no. 1, pp.
59–81, 1950.

[25] U. Grenander, “On the estimation of regression coefficients in the case of an autocorrelated
disturbance,” Annals of Mathematical Statistics, vol. 25, no. 2, pp. 252–272, 1954.

[26] U. Grenander and M. Rosenblatt, Statistical Analysis of Stationary Time Series, John Wiley &
Sons, New York, NY, USA, 1957.

[27] R. A. Fisher, “On the mathematical foundations of theoretical statistics,” Philosophical Transac-
tions of the Royal Society of London A, vol. 222, pp. 309–368, 1922.

[28] J. von Neumann, “Distribution of the ratio of the mean square successive difference to the vari-
ance,” Annals of Mathematical Statistics, vol. 12, no. 4, pp. 367–395, 1941.

[29] J. von Neumann, R. H. Kent, H. R. Bellinson, and B. I. Hart, “The mean square successive dif-
ference,” Annals of Mathematical Statistics, vol. 12, pp. 153–162, 1941.

[30] K. Gustafson, Introduction to Partial Differential Equations and Hilbert Space Methods, Dover,
Mineola, NY, USA, 3rd edition, 1999.

[31] K. Gustafson, “Operator trigonometry of the model problem,” Numerical Linear Algebra with
Applications, vol. 5, no. 5, pp. 377–399, 1998.

[32] H. Cramér, Mathematical Methods of Statistics, vol. 9 of Princeton Mathematical Series, Princeton
University Press, Princeton, NJ, USA, 1946.

[33] R. A. Fisher, “Theory of statistical estimation,” Proceedings of the Cambridge Philosophical Soci-
ety, vol. 22, pp. 700–725, 1925.



16 Journal of Applied Mathematics and Decision Sciences

[34] I. Miller and M. Miller, Freund’s Mathematical Statistics, Prentice-Hall, Upper Saddle River, NJ,
USA, 6th edition, 1999.

[35] K. Gustafson, “Parallel computing forty years ago,” Mathematics and Computers in Simulation,
vol. 51, no. 1-2, pp. 47–62, 1999.

[36] S. Puntanen and G. P. H. Styan, “The equality of the ordinary least squares estimator and the
best linear unbiased estimator,” The American Statistician, vol. 43, no. 3, pp. 153–164, 1989.

[37] K. Gustafson, “The trigonometry of matrix statistics,” International Statistical Review, vol. 74,
no. 2, pp. 187–202, 2006.

[38] K. Gustafson, Noncommutative trigonometry, vol. 167 of Operator Theory: Advances and Applica-
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