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We look at fitting regression models using data from stratified cluster samples when the
strata may depend in some way on the observed responses within clusters. One important
subclass of examples is that of family studies in genetic epidemiology, where the proba-
bility of selecting a family into the study depends on the incidence of disease within the
family. We develop the survey-weighted estimating equation approach for this problem,
with particular emphasis on the estimation of superpopulation parameters. Full maxi-
mum likelihood for this class of problems involves modelling the population distribution
of the covariates which is simply not feasible when there are a large number of potential
covariates. We discuss efficient semiparametric maximum likelihood methods in which
the covariate distribution is left completely unspecified. We further discuss the relative
efficiencies of these two approaches.
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1. Introduction

In this paper, we look at the problem of fitting models to data from stratified cluster
samples. We are particularly interested in situations where the probability that a cluster is
in a particular stratum depends on the value of its response. Sometimes this dependence
is explicit and obvious. An important special case of this situation is the case-control
family study, which is widely used in genetic epidemiology (see Neuhaus et al. [1, 2]). In
a simple case-control study, we stratify the population into cases (people with a disease
under study, say) and controls (people without the disease), choose independent random
samples from each stratum, and record the values of potential covariates for each person
selected in the study. In a case-control family study, we record the same information
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and, in addition, we identify a set of family members for each person selected in the case-
control study and record the disease status and the values of the covariates of each of these
family members. For example, Whittemore [3] considers a case-control family study of
ovarian cancer. Here, the clusters consist of mother-daughter pairs. The case stratum
contains all pairs in which the daughter has been diagnosed with ovarian cancer, and
the control stratum contains all the other pairs. Other examples of similar retrospective
family studies are given in Zhao et al. [4].

Another example where the strata are determined explicitly by the response is given
by Neuhaus and Jewell [5]. They consider data from a stratified cluster sample of in-
dividuals enrolled in the Federal Employees Health Benefit Plan in which the response
variable indicates whether or not someone used outpatient mental health services dur-
ing the previous year for each of the years 1979–1981. Here, the clusters consist of the
three observations for a single person, and four strata were defined by the total num-
ber of times (0, 1, 2, or 3) that the person used the service in the three years of the
study.

In all these examples, stratum membership is determined exactly by the value of the
(multivariate) response. In most surveys, however, the relationship between the response
and stratum membership is less clearcut, with the strata determined by such things as
administrative convenience or the availability of a suitable list. This is true even for some
case-control family studies. For example, in the study that motivated this work, Wrensch
et al. [6] conducted a population-based case-control study of glioma, the most common
type of malignant brain tumour, in the San Francisco Bay Area. The investigators gathered
all cases of glioma diagnosed in a specified time interval and a population-based sample
of comparable controls through random digit dialling. They also gathered the brain tu-
mour status and covariate information from family members of the original case-control
sample participants. In this case, the case stratum contains all families with at least one
member diagnosed with glioma in the specified time interval. The chance of a family be-
ing included in this stratum depends on the number of family members with glioma, but
is not completely determined by this.

To cover these more general cases, we consider situations in which we may have to fit a
parametric model, Ph(y,X;γ), for the conditional probability of a cluster being included
in the hth stratum given values of the response vector, y, and the matrix of covariates, X.
Note that there are no problems if this stratum inclusion model only involves X. However,
if the model depends on the response, y, as well or, more generally depends on a design
variable that is associated with y but is not included in the model, then the sampling is
not ignorable (cf. Rubin [7]) and will affect the likelihood.

A possible strategy that is sometimes suggested for coping with informative stratifica-
tion is to include the stratum indicator as a covariate in the model. This strategy avoids
the technical problems but clearly makes no sense when the stratification depends solely
on the response as in many of the examples above. Even in situations where the stratifica-
tion does not depend directly on the response, it may distort the relationship between y
and X, which is the quantity of interest. For example, Lee et al. [8] consider a secondary
analysis of data from a case-control study of Sudden Infant Death Syndrome (SIDS). The
response in this analysis was an indicator of immunization, and clearly there would be
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little sense in including the stratifying variable (SIDS) as a predictor in the model. Simi-
larly, in our motivating brain cancer example, the researchers did not want to include the
date of diagnosis in their predictive model.

The standard survey approach is through weighted estimating equations, with weights
inversely proportional to the selection probabilities, as in Binder [9] or Rao et al. [10].
This works well when the weights are reasonably homogeneous but can be inefficient
when the weights vary widely as they tend to do in retrospective studies. De Mets and
Halperin [11] and Smith [10] looked at a more efficient approach which involved mod-
elling the joint distribution of response, covariates, and design variables used for the
stratification. This is efficient but becomes very difficult to implement when there are
a large number of potential explanatory variables. In this paper, we look at an efficient
intermediate approach based on semiparametric maximum likelihood in which the mar-
ginal distribution of the covariates is left unspecified. The general setup is described in
Section 2. In Section 3, we examine the survey-weighted approach in some detail and the
semi-parametric theory is developed in Section 4. We conclude with a brief discussion.

2. Basic setup

As in the introduction, we let y denote the vector of responses for the units in a cluster
and we let X be the corresponding matrix of covariate values. In addition, we define a
stratum indicator variable Z which takes the value Z = h if the cluster is assigned to the
hth stratum (h= 1, . . . ,L). We assume that the values in our finite population of N clusters
are generated by random sampling from the joint distribution of (y,X,Z). The clusters
are then sorted into L strata, �1, . . . ,�L, according to the values of Z, resulting in Nh

clusters in �h (
∑L

1 Nh =N). Finally, we draw independent simple random samples, Dh, of
nh clusters from the Nh clusters in �h (h= 1, . . . ,L) and observe the corresponding (y,X)
values. Let (yh j ,Xh j) represent observed values for the jth cluster in the hth stratum (h=
1, . . . ,L; j = 1, . . . ,nh). Our data are thus of the form {(yh j ,Xh j , j ∈Dh), Nh; h= 1, . . . ,L}.
Note that the observed stratum sizes, N1, . . . ,NL, are random variables in this scenario and
contain valuable information.

We are interested in modelling f (y | X;θ), the conditional distribution of the vector
of cluster responses y given X, the matrix of cluster covariates, and, in cases where it is
needed, the conditional probabilities that the cluster falls into stratum �h, h = 1, . . . ,L
given y and X:

pr(cluster∈�h | y,X)= pr(Z = h | y,X)= Ph(y,X;γ). (2.1)

Using an argument similar to that given in Scott and Wild [12, Appendix B], the likeli-
hood function can be shown to be given by

L(θ,γ,g)=
L∏

h=1

{
∏

j∈Dh

pr
(

yh j ,Xh j | cluster∈�h
)
}

QNh

h

=
∏

h

(
∏

Dh

{
f
(

yh j |Xh j ;θ
)
g
(

Xh j
)}
QNh−nh

h

)

,

(2.2)
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where g(X) denotes the marginal density of X in the population and

Qh =Qh(θ,γ,g)= pr(Z = h)=
∫∫

Ph(y,X;γ) f (y |X;θ)g(X)dydX (2.3)

denotes the marginal probability that a cluster is in stratum �h. Strictly speaking, we
need to describe how we choose the sample sizes, n1, . . . ,nL. However, the kernel of the
likelihood is as above for any scheme satisfying the condition that {n1, . . . ,nL} depends
only on {N1, . . . ,NL} and not on the realized values of (y,X) (see Wild [13] for details).

If we had drawn a simple random sample from the whole population, or if the strat-
ification depended only on X, then the likelihood would factor into two terms, one in-
volving θ alone and the other involving γ and g(X). This means that we could make
inferences about θ conditional on the observed values of X and not have to bother about
terms involving g(X). Unfortunately, we cannot ignore g(X) when Ph(y,X;γ) involves y;
just as in a case-control study, we cannot separate θ from g(x) because both are involved
in Qh. The most common way of coping with this is through weighted estimating equa-
tions with weights inversely proportional to the selection probabilities as in Binder [9].
We examine this approach in more detail in Section 3. It is relatively simple to implement
and works well in many situations. However, it tends to be very inefficient if the selection
probabilities vary widely as they often do in retrospective studies such as the case-control
family studies described in the introduction. A more efficient alternative is to build a full
parametric model for g(x) and use ordinary maximum likelihood. A good description of
this approach is given in Smith and Nathan [14]. It does indeed produce very efficient es-
timators but, unfortunately, it rapidly becomes impractical when the number of potential
covariates increases. This limits its application when we have a large number of potential
covariates with a mixture of continuous, categorical, and count variables, as is the case in
many surveys.

Ideally, we would like a method that combines the simplicity of the weighted approach
with the efficiency of maximum likelihood. In Section 4, we look at a semiparametric
approach in which the marginal distribution of X is treated nonparametrically. In this
approach, g(X) becomes a (potentially infinite dimensional) nuisance parameter in the
likelihood. The resulting estimators turn out to be very efficient while, perhaps more
surprisingly, still reasonably simple to obtain.

3. Weighted estimators

If we had observed the values of {y,X,Z} for every cluster in the finite population, we
would estimate θ by solving the “census” likelihood equation

S(θ)=
L∑

h=1

Nh∑

j=1

Uh j(θ)= 0, (3.1)
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where Uh j(θ)= ∂ log f (yh j |Xh j ;θ)/∂θ. We will assume that the standard regularity con-
ditions for likelihood (see, e.g., Lehmann [15, Section 7.3]) are satisfied so that

E
{

S(θ)
}= 0

¯
, Cov

{
S(θ)

}=−E
{
∂S(θ)

∂θT

}

=N�(θ), (3.2)

at the true value, θ = θ0.
Of course, we do not observe the whole population. However, for any fixed value of θ,

S(θ) is simply a vector of population totals and thus can be estimated from the sample
observations by the weighted sample score,

SW (θ)=
∑

h

∑

Dh

Nh

nh
Uh j(θ). (3.3)

The weighted estimator, θ̂W , is then defined as the solution to the weighted pseudo-
likelihood equation, SW (θ)= 0.

Under suitable regularity conditions on {Uh j}, θ̂W is a consistent estimator of the
finite population (or census) regression parameter, θC, defined as the solution to (3.1)
(see, e.g., Binder [9] or Rao et al. [10]). Our interest here, however, is not in descriptive
inferences about a particular finite population, but rather about modelling the underlying
processes that lead different units to have different responses y. Thus, in survey sampling
terminology, we are interested in estimating the superpopulation parameters. We have to

take some care in deriving the properties of θ̂W in this framework since N1, . . . ,NL are now
random variables rather than fixed constants as in the standard finite population setup.

In sampling terminology, we can think of our situation as being equivalent to two-
phase sampling for stratification. In the first phase, the finite population is generated
as a random sample of size N from an (infinite) super population and the stratum to
which each cluster (i.e., the value of Z) belongs is recorded. At the second phase, we
draw a simple random sample of size nh from the Nh clusters in stratum �h, with the
values of {n1, . . . ,nL} depending only on {N1, . . . ,NL}, and observe {yh j ,Xh j , j ∈ Dh} for
h= 1, . . . ,L.

We establish the results by first conditioning on ZN, the vector of stratum indicators for
the realized finite population and then averaging over the distribution of ZN. Given ZN,
{N1, . . . ,NL}, and hence {n1, . . . ,nL}, are fixed constants and Uh j(θ), j ∈Dh, are i.i.d. ob-
servations from the conditional distribution of U(θ)= (∂ log f (y |X;θ))/∂θ given Z = h.
Let μh(θ) and Σh(θ) denote the mean vector and covariance matrix of this conditional
distribution, and let μ(θ) and Σ(θ) denote the corresponding quantities for the uncondi-
tional distribution of U(θ). Recall that μ(θ0)= 0

¯
and Σ(θ0)=�(θ0) under our regularity

conditions. The unconditional distribution of {N1, . . . ,NL} is multinomial (N ;Q1, . . . ,QL)
where, as before, Qh is the marginal probability that Z = h for h= 1, . . . ,L.
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Note that

E

{
∑

h

Nhμh(θ)

}

=N

(
∑

h

μh(θ)Qh

)

=Nμ(θ). (3.4)

It follows that

E
{

SW (θ)
}= E

{
∑

h

Nhμh(θ)

}

=Nμ(θ). (3.5)

Thus E{∑hNhμh(θ)} = 0
¯

at θ = θ0. In addition, using the standard results for conditional
variances,

Cov
{

SW (θ)
}= Cov

{
∑

h

Nhμh(θ)

}

+E

{
∑

h

N2
h

Σh(θ)
nh

}

. (3.6)

To proceed further, we need to specify how the nhs are chosen. We will assume that the
sampling fractions nh/Nh are fixed constants fh with 0 < fh ≤ 1 for h= 1, . . . ,L. (Of course
we cannot always achieve this exactly in small samples but if nh = [ fhNh] the difference is
negligible asymptotically.) Then

Cov
{

SW (θ)
}�N

{
∑

μhμ
T
h Qh

(
1−Qh

)− 2
∑∑

�<h

μhμ
T
� QhQ� +

∑
Qh

Σh

fh

}

=N

{
∑

h

Qh

(

μhμ
T
h +

Σh

fh

)

−
(
∑

h

Qhμh

)(
∑

h

Qhμh

)T}

=N

{
∑

h

Qh

(

μhμ
T
h +

Σh

fh

)

−μμT
}

=N
∑

h

Qh

{
Σh

fh
+
(
μh−μ

)(
μh−μ

)T
}

.

(3.7)

The first term is the covariance matrix that we would get if the weights were known
and the second term represents the penalty we pay for incomplete knowledge about the
weights. Using the relation

Cov
{

U(θ)
}= E

{
Cov{U | Z = h

}}
+ Cov

{
E
{

U | Z = h
}}

, (3.8)

we can also rewrite this variance in the form

Cov
{

SW (θ)
}=N

{

Σ(θ) +
∑

h

Qh

(
1
fh
− 1

)

Σh

}

. (3.9)
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Now the first term is the covariance matrix that we would have obtained by sampling all
clusters in the finite population so that, in this representation, the second term represents
the penalty that we pay for incomplete enumeration at the second phase.

Finally, it follows from the results of Chen and Rao [16] that SW (θ) is asymptotically
multivariate normal as N →∞ with nh/Nh → fh for h= 1, . . . ,L fixed. Having established
the properties of SW (θ), we use standard results for unbiased estimating equations (see,

e.g., Amari and Kawanabe [17]) to invert the equation SW (θ̂W )= 0 and infer results for

θ̂W . In particular, it follows that
√
N(θ̂W − θ) converges in distribution to a multivariate

normal random variable with mean vector 0 and covariance matrix N V(θ̂), where

N V(θ̂)=�−1(θ0
)
(
∑

h

Qh

[
Σh

fh
+
(
μh−μ

)(
μh−μ

)T
])

�−1(θ0
)
, (3.10)

with

�(θ)= E

{

− ∂2 log
(
f (y |X;θ)

)

∂θ∂θT

}

, (3.11)

as N →∞. Recall that Σ(θ)=�(θ) at θ = θ0. This means that we can rewrite V(θ̂) as

V(θ̂)= 1
N

[

�−1(θ0
)

+ �−1(θ0
)
{
∑

h

Qh

(
1
fh
− 1

)

Σh

}

�−1(θ0
)
]

. (3.12)

(Here we have used (3.9) to represent Cov(SW )). The first term is what we would get
if we sampled the whole population and the second term again represents the cost of
incomplete enumeration.

We can estimate V(θ̂) by substituting Ĵ=−(1/N)∂SW (θ̂)/∂θT for �(θ0), μ̂h=
∑

j Uh j /nh
for μh, Wh =Nh/N for Qh, and the ordinary within-stratum sample variance for Σh. This,
in conjunction with (3.10), leads to the estimator

V̂(θ̂)= Ĵ−1

(
∑

h

W2
h

Σ̂h

nh

)

Ĵ−1 +
1
N

Ĵ−1

{
∑

h

Whμ̂hμ̂
T
h

}

Ĵ−1. (3.13)

The first term of (3.13), which is O(1/n), is the variance estimate we would use if we
assumed that the Nhs were fixed and the second term, which is O(1/N), measures the
effect of not knowing the Nhs in advance. This second term will be negligible in many
applications.

The weighted method is relatively straightforward and most large statistical packages
now include procedures for implementing it for linear and logistic regression models, al-
though all will assume that the {Nh}s are fixed constants and thus will produce a slight
underestimate of the standard errors. A big advantage over more efficient procedures
is that it does not require any modeling of stratum inclusion probabilities. One impor-
tant consequence of this is that the same procedure can be used for stratified two-stage
sampling, where simple random subsamples are chosen from each selected cluster. More
complex subsampling schemes can be handled simply by adjusting the weights in the
pseudo likelihood (3.1).
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In general, weighting works pretty well for standard sampling situations where the
sampling fractions do not vary too much among strata. It does not work so well in situa-
tions where the sampling fractions vary widely, as they tend to do in retrospective designs
like the case-control family studies discussed in the introduction. For example, Lawless
et al. [18] report efficiencies of less than 15% (compared to the semiparametric estima-
tors discussed in Section 4) for some unclustered case-control designs and Scott and Wild
[19] report similar values for some special clustered designs. An appealing feature of the
weighted method is its robustness to departures from the model. When the assumed re-
gression model f (y |X;θ) is not valid, the fitted model produced by the weighted method
can still be interpreted as estimating the best fitting model for the whole population; see
Scott and Wild [20] for further discussion of this point.

4. Semiparametric estimators

We now return to the likelihood function L(θ,γ,g) given in (2.2). The semi-parametric
maximum likelihood estimators of θ and γ are obtained by maximizing �(θ,γ,g)
= logL(θ,γ,g) over θ, γ, and g leaving the density function g(·) completely undefined.
Essentially, we treat g(·) as a (potentially infinite-dimensional) nuisance parameter. Al-
though it might seem at first glance that this would be formidable task, it turns out that
the semi-parametric MLE of θ (and γ) can be calculated relatively easily.

We start by reducing the problem to the simpler case in which stratum membership is
determined directly by the cluster response. First, we augment the response vector y with

the stratum indicator Z to give modified response variable ỹ = ( y
Z ). Next, we set θ̃ = (θγ ).

Our problem is then reduced to that of fitting the model f (ỹ |X; θ̃), where

f (ỹ |X; θ̃)= f (z | y,X;γ) f (y |X;θ)= Pz(y,X;γ) f (y |X;θ), (4.1)

to data from a stratified sample where the strata, �h (h= 1, . . . ,L), are determined com-
pletely by the response, ỹ. The estimating equations for the semi-parametric maximum
likelihood equations in this reduced case are derived in Scott and Wild [12, 19], follow-
ing earlier work by Cosslett [21]. In a companion paper in this issue, Lee [22] establishes
the asymptotic efficiency of this estimator and shows that �∗(φ̂)−1 provides a consistent
estimator of the variance. Similar results are obtained in Lee and Hirose [23] using a dif-
ferent approach based on the profile likelihood methods of Newey [24]. In the remainder
of this section, we summarize the results of translating these results for the reduced case
back into our original notation.

First, we define a pseudo-log-likelihood function

�∗(θ,γ,π)=
∑

h

∑

Dh

log f ∗h
(

yh j |Xh j ;θ,γ,π
)

−
∑

h

{(
Nh−nh

)
log
(
1−πh

)
+nh logπh

}
,

(4.2)

where

f ∗h (y |X;θ,γ,π)∝ πhPh(y,X;γ) f (y |X;θ) (4.3)
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and π is an L-dimensional vector of nuisance parameters. Then the semi-parametric
maximum likelihood estimators, θ̂ and γ̂, of θ and γ are the appropriate components
of φ̂, the solution of the pseudo score equation

S∗(φ)= ∂�∗(φ)
∂φ

= 0, (4.4)

where φ = (θT ,γT ,πT)T . This means that, for the purposes of calculating the MLE of
(θγ ), we can act as if �∗(φ) is the log-likelihood; in essence, we have replaced a prob-
lem involving an infinite dimensional nuisance parameter, g(·), with one involving an
L-dimensional nuisance parameter, π.

The pseudoscore, S∗(φ), has many of the properties of a standard score function. In
the first place, with appropriate standardization, S∗ is asymptotically normal as N →∞
provided nh/Nh → fh with 0 < fh ≤ 1 for h= 1, . . . ,L. Secondly, E{S∗(φ)} = 0 at the true
value, even though the individual terms in S∗(φ) are neither identically distributed nor
have expected value zero under the stratified sampling design. Finally, if we let �∗ denote
the observed (pseudo-) information matrix,

�∗(φ)=−∂S∗(φ)

∂φT =− ∂2�∗

∂φ∂φT , (4.5)

and let �∗ denote its expected value, then S∗(φ) is asymptotically normal with asymp-
totic covariance matrix equal to

Cov
{

S∗(φ)
}= �∗

(
φ0

)−�∗
(
φ0

)
(

0 0T

0 K

)

�∗
(
φ0

)
, (4.6)

where K is some L× L symmetric matrix. Properties of φ̂ then follow from standard
results for estimating equations (see, e.g., Amari and Kawanabe [17]). In particular, φ̂ is
asymptotically normal with mean φ0 and covariance matrix

�∗
(
φ0

)−1−
(

0 0T

0 K

)

. (4.7)

We are only interested in the block corresponding to the components of (θγ ) and this does
not involve K. All this means that, for the purpose of estimating θ and γ, we can operate as

if S∗(φ) is a genuine score function. The semiparametric MLE, ( θ̂γ̂ ), is obtained by setting
S∗(φ)= 0 and its covariance matrix can be estimated using the appropriate components
of the inverse observed information matrix, �∗(φ̂)−1. (Note that some care has to be
taken with solving the pseudoscore equations numerically as φ̂ often corresponds to a
saddle point of �∗ rather than a maximum.)

In principle, we can extend the results to stratified two-stage sampling where subsam-
ples are drawn from the chosen clusters (or primary sampling units). However, to apply
(4.3), we need the conditional probability of stratum membership given the observed
(y,X), which requires integration over the values for the unsampled units in the cluster.
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This is a nontrivial task in general so that the extension of the semiparametric approach to
two-stage sampling is much less straightforward in practice than the weighted approach.

5. Discussion

We have sketched in Section 4 the development of semi-parametric methods for fitting
regression models to data from stratified samples as an alternative to the weighted meth-
ods of Section 3, which are simple to implement but can be inefficient in retrospective
studies, or full maximum likelihood, which is efficient but difficult to implement because
it requires fitting a model for the joint distribution of all covariates. The methods are rel-
atively simple to implement and simulations so far (see, e.g., Lawless et al. [18]) suggest
that they are much more efficient than weighted methods in situations where the latter
perform badly. In the very limited examples that we have looked at so far, they seem to
be almost as efficient as full maximum likelihood but much more work needs to be done
here.

A number of alternative general approaches to inference from complex surveys have
been suggested in the literature and all of these can be specialized to informative stratified
sampling. Nathan and Holt [25] and Smith and Nathan [14] suggest alternatives to full
maximum likelihood that do not require the fitting of a complete model for the joint
distribution of the covariates and design variables. Krieger and Pfeffermann [26] and
Pfeffermann and Sverchkov [27] explore methods based on the induced distribution of
y given X in the sample after the (possible informative) selection mechanism has been
taken into account. The general semi-parametric methods for missing data problems that
have been developed by Robins and his collaborators (see, e.g., Robins et al.[28, 29]) may
also be applicable to our setup here. All of these methods seem to have connections to
the methods that we have developed here and we are in the process of exploring these
connections.
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