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1. Introduction

Suppose that for each number of subjects, we measure a response y and a vector of co-
variates x, in order to estimate the parameters β of a regression model which describes
the conditional distribution of y given x. If we have sampled directly from the conditional
distribution, or even the joint distribution, we can estimate β without knowledge of the
distribution of the covariates.

In the case of a discrete response, which takes one of J values y1, . . . , yJ , say, we often
estimate β using a case-control sample, where we sample from the conditional distribu-
tion of X given Y = yj . This is particularly advantageous if some of the values yj occur
with low probability. In case-control sampling, the likelihood involves the distribution
of the covariates, which may be quite complex, and direct parametric modelling of this
distribution may be too difficult. To get around this problem, the covariate distribution
can be treated nonparametrically. In a series of papers (Scott and Wild [1, 2] Wild [3])
Scott and Wild have developed an estimation technique which yields a semiparametric
estimate of β. They dealt with the unknown distribution of the covariates by profiling
it out of the likelihood, and derived a set of estimating equations whose solution is the
semiparametric estimator of β.
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This technique also works well for more general sampling schemes, for example, for
two-phase outcome-dependent stratified sampling. Here, the sample space is partitioned
into S disjoint strata which are defined completely by the values of the response and possi-
bly some of the covariates. In the first phase of sampling, a prospective sample of sizeN is
taken from the joint distribution of x and y, but only the stratum to which the individual

belongs is observed. In the second phase, for s = 1, . . . ,S, a sample of size n(s)
1 is selected

from the n(s)
0 individuals in stratum s which were selected in the first phase, and the rest

of the covariates are measured. Such a sampling scheme can reduce the cost of studies by
confining the measurement of expensive variables to the most informative subjects. It is
also an efficient design for elucidating the relationship between a rare disease and a rare
exposure, in the presence of confounders.

Another generalized scheme that falls within the Scott-Wild framework is that of case-
augmented sampling, where a prospective sample is augmented by a further sample of
controls. In the prospective sample, we may observe both disease state and covariates, or
covariates alone. Such schemes are discussed in Lee et al. [4].

In this paper, we introduce a general method for demonstrating that the Scott-Wild
procedures are fully efficient. We use a (slightly extended) version of the theory of semi-
parametric efficiency due to Bickel et al. [5] to derive an “information bound” for the
asymptotic variance of the estimates. We then compute the asymptotic variances of the
Scott-Wild estimators, and demonstrate their efficiency by showing that the asymptotic
variance coincides with the information bound in each case.

The efficiency of these estimators has been studied by several authors, who have also
addressed this question using semiparametric efficiency theory. This theory assumes an
i.i.d. sample, and so various ingenious devices have been used to apply it to the case of
choice-based sampling. For example, Breslow et al. [6] consider case-control sampling,
that the data are generated by Bernoulli sampling, where either a case or a control is
selected by a randomisation device with known selection probabilities, and the covariates
of the resulting case or control are measured. The randomisation at the first stage means
that the i.i.d. theory can be applied.

The efficiency of regression models under an approximation to the two-phase sam-
pling scheme has been considered by Breslow et al. [7] using missing value theory. In this
approach, a single prospective sample is taken. For some individuals, the response and the
covariates are both observed. For the rest, only the response is measured and the covari-
ates are regarded as missing values. The efficiency bound is obtained using the missing
value theory of Robins et al. [8].

In this paper, we adopt a more direct approach. First, we sketch an extension of Bickel-
Klaassen-Ritov-Wellner theory to cover the case of sampling from several populations,
which we require in the rest of the paper. Such extensions have also been studied by
McNeney and Wellner [9], and Bickel and Kwon [10]. Then information bounds for the
regression parameters are derived assuming that separate prospective samples are taken
from the case and control populations.

The minor modifications to the standard theory required for the multisample effi-
ciency bounds are sketched in Section 2. This theory is then applied to case-control sam-
pling and an information bound derived in Section 3. We also derive the asymptotic
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variance of the Scott-Wild estimator and show that it coincides with the information
bound.

In Section 4, we deal with the two-phase sampling scheme. We argue that a sampling
scheme, equivalent to the two-phase scheme described above is to regard the data as aris-
ing from separate independent sampling from S+ 1 populations. This allows the appli-
cation of the theory sketched in Section 2. We derive a bound and again show that the
asymptotic variance of the Scott-Wild estimator coincides with the bound. Finally, math-
ematical details are given in Section 5.

In the context of data that are independently and identically distributed, Newey [11]
characterises the information bound in terms of a population version of a profile likeli-
hood, rather than a projection. A parallel approach to calculating the information bound
for the case-control and two-phase problems, using Newey’s “profile” characterisation, is
contained in Lee and Hirose [12].

2. Multisamples, information bounds, and semiparametric efficiency

In this section, we give a brief account of the theory of semiparametric efficiency when
the data are not independently and identically distributed, but rather consist of separate
independent samples from different populations.

Suppose we have J populations. From each population, we independently select sep-
arate i.i.d. samples so that for j = 1, . . . , J , we have a sample {xi j , i = 1, . . . ,nj} from a
distribution with density pj , say. We call the combined sample a multisample. We will
consider asymptotics where nj/n→wj , and n= n1 + ···+nJ .

Suppose that pj is a member of the family of densities

�= {pj(x,β,η), β ∈�, η ∈�
}

, (2.1)

where � is a subset of �k and � is an infinite-dimensional set. We denote the true values
of β and η by β0 and η0, and pj(x,β0,η0) by pj0. Consider asymptotically linear estimates
of β of the form

√
n
(
β̂−β0

)= 1√
n

J∑

j=1

nj∑

i=1

φj
(
xi j
)

+ op(1), (2.2)

where Ejφj(X) = 0, Ej denoting expectation with respect to pj0. The functions φj are
called the influence functions of the estimate and its asymptotic variance is

J∑

j=1

wjEj
[
φjφ

T
j

]
. (2.3)

The semiparametric information bound is a matrix B that is a lower bound for the
asymptotic variance of all asymptotically linear estimates of β. We have

Avar β̂ =
∑

j

wjEj
[
φjφ

T
j

]
≥ B, (2.4)

where the φj are the influence functions of β̂.
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The efficiency bound is found as follows. Let T be a subset of �p so that �T = {pj(x,β,
η(t)), β ∈�, t ∈ T} is a p-dimensional submodel of �. We also suppose that if η0 is the
true value of η, then η(t0) = η0 for some t0 ∈ T . Thus, the submodel includes the true
model, having β = β0 and η = η0.

Consider the vector-valued score functions

l̇ j,η =
∂ log pj

(
x,β,η(t)

)

∂t
, (2.5)

whose elements are assumed to be members of L2(Pj0), where Pj0 is the measure cor-
responding to pj(x,β0,η0). Consider also the space L2k(Pj0), the space of all �k-valued
square-integrable functions with respect to Pj0, and the Cartesian product � of these
spaces, equipped with the norm defined by

∥
∥( f1, . . . , fJ

)∥∥2
� =

J∑

j=1

wj

∫ ∥
∥ f j
∥
∥2
dPj0. (2.6)

The subspace of � generated by the score functions (l̇1,η, . . . , l̇J ,η) is the set of all vector-
valued functions of the form (Al̇1,η, . . . ,Al̇J ,η), where A ranges over all k by p matrices.
Thus, to each finite-dimensional sub-family of �, there correspond a score function and
subspace of � generated by the score function. The closure in � of the span(over all such
subfamilies) of all these subspaces is called the nuisance tangent space and denoted by �η.

Consider also the score functions

l̇β, j =
∂ log pj(x,β,η)

∂β
. (2.7)

The projection l̇∗ in � of l̇β = (l̇β,1, . . . ,l̇β,J) onto the orthogonal complement of �η is
called the efficient score, and its elements (which are members of L2,k(Pj0)) are denoted
by l̇∗j . The matrix B (the efficiency bound) is given by

B−1 =
J∑

j=1

wjEj
[
l̇∗j l̇

∗
j
T
]
. (2.8)

The functions B l̇∗j are called the efficient influence functions, and any multisample asymp-
totically linear estimate of β having these influence functions is asymptotically efficient.

3. The efficiency of the Scott-Wild estimator in case-control studies

In this section, we apply the theory sketched in Section 2 to regression models, where the
data are obtained by case-control sampling. Suppose that we have a response Y (assumed
as discrete with possible values y1, . . . , yJ) and a vector X of covariates, and we want to
model the conditional distribution of Y given X using a regression function

f j(x,β)= P(Y = yj | X = x
)
, (3.1)
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say, where β is a k-vector of parameters. If the distribution of the covariates X is specified
by a density g, then the joint distribution of X and Y is

f j(x,β)g(x) (3.2)

and the conditional distribution of x given Y = yj is

pj(x,β,η)= f j(x,β)g(x)

πj
, (3.3)

where

πj =
∫

f j(x,β)g(x)dx. (3.4)

In case-control sampling, the data are not sampled from the joint distribution, but
rather from the conditional distributions of X given Y = yj . We are thus in the situation
of Section 2 with g playing the role of η and

pj(x,β,g)= f j(x,β)g(x)

πj
. (3.5)

3.1. The information bound in case-control studies. To apply the theory of Section 2,
we must identify the nuisance tangent space �η and calculate the projection of l̇β on this
space. Direct calculation shows that

l̇β, j =
∂ log f j(x,β)

∂β
−� j

[
∂ log f j(x,β)

∂β

]
, (3.6)

where � j denotes expectation with respect to the true density pj0, given by pj0(x) =
pj(x,β0,g0), where β0 and g0 are the true values of β and g. Here, and in what follows,
all derivatives are evaluated at the true values of parameters.

Also, for any finite-dimensional family {g(x, t)} of densities with g(x, t0) = g0(x), we
have

l̇η, j = ∂ logg(x, t)
∂t

−� j

[
∂ logg(x, t)

∂t

]
. (3.7)

It follows by the arguments of Bickel et al. [5, page 52] that the nuisance tangent space is
of the form

�η =
{(
h−�1[h], . . . ,h−�J[h]

)
: h∈ L2,k

(
G0
)}

, (3.8)

where dG0 = g0dx, and L2,k(G0) is the space of all k-dimensional functions f satisfying
the condition

∫ ‖ f ‖2dG0(x) <∞.
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The efficient score, the projection of l̇β on the orthogonal complement of �η, is de-
scribed in our first theorem. In the theorem, we use the notations πj0 =

∫
f j(x,β0)dG0(x),

f ∗(x)=
J∑

j=1

wj

πj
f j(x),

l̇β, j =
(
l̇β, j1, . . . , l̇β, jk

)T
,

φl(x)=
J∑

j=1

wj

πj0
l̇β, jl f j

(
x,β0

)
.

(3.9)

Then we have the following result.

Theorem 3.1. Let A be the operator L2(G0)→ L2(G0) defined by

(Ah)(x)= f ∗(x)h(x)−
J∑

j=1

wj

πj
f j(x)

(
f j
πj

,h
)

2
, (3.10)

where (·,·)2 is the inner product in L2(G0). Then the efficient score has j, l element

l̇β, jl −h∗l +Ej
[
h∗l
]
, (3.11)

where h∗l is any solution in L2(G0) of the operator equation

Ah∗l = φl. (3.12)

A proof is given in Section 5.1.
It remains to identify a solution to (3.12). Define Pj(x)= (wj/πj0) f j(x,β0)/ f ∗(x) and

vj j′ =
∫
PjPj′ f ∗dG0. Let V= (vj j′), W= diag(w1, . . . ,wJ), and M=W−V. Note that the

row and column sums of M are zero since

wj −
J∑

j′=1

∫

PjPj′ f
∗dG0 =wj −

wj

πj

∫

f j dG0 = 0. (3.13)

Using these definitions and (3.10), we get

Ahl = hl f ∗ −
J∑

j=1

(
hl,

f j
πj

)

2
Pj f

∗ (3.14)

so that Ahl = φl if and only if

hl = φl
f ∗

+
J∑

j=1

(
hl,

f j
πj

)

2
Pj. (3.15)

This suggests that h∗l will be of the form

h∗l =
φl
f ∗

+
J∑

j=1

cjPj (3.16)
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for some constants c1, . . . ,cJ . In order that h∗l satisfy (3.12), we must have

cj −
J∑

j′=1

cj′

(

Pj′ ,
f j
πj

)

2

−w−1
j

(
φl,Pj

)
2 = 0, j = 1, . . . , J. (3.17)

Now,

(

Pj′ ,
f j
πj

)

2

= π−1
j

∫

Pj′ f j dG0 =w−1
j

∫

Pj′Pj f
∗dG0 =

(
W−1V

)
j j′ (3.18)

so that (3.17) will be satisfied if the vector c = (c1, . . . ,cJ)T satisfies

Mc = d(l), (3.19)

where dl = (d1l, . . . ,dJl)T with djl = (φl,Pj)2. Thus, we require that c =M−d(l), where M−

is a generalised inverse of M.
Our next result gives the information bound.

Theorem 3.2. Let D = (d1, . . . ,dk) and φ = (φ1, . . . ,φk)T . The inverse of the information
bound B is given by

B−1 =
J∑

j=1

wj� j
[
l̇β, j l̇

T
β, j

]−
∫
φφT

f ∗
dG0−DTM−D. (3.20)

See Section 5.2 for a proof.

3.2. Efficiency of the Scott-Wild estimator in case-control studies. Suppose that we
have J disease states (typically J = 2, with disease-state case and control), and we choose
nj individuals at random from disease population j, j = 1, . . . , J , observing covariates
x1, j , . . . ,xnj , j for the individuals sampled from population j. Also suppose that we have a
regression function f j(x,β), j = 1, . . . , J , giving the conditional probability that an indi-
vidual with covariates x has disease state j. The unconditional density g of the covariates
is unspecified. The true values of β and g are denoted by β0 and g0, and the true proba-
bility of being in disease state j is πj0 =

∫
f (x,β0)g0(x)dx.

Under the case-control sampling scheme, the log-likelihood (Scott and Wild [2]) is

J∑

j=1

nj∑

i=1

log f j
(
xi j ,β

)
+

J∑

j=1

nj∑

i=1

logg
(
xi j
)−

J∑

j=1

nj logπj . (3.21)

Scott and Wild show that the nonparametric MLE of β is the “beta” part of the solution
of the estimating equation

J∑

j=1

nj∑

i=1

∂ logP∗j
(
xi j ,β,ρ

)

∂θ
= 0, (3.22)
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where θ = (β,ρ), ρ= (ρ1, . . . ,ρJ−1),

P∗j (x,β,ρ)= eρj f j(x,β)
∑J−1

l=1 e
ρl fl(x,β) + fJ(x,β)

, j = 1, . . . , J − 1,

P∗J (x,β,ρ)= fJ(x,β)
∑J−1

l=1 e
ρl fl(x,β) + fJ(x,β)

.

(3.23)

A Taylor series argument shows that the solution of (3.22) is an asyptotically linear esti-
mate.

Thus, to estimate β, we are treating the function l∗(θ)=∑J
j=1

∑nj
i=1 logP∗j (xi j ,β,ρ) as

though it were a log-likelihood. Moreover, Scott and Wild indicate that we can obtain a
consistent estimate of the standard error by using the second derivative −∂2l∗(θ)/∂θ∂θT ,
which they call the “pseudo-information matrix.”

Now let n= n1 + ···+nJ , let the nj ’s converge to infinity with nj/n→ wj , j = 1, . . . , J ,
and let ρ0 = (ρ01, . . . ,ρ0,J−1)T , where exp(ρ0 j)= (wj/π0 j)/(wJ/π0J). It follows from the law
of large numbers and the results of Scott and Wild that the asymptotic variance of the
estimate of β is the ββ block of the inverse of the matrix

I∗ = −
J∑

j=1

wj� j

[
∂2 logP∗j

(
xi j ,β,ρ

)

∂θ∂θT

]

, (3.24)

where all derivatives are evaluated at (β0,ρ0). Using the partitioned matrix inverse for-
mula, the ββ block of (I∗)−1 is

(
I∗ββ− I∗βρ

(
I∗ρρ
)−1

I∗ρβ
)−1

, (3.25)

where I∗ is partitioned as

I∗ =
⎡

⎣
I∗ββ I∗βρ
I∗ρβ I∗ρρ

⎤

⎦ . (3.26)

To prove the efficiency of the estimator, we show that the information bound (3.20) co-
incides with the asymptotic variance (3.25). To prove this, the following representation of
the matrix I∗ will be useful. Let S be the J × k matrix with j, l element Sjl = (∂ log f j(x,β)/
∂βl) |β=β0 and jth row Sj , and let E be the J × k matrix with j, l element � j[Sjl]. Also note
that Pj(x) = P∗j (x,β0,ρ0) and write P = (P1, . . . ,PS)T . Then we have the following theo-
rem.

Theorem 3.3. (1) I∗ββ =
∑J

j=1wj� j[SjSTj ]− ∫ STPPTS f ∗dG0.

(2) Let U=WE− ∫ PPTS f ∗dG0. Then I∗ρβ consists of the first J − 1 rows of U.
(3) I∗ρρ consists of the first J − 1 rows and columns of M=W−V.

A proof is given in Section 5.3.
Now we show that the information bound coincides with the asymptotic variance.

Using the definition φl(x) =∑J
j=1(wj/πj0)l̇β, jl f j(x,β0), we can write φ = (S− E)TP f ∗,
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and substituting this and the relationship l̇β = S−E into (3.20), we get

B−1 =
J∑

j=1

wjEj
[
SjS

T
j

]
−ETWE−

∫

(S−E)TPPT(S−E) f ∗dG0(x)−DTM−D. (3.27)

Moreover,

D=
∫

PφT dG0(x)=
∫

PPT(S−E) f ∗dG0(x)=WE−U−VE=ME−U. (3.28)

Substituting this into (3.27) and using the relationships described in Theorem 3.3, we get

B−1 = I∗ββ−UTM−U−ET(I−MM−)U−UT(I−M−M)E. (3.29)

By Theorem 3.3, the matrix

[
I∗ρρ

−1 0

0T 0

]

(3.30)

is a generalised inverse of M, so UTM−U= I∗βρI∗ρρ
−1I∗ρβ. Also,

(
I−MM−)U= (I−MM−)(ME−D)= (I−MM−)ME− (I−MM−)MC= 0 (3.31)

by the properties of a generalised inverse. Thus, B−1 = I∗ββ − I∗βρI∗ρρ
−1I∗ρβ and the Scott-

Wild estimate is efficient.

4. Efficiency of the Scott-Wild estimator under two-stage sampling

In this section, we use the same techniques to show that the Scott-Wild nonparametric
MLE is also efficient under two-stage sampling.

4.1. Two stage sampling. In this sampling scheme, the population is divided into S strata,
where stratum membership is completely determined by an individual’s response y and
possibly some of the covariates x—typically those that are cheap to measure. In the first
sampling stage, a random sample of size n0 is taken from the population, and the stratum
to which the sampled individuals belong is recorded. For the ith individual, let Zis = 1

if the individual is in stratum s, and zero otherwise. Then n(s)
0 =∑n1

i=1Zis is the number
of individuals in stratum s. In the second sampling stage, for each stratum s, a simple

random sample of size n(s)
1 is taken from the n(s)

0 individuals in the stratum. Let xis, i =
1, . . . ,n(s)

1 and yis, i= 1, . . . ,n(s)
1 be the covariates and responses for those individuals. Note

that n(s)
1 depends on n(s)

0 and must be regarded as random since n(s)
0 ≥ n(s)

1 for s= 1, . . . ,S.

We assume that the distribution of n(s)
1 depends only on n(s)

0 , and that, conditional on the

n(s)
0 ’s, the n(s)

1 ’s are independent.
As in Section 3, let f (y | x,β) be the conditional density of y given x, which depends

on a finite number of parameters β, which are the parameters of interest. Let g denote the
density of the covariates. We will regard g as an infinite-dimensional nuisance parameter.
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The conditional density of (x, y), conditional on being in stratum s, using Bayes theorem,
is

Is(x, y) f (y | x,β)g(x)
∫∫
Is(x, y) f (y | x,β)g(x)dxdy

, (4.1)

where Is(x, y) is the stratum indicator, having value 1 if an individual having covariates
x and response y is in stratum s, and zero otherwise. The unconditional probability of
being in stratum s in the first phase is

Qs =
∫∫

Is(x, y) f (y | x,β)g(x)dxdy. (4.2)

Introduce the function Qs(x,β)= ∫ Is(x, y) f (y | x,β)dy. Then,

Qs =
∫

Qs(x,β)g(x)dx. (4.3)

Under two-phase sampling, the log-likelihood (Wild [3], Scott and Wild [2]) is

S∑

s=1

n(s)
1∑

i=1

log f
(
yis | xis,β

)
+

S∑

s=1

n(s)
1∑

i=1

logg
(
xis
)

+
S∑

s=1

ms logQs, (4.4)

where ms = n(s)
0 − n(s)

1 . Scott and Wild show that the semiparametric MLE β̂ (i.e., the

“β” part of the maximiser (β̂, ĝ) of (4.4)) is equal to the “β” part of the solution of the
estimating equations

∂	∗

∂β
= 0,

∂	∗

∂ρ
= 0. (4.5)

The function 	∗ is given by

	∗(β,ρ)=
S∑

s=1

n(s)
1∑

i=1

log f
(
yis | xis,β

)−
S∑

s=1

n(s)
1∑

i=1

log

[
∑

r

μr(ρ)Qr
(
xis,β

)
]

+
S∑

s=1

ms logQs(ρ),

(4.6)
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whereQ1(ρ), . . . ,QS(ρ) are probabilities defined by
∑S

s=1Qs(ρ)= 1 and logQs/QS = ρs, s=
1, . . . ,S, and μs(ρ)= c(n0−ms/Qs(ρ)). The μs’s depend on the quantity c and thems’s, and
for fixed values of these quantities, they are completely determined by the S− 1 quantities
ρs. Note that the estimating equations (4.5) are invariant under choice of c. It will be

convenient to take c as N−1, where N = n0 +n1, where n1 =
∑S

s=1n
(s)
1 .

In order to apply the theory of Section 2 to two-phase sampling, we will prove that
the asymptotics under two-phase sampling are the same as those under the following
multi-sample sampling scheme.

(1) As in the first scheme, take a random sample of n0 individuals and record the
stratum in which they fall. This amounts to taking an i.i.d. sample {(Zi1, . . . ,ZiS),
i= 1, . . . ,n0} of size n0 from MULT(1,Q1, . . . ,QS).

(2) For s= 1, . . . ,S, take independent i.i.d. samples {(xis, yis), i= 1, . . . ,n(s)
1 } of size n(s)

1

from the conditional distribution of (x, y) given s, having density ps(x, y,β,g)=
Is(x, y) f (y | x,β)g(x)/Qs.

We note that the likelihood under this modified sampling scheme is the same as before,
and we show in Theorem 4.1 that the asymptotic distribution of the parameter estimates
is also the same. It follows that if an estimate is efficient under the multisampling scheme,
it must also be efficient under two-phase sampling.

Theorem 4.1. Let N = n0 +n1, where n1 =
∑S

s=1n
(s)
1 , and suppose that

√
N(n0/N −w0)

p→
0 and

√
N(n(s)

1 /N −ws)
p→ 0, s= 1, . . . ,S.

Let θ̂ be the solution of the estimating equation (4.5), and let θ0 be the solution to the
equation

w0�
[
ψ0
(
Z1, . . . ,Zs,θ

)]
+

S∑

s=1

�s
[
ψs(x, y,θ)

]= 0, (4.7)

where �s denotes expectation with respect to ps,

ψ0
(
Z1, . . . ,Zs,θ

)= ∂

∂θ

S∑

s=1

Zs logQs,

ψs(x, y,θ)= ∂

∂θ

{
log f (y | x,β)− log

[∑

s

μsQs(x,β)
]
− logQs

}
, s= 1, . . . ,S.

(4.8)

Then
√
N(θ̂− θ0) is asymptotically N(0,(I∗)−1V(I∗)−1) under both sampling schemes,

where V=∑S
s=0wsEs[(ψs−Es[ψs])(ψs−Es[ψs])T] and I∗ = −∑S

s=0wsEs[∂ψs/∂θ].

A proof is given in Section 5.4.

4.2. The information bound. Now we derive the information bound for two-stage sam-
pling. By the arguments of Section 4.1, the information bound for two-phase sampling is
the same as that for the case of independent sampling from the S+ 1 densities ps(x, y,β,g),
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where

ps(x, y,β,g)= Is(x, y) f
(
y | x,β

)
g(x)

Qs
, s= 1, . . . ,S,

p0(x, y,β,g)=QZ1
1 ···QZJ

J ,

(4.9)

where Zs = Is(x, y) is the sth stratum indicator.
First, we identify the form of the nuisance tangent space (NTS) for this problem. As in

Section 3, we see that the score functions for this problem are

l̇0 = ∂ log p0(x, y,β,g)
∂β

=
S∑

s=1

Zs�s[	],

l̇s = ∂ log ps(x, y,β,g)
∂β

=	−�s[	], s= 1, . . . ,S,

(4.10)

where 	 = ∂ log f (y | x,β)/∂β and �s denotes expectation with respect to the true den-
sity ps(x, y,β0,g0). Similarly, if g(x, t) is a finite-dimensional subfamily of densities, then
∂ log ps(x, y,β,g(x, t))/∂t = h−�s[h], s= 1, . . . ,S, and

∂ log p0
(
x, y,β,g(x, t)

)

∂t
=

S∑

s=1

Zs�s[h], (4.11)

where h = ∂ logg(x, t)/∂t. Arguing as in Section 3, we see that the NTS consists of all
elements of the form

T(h)=
( S∑

s=1

Zs
(
�s[h]−�[h]

)
,h−�1[h], . . . ,h−�s[h]

)

, (4.12)

where � denotes expectation with respect to G0.
As before, the efficient score is l̇∗ = l̇ − T(h∗), where h∗ is the element of L2k(G0)

which minimises ‖l̇−T(h)‖2
�. An explicit expression for this squared distance is

k∑

j=1

{

w0

S∑

s=1

�
[
Zs
{
�s
[
	 j
]−�s

[
hj
]
+�
[
hj
]}2
]

+
S∑

s=1

ws�s

[{
	 j−�s

[
	 j
]−hj+�s

[
hj
]}2
]
}

,

(4.13)

where hj and 	 j are the jth elements of h and 	, respectively. To obtain the projection,
we must choose hj to minimise the term in the braces in (4.13). Some algebra shows that
this term may be written as

(
hj ,Ahj

)
2− 2

(
hj ,φj

)
2 +

S∑

s=1

(
w0Qs0−ws

)
�s
[
	 j
]2

+
S∑

s=1

ws�s
[
	2
j

]
, (4.14)
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where Qs0 =
∫
Q(x,β0)g0(x)dx is the true value of Qs, (·,·)2 is the inner product on

L2(G0), and A is a selfadjoint nonnegative definite operator on L2(G0) defined by

Ah=Q∗
{

h−
S∑

r=1

S∑

s=1

(
δrs− γrs

)
∫
h(x)Qr

(
x,β0

)
g0(x)dx

Qr0
Ps

}

,

Q∗(x)=
S∑

s=1

ws

Qs0
Qs
(
x,β0

)
,

Ps(x)=
(
ws/Qs0

)
Qj
(
x,β0

)

Q∗(x)
,

γrs =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w0Qr
(
1−Qr

)

wr
, r = s,

−w0QrQs

wr
, r 
= s,

φj(x)=
S∑

s=1

ws

Qs0
Qs
(
x,β0

)∂ logQs(x,β)
∂βj

|β=β0 −
S∑

s=1

S∑

r=1

Q∗(x)Pr(x)
(
δrs− γrs

)
�s
(
	 j
)
.

(4.15)

As in Section 3, (4.14) is minimised when hj = h∗j , where hj is a solution of Ahj = φj ,
which must be of the form

h∗j =
φj
f ∗

+
S∑

r=1

cr jPr (4.16)

for constants cr j which satisfy the equation

cr j −
S∑

s=1

S∑

t=1

(
δrs− γrs

)

ws
vstct j =

S∑

s=1

(
δrs− γrs

)

ws
ds j , (4.17)

where vrs =
∫
PrPsQ∗dG0 and ds j = (Ps,φj)2. Writing Γ= (γrs), C= (cr j), D= (dr j), W=

diag(w1, . . . ,wS), and V= (vrs), (4.17) can be expressed in matrix terms as

MC=D, (4.18)

where M =W(I− Γ)−1 −V. These results allow us to find the efficient score and hence
the information bound, which is described in the following theorem.

Theorem 4.2. The information bound B is given by

B−1 =
S∑

s=1

ws�s
[
		T

]
+

S∑

s=1

(
w0Qs0−ws

)
�s[	]�s[	]T −

∫
φφT

Q∗
dG0(x)−DTM−D.

(4.19)

The proof is similar to that of Theorem 3.2 and hence omitted.
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4.3. Efficiency of the Scott-Wild estimator. Let θ̂ = (β̂, ρ̂) be the solutions of the estimat-

ing equations (4.5). By Theorem 4.1, under suitable regularity conditions, θ̂ is asymptot-
ically normal with asymptotic variance

I∗−1VI∗−1, (4.20)

where I∗ and V are as in Theorem 4.1. It turns out that the matrix V is of the form

V= I∗ − I∗
(

0 0
0T A

)

I∗ (4.21)

for some matrix A. Thus, the asymptotic variance of θ̂ is

I∗−1−
(

0 0
0T A

)

, (4.22)

and it follows from the partitioned matrix inverse formula that the asymptotic variance

matrix of β̂ is the inverse of

I∗ββ− I∗βρ
(

I∗ρρ
)−1

I∗ρβ, (4.23)

where I∗ is partitioned as

I∗ =
⎡

⎣
I∗ββ I∗βρ
I∗ρβ I∗ρρ

⎤

⎦ . (4.24)

To demonstrate the efficiency of β̂, we must show that (4.23) and (4.19) coincide. To
do this, we need a more explicit formula for I∗. Let S be the S× k matrix with s, j element
(∂ logQs(x,βj)/∂β) |β=β0 , and let E be the S× k matrix with lth row Es = �s[	], where
	= (∂ log f (y | x,β)/∂β) |β=β0 . Also define

P∗s (x,β,ρ)= μs(ρ)Qs(x,β)
∑S

r=1μr(ρ)Qr(x,β)
(4.25)

and note that Ps(x) = P∗s (x,β0,ρ0), where ρ0 satisfies Qs(ρ0) = Qs0, s = 1, . . . ,S. Finally,
write P = (P1, . . . ,PS)T . Then we have the following theorem.

Theorem 4.3.
(1) I∗ββ =

∑S
s=1ws�s[		T]− ∫ STPPTSQ∗dG0(x).

(2) Let U =WE− ∫ PPTSQ∗dG0(x). Then I∗ρβ = ATU0, where U0 consists of the first
S− 1 rows of U and A is a nonsingular (S− 1)× (S− 1) matrix.

(3) I∗ρρ = ATM0A, where M0 consists of the first S− 1 rows and columns of M=W(I−
Γ)−1−V.

The proof is given in Section 5.5.
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We now use Theorems 4.1 and 4.2 to show that the efficiency bound (4.19) equals the
asymptotic variance (4.23). Arguing as in Section 3, we get

B−1 = I∗ββ− I∗βρI∗ρρ
−1I∗ρβ +

{ S∑

s=1

(
w0Qs0−ws

)
EsE

T
s + ETW(I−Γ)E

}

. (4.26)

We complete the argument by showing that the term in the braces in (4.26) is zero. We
have

ETW(I−Γ)ET =
S∑

s=1

(
ws−w0Qs0

)
EsE

T
s +w0

( S∑

s=1

Qs0Es

)( S∑

s=1

Qs0Es

)T

=
S∑

s=1

(
ws−w0Qs0

)
EsE

T
s

(4.27)

since
∑S

s=1Qs0Es = 0. Since the term in the braces in (4.26) is zero, the asymptotic variance
coincides with the information bound and so the Scott-Wild estimator has full semipara-
metric efficiency.

5. Proofs

5.1. Proof of Theorem 3.1. The efficient score is the projection of l̇β onto �⊥
η , and so

it is of the form l̇β − g, where g is the unique minimiser of ‖l̇β − g‖2
� in �η. By (3.8),

this is l̇β−T(h∗), where h∗ is the (unique) minimiser of ‖l̇β−T(h)‖2
� in L2,k(G0). Write

h∗ = (h∗1 , . . . ,h∗k ). Then,

∥
∥l̇β−T(h∗)

∥
∥2

� =
k∑

l=1

J∑

j=1

wj

πj

∫
(
l̇β, jl −h∗l −Ej

[
h∗l
])2

f j dG0 (5.1)

so that we must choose h∗l to minimise

J∑

j=1

wj

πj

∫
(
l̇β, jl −h∗l −Ej

[
h∗l
])2

f j dG0 =
J∑

j=1

wjEj
[
l̇2β, jl

]
+
(
Ah∗l ,h∗l

)
2− 2

(
φl,h∗l

)
2.

(5.2)

Now let h∗l be any solution in L2(G0) to (3.12). Then for any h in L2(G0), using the fact
that A is selfadjoint and positive-definite, we get

J∑

j=1

wjEj
[
l̇2β, jl

]
+ (Ah,h)2− 2

(
φl,h

)
2 =

J∑

j=1

wjEj
[
l̇2β, jl

]
− (Ah∗l ,h∗l

)
2 +
(
h−h∗l ,A

(
h−h∗l

))
2

≥
J∑

j=1

wjEj
(
l̇2β, jl

)− (Ahl,h∗l
)

2

(5.3)

with equality if h = h∗l so that the efficient score has j, l element Sβ, jl − h∗l + Ej[h∗l ] as
asserted.
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5.2. Proof of Theorem 3.2. The l, l′ element of B−1 is

J∑

j=1

wjEj
[
l̇∗β, jl l̇

∗
β, jl′

]
=

J∑

j=1

wj

πj

∫
(
l̇β, jl −h∗l −Ej

(
h∗l
))(

l̇β, jl′ −h∗l′ −Ej
(
h∗l′
))
f j dG0

=
J∑

j=1

wjEj
[
l̇β, jl l̇β, jl′

]
+ (Ah∗l ,h∗l′ )2−

(
φl,h∗l′

)
2−

(
φl′ ,h∗l

)
2

=
J∑

j=1

wjEj
[
l̇β, jl l̇β, jl′

]− (φl,h∗l′
)

2

=
J∑

j=1

wjEj
[
l̇β, jl l̇β, jl′

]−
∫
φlφl′

f ∗
dG0−dT(l)M−d(l′).

(5.4)

5.3. Proof of Theorem 3.3. First, we note the formula

∂2 logP∗j
∂θ∂θT

= ∂2P∗j
∂θ∂θT

1
P∗j
− ∂ logP∗j

∂θ

∂ logP∗j
∂θT

(5.5)

and the fact that

J∑

j=1

wjEj

[
∂2P∗j
∂θ∂θT

1
P∗j

]

=
J∑

j=1

wj

πj

∫ ∂2P∗j
∂θ∂θT

1
P∗j

f j dG0(x)

=
J∑

j=1

∫ ∂2P∗j
∂θ∂θT

f ∗dG0(x)

= ∂2

∂θ∂θT

∫

f ∗dG0(x)

= 0

(5.6)

since
∑J

j=1P
∗
j = 1. Hence

I∗ = −
J∑

j=1

wjEj

[
∂2 logP∗j
∂θ∂θT

]

=
J∑

j=1

wjEj

[
∂ logP∗j
∂θ

∂ logP∗j
∂θT

]

. (5.7)

Next, we note the derivatives

∂ logP∗j (x,β,ρ)

∂β
= Sj −

J∑

s=1

SsPs,

∂ logP∗j (x,β,ρ)

∂ρr
= δj,r −Pr ,

(5.8)



Alan Lee 17

when the derivatives are evaluated at (β0,ρ0). Thus

I∗ββ =
J∑

j=1

wjEj

[
∂ logP∗j
∂β

∂ logP∗j
∂βT

]

=
J∑

j=1

wj

πj

∫ (

Sj −
J∑

s=1

SsPs

)(

Sj −
J∑

s=1

SsPs

)T

f j(x)dG0(x)

=
J∑

j=1

wjEj
[
SjS

T
j

]
−
∫ ( J∑

s=1

SsPs

)( J∑

s=1

SsPs

)T

f ∗(x)dG0(x)

=
J∑

j=1

wjEj
[
SjS

T
j

]
−
∫

STPPTS f ∗dG0(x),

(5.9)

which proves part 1. Also

I∗ρβ,r =
J∑

j=1

wjEj

[
∂ logP∗j
∂ρr

∂ logP∗j
∂β

]

=
J∑

j=1

wj

πj

∫
(
δr,s−Pr

)
(

Sj −
J∑

s=1

SsPs

)

f j(x)dG0(x)

=wrEr
[
Srl
]−

∫ ( J∑

j=1

SjPj

)

Pr f
∗(x)dG0(x),

(5.10)

which proves part 2. Finally,

I∗ρρ,rs =
J∑

j=1

wjEj

[
∂ logP∗j
∂ρr

∂ logP∗j
∂ρs

]

=
J∑

j=1

wj

πj

∫
(
δjr −Pr

)(
δjs−Ps

)
f j(x)dG0(x)

=
∫
(
δrs−Ps

)
Pr f

∗(x)dG0(x)

= δrswr − vrs
=Mrs.

(5.11)

5.4. Proof of Theorem 4.1. Under the two-stage sampling scheme, the joint distribution

of {n(s)
0 }, {n(s)

1 } and {(xis, yis), i= 1, . . . ,n(s)
1 , s= 1, . . . ,S} (Wild [3]) is

∏S

s=1
P
[
n(s)

1 | n(s)
0

]
× n0!

n(1)
0 !···n(S)

0 !
Q
n(1)

0
1 ···Qn(S)

0
S

×
∏S

s=1

{∏n(s)
1

i=1
Is
(
xis, yis

)
f
(
yis | xis,β

)
g
(
xis
)
}

Q
n(s)

1
s

.

(5.12)
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Thus, conditional on the {n(s)
0 } and {n(s)

1 }, the random variables {(xis, yis), i= 1, . . . ,n(s)
1 ,

s= 1, . . . ,S} are independent, with {(xis, yis), i= 1, . . . ,n(s)
1 } being an i.i.d. sample from the

conditional distribution of (x, y), conditional on being in stratum s, having density

ps(x, y,β,g)= Is(x, y) f (y | x,β)g(x)
Qs

. (5.13)

Define

ψ(N)
s (x, y,θ)= ∂

∂θ

{
log f (y | x,β)− log

[∑

s

μsQs(x,β)
]
− logQs

}
, s= 1, . . . ,S,

ψ(N)
0

(
Z1, . . . ,Zs,θ

)= ∂

∂θ

S∑

s=1

Zs logQs.

(5.14)

Then the estimating equations (4.5) can be written in the form

n0∑

i=1

ψ(n0)
0

(
Zi1, . . . ,Zis,θ

)
+

S∑

s=1

n(s)
0∑

i=1

ψ(n0)
s

(
xis, yis,θ

)= 0. (5.15)

Note that the functions ψ(N)
s depend on N , the n(s)

1 ’s and the n(s)
0 ’s through the μs’s, and

the Qs’s. As N →∞, the functions converge to

ψs(x, y,θ)= ∂

∂θ

{

log f (y | x,β)− log
[∑

s

μsQs(x,β)
]
− logQs

}
, s= 1, . . . ,S,

ψ0(x, y,θ)= ∂

∂θ

S∑

s=1

Zs logQs,

(5.16)

where μs =w0− (w0Qs0−ws)/Qs.
Put

SN (θ)=
n0∑

i=1

ψ(N)
0

(
Zi1, . . . ,ZiS,θ

)
+

S∑

s=1

n(s)
1∑

i=1

ψ(N)
s

(
xis, yis,θ

)
. (5.17)

A standard Taylor expansion argument gives

√
N(θ̂− θ0)=

(

− 1
N

∂SN
∂θ

∣
∣
∣
∣
θ=θ0

)−1
1√
N
S(θ0) +

1√
N

(

− 1
N

∂SN
∂θ

∣
∣
∣
∣
θ=θ0

)−1

R, (5.18)

where the jth element of R is

Rj = 1
2

(
θ̂− θ0

)T ∂2
N j

∂θ∂θT

∣
∣
∣
∣
θ=θ̃

(θ̂− θ0), (5.19)

SN j is the jth element of SN and ‖θ̃− θ0‖ ≤ ‖θ̂− θ0‖.
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Consider first SN (θ0)/
√
N . We have

SN
(
θ0
)

√
N

=
√
n0

N

1√
n0

n0∑

i=1

{
ψ(N)

0

(
Zi1, . . . ,ZiS,θ0

)−�
[
ψ0
]}

+
S∑

s=1

√
√
√n(s)

1

N

1
√
n(s)

1

n(s)
1∑

i=1

{
ψ(N)
s

(
xis, yis,θ

)−�s
[
ψs
]}

+
√
N

S∑

s=1

(
n0

N
−w0

)
�
[
ψ0
]

+
√
N

S∑

s=1

(
n(s)

1

N
−ws

)
�s
[
ψs
]
.

(5.20)

Since
√
N(n0/(N)−w0) and

√
N(n(s)

1 /(N)−ws) converge to zero in probability, we see
that

S
(
θ0
)

√
N

=√w0
1√
n0

n0∑

i=1

S∑

s=1

{
ψ(N)

0

(
Zis,θ0

)−�
[
ψ0
]}

+
S∑

s=1

√
ws

1
√
n(s)

0

n(s)
0∑

i=1

{
ψ(N)
s

(
xis, yis,θ

)−�s
[
ψs
]}

+ op(1).

(5.21)

So it suffices to consider SN = S(1)
N + S(2)

N , where S(1)
N and S(2)

N are the first and second terms
above.

Under the alternative multisampling scheme, S(1)
N and S(1)

N are independent, as are the

S summands of S(2)
N . Thus, by the CLT, provided ψ(N)

s converges to ψs sufficiently quickly,
we see that SN is asymptotically normal with zero mean and asymptotic variance V =
∑S

s=0wsVarψs.
Conversely, under two-phase sampling, the characteristic function of SN is

E
[
eitSN

]=
∑

(0)

E
[
eitSN |

{
n(s)

0

}
,
{
n(s)

1

}]
P
[{
n(s)

0

}
,
{
n(s)

1

}]
, (5.22)

where
∑

(0) denotes summation over all possible values of the {n(s)
0 } and {n(s)

1 }. Since S(2)
N

depends on {n(s)
0 } only through {n(s)

1 }, (5.22) equals

E
[
eitSN

]=
∑

(0)

E
[
eitS

(1)
N E
[
eitS

(2)
N |

{
n(s)

1

}]]
P
[{
n(s)

0

}
,
{
n(s)

1

}]
. (5.23)

Let V2 =
∑S

s=1wsVar[ψs]. Assuming that the ψ(N)
s converge sufficiently quickly to the ψs,

it follows that E[eitS
(2)
N | {n(s)

1 }]→ exp{−(1/2)tTV2t} since the distribution of S(2)
N , condi-

tional on {n(s)
0 } and {n(s)

1 }, is the same as that (unconditionally) under multisampling.
Now let ε be arbitrary and let N0 be such that

∣
∣
∣
∣E
[
eitS

(2)
N |

{
n(s)

1

}]
− exp

{
− 1

2
tTV2t

}∣∣
∣
∣ <

ε
2

, (5.24)
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whenever n(s)
1 ≥N0 for s= 1, . . . ,S. Also, assume that the (random) sample sizes ultimately

get large, in the sense that there exists N∗ such that

P
[
n(1)

1 ≥N0, . . . ,n(1)
S ≥N0

]
≥ 1− ε

4
, (5.25)

whenever N > N∗. Denote by
∑

(1) summation over all values of {n(s)
0 } and {n(s)

1 } for

which n(s)
1 ≥N0 for s= 1, . . . ,S, and let

∑
(2) denote summation over all remaining values.

Then,

E
[
eitSN

]=E
[
eitS

(1)
N

]
exp

{
− 1

2
tTV2t

}
+
∑

(1)

E
[
eitS

(1)
N

(
E
[
eitS

(2)
N |

{
n(s)

1

}]
− exp

{
− 1

2
tTV2t

})]

+
∑

(2)

E
[
eitS

(1)
N

(
E
[
eitS

(2)
N |

{
n(s)

1

}]
− exp

{
− 1

2
tTV2t

})]
.

(5.26)

If n0 > N∗, the sum of the second two terms is less than ε in absolute value. So

E
[
eitSN

]= E
[
eitS

(1)
N

]
exp

{
− 1

2
tTV2t

}
+ o(1). (5.27)

Again by the same arguments as above, [eitS
(1)
N ] converges to exp{−(1/2)tTV1t}, where V1

is w0 Var[ψ0(Z1, . . . ,ZS,θ0)] so that E[eitSN ] converges to exp{−(1/2)tTVt}, and hence SN
converges in distribution to a multivariate normal with variance V=V1 + V2.

Assuming that θ̂ is
√
N-consistent, similar arguments show that −(1/N)(∂S/∂θ)|θ=θ0

converges in probability to I∗ under both sampling schemes, and that R/
√
N is op(1).

Thus, as asserted, in both cases,
√
N(θ̂ − θ0) converges to a multivariate normal with

variance (I∗)−1V(I∗)−1.

5.5. Proof of Theorem 4.3. Let

P†s (x, y,β,ρ)= μs(ρ)Is(x, y) f
(
y | x,β

)

∑
r μr(ρ)Qr(x,β)

. (5.28)

From the definition of I∗ in Theorem 4.1 and the law of large numbers, we get

I∗ = −w0�

[ S∑

s=1

Zs
∂2 logQs

∂θ∂θT

]

−
S∑

s=1

ws�s

[
∂2 logP†s
∂θ∂θT

− ∂2 logQsμs
∂θ∂θT

]

=
S∑

s=1

ws�s

[
∂ logP†s
∂θ

∂ logP†s
∂θT

]

−
S∑

s=1

ws�s

[
1

P†s

∂2P†s
∂θ∂θT

]

+
S∑

s=1

ws
∂2 logQsμs
∂θ∂θT

−
S∑

s=1

w0Qs0
∂2 logQs

∂θ∂θT
.

(5.29)
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The second term of this expression is zero since

S∑

s=1

ws�s

[
1

P†s

∂2P†s
∂θ∂θT

]

=
S∑

s=1

∫
∂2

∂θ∂θT

∫

P†s dyQ
∗dG0(x)

=
S∑

s=1

∂2

∂θ∂θT

∫

PsQ
∗dG0(x)

= ∂2

∂θ∂θT

∫

Q∗dG0(x)

= 0.

(5.30)

Now, we evaluate I∗ββ. For the ββ submatrix, the third and fourth terms of (5.29) are zero.
Thus, using the derivative

∂P†s
∂β

=	− STP, (5.31)

we get

I∗ββ =
S∑

s=1

ws�s

[
∂ logP†s
∂β

∂ logP†s
∂βT

]

=
S∑

s=1

ws

Qs0

∫∫
(
	− STP

)(
	− STP

)T
Is(x, y) f

(
y | x,β0

)
dydG0(x)

=
S∑

s=1

ws

Qs0

∫∫

		TIs(x, y) f
(
y | x,β0

)
dydG0(x)−

∫

STP
(

STP
)T
Q∗(x)dG0(x)

=
S∑

s=1

ws�s
[
		T

]−
∫

STPPTSQ∗dG0(x),

(5.32)

which proves part 1.
Now, consider I∗ρβ,r j . Again, the third and fourth terms of (5.29) are zero. Introduce

the parameters λ1, . . . ,λS−1 defined by

λr = log
(
μr(ρ)
μS(ρ)

)
, r = 1, . . . ,S− 1. (5.33)

Then,

∂P†s
∂ρr

=
S−1∑

p=1

∂λp
∂ρr

∂P†s
∂λp

=
S−1∑

p=1

∂λp
∂ρr

(
δsp−Pp

)
. (5.34)
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Thus,

I∗ρβ,r j =
S∑

s=1

ws�s

[
∂ logP†s
∂ρr

∂ logP†s
∂βj

]

=
S∑

s=1

ws

Qs0

∫∫ [ S−1∑

p=1

∂λp
∂ρr

(
δsp−Pp

)
]

(	− SP) j Is(x, y) f
(
y | x,β0

)
dydG0(x)

=
S−1∑

p=1

∂λp
∂ρr

up j ,

(5.35)

where

up j =
S∑

s=1

ws

Qs0

∫∫
(
δps−Pp

)
(	− SP) j Is(x, y) f

(
y | x,β0

)
dydG0(x). (5.36)

Then, as in Theorem 3.3, we see that up j is the p, j element of U, and so part 2 of the
theorem is true with Apr = ∂λp/∂ρr .

The ρρ submatrix is

I∗ρρ =
S∑

s=1

wsEs

[
∂ logP†s
∂ρ

∂ logP†s
∂ρT

]

−
S∑

s=1

w0Qs0
∂2 logQs

∂ρ∂ρT
+

S∑

s=1

ws
∂2 logQsμs
∂ρ∂ρT

=
S∑

s=1

wsEs

[
∂ logP†s
∂ρ

∂ logP†s
∂ρT

]

−w0

S∑

s=1

1
κs

∂Qs

∂ρ

∂Qs

∂ρT
,

(5.37)

where κs =Qs0ws/cs. It follows from (5.34) that I∗ρρ = ATM0A, where M0 has p, q element

S∑

s=1

wsEs

[
∂ logP†s
∂λp

∂ logP†s
∂λq

]

−w0

S∑

s=1

1
κs

∂Qs

∂λp

∂Qs

∂λq
. (5.38)

As in Section 5.3, the first term of this expression is δpqwp − vpq. Routine calculations
using the relationships λp = log(μp/μS) and μp =w0− cp/Qp give

∂Qp

∂λq
= δpqκp−

κpκq
κ∗

, (5.39)

where κ∗ =∑S
p=1 κp. This representation implies that

s∑

s=1

1
κs

∂Qs

∂λp

∂Qs

∂λq
= ∂Qp

∂λq
(5.40)

so that the p, q element of M0 is δpqwp− vpq−w0(∂Qp/∂λq).
By the Sherman-Morrison formula, the p, q element of the matrix W(I−Γ)−1−W is

−w0(∂Qp/∂λq). So the matrix M0 consists of the first S− 1 rows and columns of W−V +
W(I−Γ)−1−W=W(I−Γ)−1−V=M.
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