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We consider the problem of determining realistic and easy-to-schedule lot sizes in a mul-
tiproduct, multistage manufacturing environment. We concentrate on a specific type of
production, namely, flow shop type production. The model developed consists of two
parts, lot sizing problem and scheduling problem. In lot sizing problem, we employ bi-
nary integer programming and determine reorder intervals for each product using power-
of-two policy. In the second part, using the results obtained of the lot sizing problem, we
employ mixed integer programming to determine schedules for a multiproduct, multi-
stage case with multiple machines in each stage. Finally, we provide a numerical example
and compare the results with similar methods found in practice.
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1. Background and motivation

In practice, companies basically use single-stage models in order to find easy answers
for production lot sizing and scheduling problem ignoring the multistage characteristics
of their production facilities. However, multistage systems have received a considerable
attention in the literature. Fundamental articles about deterministic demand condition
were published early in the 1970s and the 1980s. Extensions of Harris’ basic EOQ model
which considered serial, assembly and distribution systems as well as more general system
structures were developed for multistage systems. There are many important contribu-
tions with these extensions (see [1–7]). Another field of research in deterministic de-
mand case is powers-of-two (PoT) policy solutions. Similar to the models mentioned in
the above articles, this policy is also an extension of EOQ model (see [8–11]). Using this
heuristic, reorder intervals are determined rather than lot sizes. And this policy requires
replenishment frequency to be a power-of-two integer. Jackson et al. [8] also provided
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some interesting theoretical discussions on the optimal solution resulted from the PoT
policy. That is, the optimal objective function value under PoT policy is within 6% error
range.

There exist a number of extensions of PoT policy in literature. Capacitated version of
the model is considered in [8] and joint replenishment problem in [12], whereas Roundy
[13] and Muckstadt and Roundy [14] propose solutions for one-warehouse, multire-
tailer problem. Moreover, extensions on finite production rate and backlogging problems
can be found in [15, 16]. Especially related with the economic lot-scheduling problem
(ELSP), there exist a number of articles on the topic of cyclic schedules (see [17–20]).
Cyclic schedules are a generalization of common cycle schedules in which the cycle time
of a product is an integer multiple of a basic period. PoT policy on ELSP is a special type
of cyclic schedules. Yao and Elmaghraby [21] studied a single-stage ELSP problem and
later Lee and Yao [22] proposed a global optimum search method for the joint replenish-
ment problem (JRP) under PoT policy. Ouenniche and Boctor [11] presented a new and
efficient heuristic to solve multiproduct, multistage, economic lot-sizing problem where
sequencing, lot sizing, and scheduling decisions are made for several products manufac-
tured through several stages in a flow-shop environment so as to minimize the sum of
setup and inventory holding costs while a given demand is fulfilled without backlogging.
Ouenniche et al. [23], on the other hand, studied the impact of sequencing decision on
total cost.

The objective of this study is to develop a heuristic approach to find reorder inter-
vals based on PoT policy and consequently lot sizes for items to be produced, and then
assign and schedule these production lots in a multistage, multimachine production envi-
ronment. We consider a specific type of production, namely, flow shop type production
which is a serially structured multistage system that exists in industries like paint pro-
duction, food canning, or beverage bottling companies. These types of processes may
have some technical restrictions. In addition, the waiting time of in-process invento-
ries between stages should be minimal since waiting time can cause product deteriora-
tion.

We consider the problem in two parts: (i) reorder interval (lot size) determination and
(ii) assignment and scheduling problem. In the first part, we solve a constrained ELSP
assuming the production system as a single stage. The production rate is the rate of the
bottleneck stage. Nonlinear structure of the model is modified to mixed-integer program-
ming (MIP) form and MIP is solved to determine the reorder intervals as integer mul-
tiples of power-of-two multipliers by minimizing the objective function which consists
of inventory and setup costs. Basically, the model proposed in the first part differs from
the classical unconstrained ELSP model developed by Yao and Elmaghraby [21] in that
it considers upper and lower limits on production lot sizes as well as lot-size-dependent
setup costs in the formulation.

In the second part, the assignment and scheduling problem is solved using an MIP
based on an approach developed in [11] but with the additional condition of multiple
machines in each stage. An optimal schedule is achieved with the assumption of given
production sequence. In practice, the production sequence is generally determined by
some technical criteria.
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The rest of the paper is organized as follows. Section 2 considers the model devel-
opment, that is, determining optimum reorder intervals and lot sizes under PoT policy
for multiproducts subject to operational constraints and then scheduling those lots in a
multistage and multimachine environment. Then Section 3 presents a numerical exam-
ple and compares the results obtained with similar methods found in practice. Finally, in
Section 4, we present our conclusions.

2. The model development

Here, we first present the classical ELSP, then add technical constraints based on the spe-
cific production environment. Later, we develop the formulation considering the lot size
dependent setup costs. In the second part, we assign and schedule these production lots
to stages and machines using an MIP model. The model is designed for multistage, mul-
tiproduct problem, with multiple machines in each stage.

2.1. Determining optimum lot sizes under power-of-two policy. We define the nota-
tion as follows. Additional notation will be defined as necessary.

Indices:
(i) i= product index (i= 1, . . . ,n),
(ii) y = container type (y = 1, . . . ,z). A container is a receptacle for holding products.

Parameters:
(i) Ai = setup cost for product i,
(ii) Aiy = setup cost for product i dependent on container type y,
(iii) λi = demand rate for product i, constant and continuous,
(iv) hi = holding cost per unit time for product i,
(v) pi = finite production rate for product i,
(vi) si = setup time for product i,
(vii) ρi = λi/pi,
(viii) Cy = upper-volume (lot-size) limit of container type y,
(ix) TL = technical limit showing the minimum lot amount for a machine
to work effectively,

Decision variables:
(i) ki = power-of-two multiplier for product i (ki = 1,2,4, . . . ,2mi ; mi ∈ {0,1,2, . . .}),
(ii) B = basic period,
(iii) xi j = the valid power-of-two multiplier (2 j) for product i, xi j = {0,1}.

The limits of the index j will be determined later.
The following assumptions are made in the first part of the model.

(1) No backlogging is allowed.
(2) The ordering decision for each product is given in every constant time interval

which is a power-of-two (PoT) multiple of a basic period B, that is, kiB.
(3) The basic period B may be specified as a shift, a day, or a week, and so forth.
(4) The finite production rate is that of the bottleneck stage.
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Unconstrained economic lot-scheduling problem (ELSP) PoT problem formulated in
[21] is as follows:

MinTC
(
B,
{
ki
})=

n∑

i=1

Ai

kiB
+
hi
2
λi
(
1− ρi

)
kiB (2.1a)

subject to ki = 2mi ; mi ∈
{

0,1,2, . . .
}
. (2.1b)

ELSP (PoT) is formulated as a nonlinear integer program. The objective function (2.1a)
is the sum of average annual costs of setup and carrying inventory. In spite of the fact that
the objective function (2.1a) is a nonlinear one, for a given value of B, the model can be
restated as a linear binary integer programming (BIP) model. ki and its reciprocal can be
written in binary expansion [21]:

ki =
vi∑

j=0

2 jxi j = 20xi0 + 21xi1 + ···+ 2vixivi , (2.2)

k−1
i =

vi∑

j=0

2− jxi j = 20xi0 + 2−1xi1 + ···+ 2−vixivi , (2.3)

vi∑

j=0

xi j = 1, ∀i, (2.4)

where vi is a nonnegative integer and 2vi ∗B is an upper bound on ki.

We add upper and lower bound constraints on lot sizes to the above model related
with the specific production type. For a single type of container, constrained ELSP (PoT)
becomes

MinTC
(
B,
{
ki
})=

n∑

i=1

Ai

kiB
+
hi
2
λi
(
1− ρi

)
kiB (2.5a)

subject to ki = 2mi ; mi ∈
{

0,1,2, . . .
}

, (2.5b)

λikiB ≥ TL, ∀i, (2.5c)

λikiB ≤ C, ∀i. (2.5d)

In the above formulation, constraint (2.5c) indicates the minimum technical limit for
effective working of the machine. In addition, constraint (2.5d) sets the upper limit for
lot size according to the container restrictions. Using (2.2)–(2.4), the BIP model can be
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written in the following form:

MinTC =
n∑

i=1

Ai

B

( vi∑

j=0

2− jxi j

)

+
n∑

i=1

hi
2
λi
(
1− ρi

)
( vi∑

j=0

2 jxi j

)

B (2.6a)

=
n∑

i=1

vi∑

j=0

{
Ai

B
2− jxi j +

hi
2
λi
(
1− ρi

)
2 jxi jB

}
(2.6b)

subject to
vi∑

j=0

xi j = 1 for i= 0,1, . . . ,n, (2.6c)

vi∑

j=0

λi2 jxi jB ≥ TL, ∀i, (2.6d)

vi∑

j=0

λi2 jxi jB ≤ C, ∀i, (2.6e)

where xi j ∈ {0,1}, ∀i, j. (2.6f)

However, the upper and lower limits for j have to be decided for each product. Simple
bounds on j can be derived using constraints (2.6d) and (2.6e). Having determined the
bounds on j, the constraints used can be eliminated from the formulation. Using con-
straint (2.6d), the lower bound can be set as follows:

when xi,LB(i) = 1,

λi2LB(i)B ≥ TL,

2LB(i) ≥ TL

λiB
,

(2.7)

LB(i)≥ log2

(
TL

λiB

)
, (2.8)

where LB(i) is the smallest integer that satisfies (2.8).
Similarly, using constraint (2.6e), the upper bound can be calculated:

UB(i)≤ log2

(
C

λiB

)
, (2.9)

where UB(i) is the greatest integer that satisfies (2.9). Note that B values must be selected
such that UB(i)≥ 0 and LB(i)≥ 0. Now the model becomes

MinTC =
n∑

i=1

UB(i)∑

j=LB(i)

{
Ai

B
2− jxi j +

hi
2
λi
(
1− ρi

)
2 jxi jB

}

subject to
UB(i)∑

j=LB(i)

xi j = 1 for i= 1, . . . ,n,

where xi j ∈ {0,1}, ∀i, j.

(2.10)
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In case the setup costs vary with container sizes, we modify the objective function as
follows. The lower limit (TL) is the same for all container sizes. But for the upper limits,
each container has a different limit, that is, Cy . Hence, the upper bounds for different
container sizes can be calculated using (2.9), that is, replacing C value by Cy values. Thus,
the average annual setup cost term

n∑

i=1

UB(i)∑

j=LB(i)

{
Ai

B
2− jxi j

}
(2.11)

for different containers now becomes

n∑

i=1

z∑

y=1

{ UB(i,y)∑

j=LB(i,y)

{
Aiy

B
2− jxi j

}}

. (2.12)

Another point to be emphasized is the minimum total cost functions which will be
calculated for discrete B values. B would be multiples of a shift, a day, a week, or a month.
Moreover, the search section of B—the highest and the lowest values—should be con-
sidered. Value found in common cycle approach is the upper bound on the value of B
[21]:

Tcc =max

⎧
⎨

⎩

√
√
√
√ 2

∑n
i=1Ai∑n

i=1hiλi
[
1− ρi

] ,

∑n
i=1 si

1−∑n
i=1 ρi

⎫
⎬

⎭ . (2.13)

A lower bound on the value of B can be obtained using rotation cycle policy [21]:

Trc =max
i

{(
1 + ρi

)
si
}
. (2.14)

This interval from the upper to lower bounds covers a feasible range of B. For example,
feasible region can be between 1 day and 14-day length. Then the model can be run for
basic periods of 1 day, 2 days and upto 14 days. Another simplification in this part is that,
the basic periods that are power-of-two multiples of other feasible basic periods give the
same optimal value for the model. Again in the same example of 1-day to 14-day feasible
region of basic period, one can run the model for only 1-day, 3-day, 5-day, 7-day, 9-day,
11-day, 13-day basic period. The optimal value will be the same for 1, 2, 4, 8, and for 3,
6, 12, and for 5, 10 and similarly for 7, 14 days. The theorem given in [21] can be used to
show that the program yields the same solution for a power-of-two multiple of a feasible
basic period. However, in our case, there exist upper and lower limits for container types
and when we change the basic period B to 2B, then the lower bound decreases by 1 as
follows:

LB(i)≥ log2

(
TL

λiB

)
=⇒ log2

(
TL

λi2B

)
= log2

(
TL

λiB

)
− log2

(
1
2

)
= log2

(
TL

λiB

)
− 1

=⇒ LB(i)− 1≥ log2

(
TL

λiB

)
− 1.

(2.15)
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But, if one or more products have 0 as a lower limit for B, then the theorem cannot
be used. However, none of the products can have lower limit as −1 for 2B, since the
reorder interval cannot be 2−1∗ (2B). In this case, the limits of the containers should be
calculated for 2B and the integer values greater than or equal to 0 should be chosen as j.
Thus, the program should be executed for 2B.

The results obtained in this part giving the minimum cost for a specific basic period
will be used in the following section. An MIP is developed to assign and schedule the
lots so found to a multistage multimachine production system. Here, we assume that the
machines at each stage are identical and the production sequence is predetermined by
some technical criteria.

2.2. Assigning and scheduling the lot-sizing problem in a multistage, multimachine
environment. The lot sizes obtained in the first part will be assigned to basic periods,
and for each basic period feasible schedules will be determined by an assignment proce-
dure based on a method given in [11]; however, nonlinear program used in scheduling
would be modified in order to support multimachine environment. Also, note that the
production sequence of the jobs (products) is predetermined by the technical personnel.

Using the solutions of the first part, global cycle length becomes TG = K ∗ B, where
K =max{ki}. Let Pt denote the set of products to be produced during the tth basic period
of the global cycle. For a calculated value of K in the first part, we have to assign products
to the subsets, P1,P2, . . . ,PK . For example, for a product i, let ki be 2 and global cycle
length is 4 basic periods. Then product i has to be produced either in the first and third
basic periods or in the second and fourth basic periods. Let πi be the processing time of
product i:

πi = kiλiB

pi
, ∀i. (2.16)

Given a vector of multipliers (ki; i = 1, . . . ,n), the purpose of the following heuristic
procedure is to try to find a feasible assignment of products to basic periods (P1,P2, . . . ,
PK ). The procedure starts by sorting the products in ascending order of ki, and within the
products having the same multiplier ki, in descending order of processing time. Compar-
ison between processing times can be done using the term ρ∗i below:

ρ∗i =
kiλi
pi

. (2.17)

As ρ∗i gets larger, the processing time also becomes larger, because ρ∗i times B is the
real process time of the product i.

Then, each product i is assigned to the first basic period l, satisfying (2.18), within the
first ki periods of the global cycle that yet have the smallest summation of ρ∗i s that are
assigned in that basic period Pt,

min
t<ki

(
∑

u∈Pt

kuλu
pu

)

+
kiλi
pi

< 1, t = l, l+ ki, l+ 2ki, . . . , l+K − ki. (2.18)
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Note that sorting the products in ascending order of ki, and within the products having
the same multiplier ki in the descending order of ρ∗i allows us to assign first the products
that require more production time, that is, those that are more difficult to assign.

The additional notation used in this part of the study is as follows.
Indices:

(i) j = stage index ( j = 1, . . . ,m),
(ii) l =machine index (l = 1, . . . ,r j).

Parameters:
(i) r j = number of machines at stage j,
(ii) pi j = production rate of product i at stage j,
(iii) si j = setup time of product i at stage j,
(iv) hi j = inventory holding cost per unit of product i and per time unit
between stages j and j + 1,
(v) Ti = length of time interval between two successive runs of product i, called the
cycle time of product i,
(vi) σ = predetermined production sequence,
(vii) σ(Bi) = the work sequence in each basic period is shown with σ but the Bi term
denotes the sequence of products before product i’s process.

Decision variables:
(i) di j = processing start time of product i at stage j (it is assumed that setup required
in stage j is finished before the processing start time di j and for a given product, its
start time is measured with respect to the starting time of the first basic period of
the global cycle for which the product is scheduled),
(ii) mijl = processing start time of product i at stage j on machine l (assume that
necessary setup is finished before the processing start time mijl),
(iii) ai jl = 1 if machine l at stage j is used for product i; otherwise 0,
(iv) fi = production end time of product i after the last stage.

In the scheduling model, the following assumptions are made.
(1) There are multiple stages/operations/work centers available in production and

there exist multiple identical machines in each stage.
(2) Each product requires at most m stages.
(3) No machine can process more than one product at a time.
(4) Demand rates, production rates, setup times, setup costs, and inventory costs are

deterministic and constant over the planning horizon.
(5) There exist external demands only for end products.
(6) Production rates can be different for different products and different stages.
(7) Different products and different stages have different setup times.
(8) Inventory holding costs are proportional to inventory levels and to holding time.
(9) Backlogging is not allowed.

(10) Preemption is not allowed, that is, at a given stage, once the processing of a lot
has started it must be completed before starting the next one.

(11) Lot-splitting is not allowed, that is, a lot is not transferred to the next stage until
the entire lot is processed at the current stage.

(12) In-process inventory is allowed, that is, products should wait for the next ma-
chine to be available.
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WIP

di, j + λikiB/pi jdi, jdi, j�1 di, j�1 + λikiB/pi j�1

λikiB

Time

(a) Work-in-process inventory between stages j− 1 and j

λikiB(1� λi/pm)

FGI

di,m + kiBdi,m di,m + λikiB/pi,m

Time

(b) Finished goods inventory

Figure 2.1. Inventory of work-in-process and finished goods.

(13) Delivery of finished products is continuous.
(14) Capacity is sufficient to meet the demand.
(15) Products are manufactured in repetitive cycles and the lots of the same product

are of equal size and are equally spaced through time.
(16) The same production sequence is used at all stages. (This type of production can

be seen in paint industries and chemical product manufacturers.)
(17) Production may be continued indefinitely without interruption; thus, the main-

tenance can be done during production or during idle time (if any exists).
In the scheduling model, the problem is to determine the starting times of the oper-

ations for each product while minimizing the sum of setup and inventory holding costs.
The objective function is similar to the one used in the first part but the terms related
with the work-in-process inventory are added. Since the values of B and ki’s are known,
the objective function is simplified. Work-in-process inventory between two stages and
finished goods inventory in the system are shown in Figure 2.1.
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Using Figure 2.1(a), average work-in-process inventory for product i between stages
j− 1 and j can be calculated as

1
kiB

{
λikiB

2
λikiB

pi, j−1
+ λikiB

(
di j −di, j−1− λikiB

pi j−1

)
+
λikiB

2
λikiB

pi j

}

= λi

(
di j +

λikiB

2pi j
−di, j−1− λikiB

2pi j−1

)
.

(2.19)

Thus, the total work-in-process inventory holding cost per unit time is

n∑

i=1

m∑

j=2

hi, j−1λi

(
di j +

λikiB

2pi j
−di, j−1− λikiB

2pi j−1

)
. (2.20)

The total finished product inventory holding cost per unit time is

n∑

i=1

hi
1
kiB

(
λikiB

2

(
1− λi

pim

)
(
dim + kiB−dim

)
)
=

n∑

i=1

hi
λi
2

(
1− λi

pim

)
(
kiB

)
, (2.21)

which is constant.
Other than holding costs, the objective function will include the setup costs. The setup

cost for product i per unit time is Ai/(kiB). Therefore, the objective function of the model
can be written as

n∑

i=1

Ai

kiB
+

n∑

i=1

m∑

j=2

hi, j−1λi

(
di j +

λikiB

2pi j
−di, j−1− λikiB

2pi j−1

)
+

n∑

i=1

hi
λi
2

(
1− λi

pim

)
(
kiB

)
.

(2.22)

Objective function should be modified in order to eliminate the constant terms that
do not include a decision variable. In the scheduling model, the decision variables are di j ,
mijl, and ai jl. In part 1, the values of B and ki are determined using the lot-sizing model,
so in the objective function, only the terms including di j will remain,

n∑

i=1

m∑

j=2

hi, j−1λi
(
di j −di, j−1

)
. (2.23)

Since no product can be processed before its completion at the previous stage, we add
the following constraint which guarantees the processing times at each stage (2.24):

di, j−1 +
λikiB

pi, j−1
≤ di j . (2.24)

Also, the production end time after the last stage m can be shown using fi,

di,m +
λikiB

pi,m
≤ fi. (2.25)
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There are multiple machines at each stage. When a product enters a stage with multiple
machines, it has to select the machine which is empty or will be available earliest. Hence,
the model has to check for all previous jobs in sequence to find which job would leave
the stage the earliest. Equation (2.27) stipulates that at each machine, no product can be
processed before the completion of its predecessor. Since ai jl shows that product i selects
the lth machine in stage j, the term

λikiBai jl
pi j

(2.26)

will be a positive value indicating the machining time for the chosen machine and would
be zero for others,

mσ(Bi) jl +
λσ(Bi)kσ(Bi)Baσ(Bi) jl

pσ(Bi) j
+ sσ(i) jaσ(i) jl ≤mσ(i) jl . (2.27)

Equation (2.27) has to be repeated for all predecessor products of product i in sequence
(given by σ(Bi)), because in the following stages the sequence of products can be out of
order. In order to choose the earliest starting time for machining, the smallest mijl should
be selected. Equation (2.28) satisfies this

di j ≤mijl. (2.28)

When the smallest mijl is chosen, then the selected machine should be signed. The fol-
lowing (2.29) implies that when process starting time for product i at stage j is equal to
the smallest mijl, then machine l is used in that process and ai jl is equal to 1. ai jl is equal
to 0 when that machine is not used. M in (2.29) can be set to basic period B.

mijl −di j ≤M
(
1− ai jl

)
. (2.29)

Moreover, (2.30) indicates that in each stage, for any product i, only one machine can
operate:

∑

l

ai jl = 1. (2.30)

Finally, to prevent the production time of goods to exceed the basic period, for each
product, the following constraint is added:

fi + s1,1−d1,1 ≤ kiB. (2.31)

Other constraints are related to the setup times of first product in sequence. For the
first product, the starting time of all operations will be greater than the setup time of the
related operation,

d1, j ≥ s1, j . (2.32)

Also, the first product should be assigned to a specific machine, because (2.27) and
(2.28) will not be appropriate for the first product at the first stage. But (2.29) should
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not be ignored for product 1. The following equations can be used for this purpose (it is
assumed that first product is assigned to machine 1 in the first stage):

m1,1,1 = s1,1,

m1,1,l = 0, where l �= 1,

d1,1 ≤m1,1,1,

a1,1,1 = 1.

(2.33)

The model developed in [11] is a case for multiproduct, multistage problem with one
machine in each stage.

The final formulation of the scheduling model is as follows:

Minz =
n∑

i=1

m∑

j=2

hi, j−1λi
(
di j −di, j−1

)

subject to di, j−1 +
λikiB

pi, j−1
≤ di j , i= 1, . . . ,n, j = 2, . . . ,m,

di,m +
λikiB

pim
≤ fi, i= 1, . . . ,n,

mσ(Bi) jl +
λσ(Bi)kσ(Bi)Baσ(Bi) jl

pσ(Bi) j
+ sσ(i) jaσ(i) jl ≤mσ(i) jl,

i= 2, . . . ,n, j = 1, . . . ,m, l = 1, . . . ,r j ,

di j ≤mijl, if j = 1, then i= 2, . . . ,n, l = 1, . . . ,r j ,

if j = 2, . . . ,m, then i= 1, . . . ,n, l = 1, . . . ,r j ,

mijl −di j ≤ B
(
1− ai jl

)
, i= 2, . . . ,n, j = 1, . . . ,m, l = 1, . . . ,r j ,

∑

l

ai jl = 1, i= 2, . . . ,n, j = 1, . . . ,m,

fi + s1,1−d1,1 ≤ B, i= 2, . . . ,n,

d1, j ≥ s1, j , j = 1, . . . ,m,

m1,1,1 = s1,1,

m1,1,l = 0, where l �= 1,

d1,1 ≤m1,1,1,

a1,1,1 = 1,

di j ,mijl ≥ 0, ai jl = 0 or 1.

(2.34)

3. A numerical example

In this section, we provide a numerical example to show the application of the proposed
method, data of which has been collected from a company that produces industrial paints.
There are two stages of production. In the first stage, chemicals are mixed up and in the
second stage, the solution, paint, is filled into cans. At each stage, there are 2 machines
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Table 3.1. Setup times and costs.

Stage 1 Stage 2
Container size (kg) Setup time (min) Setup time (min) Setup cost ($)

800–1300 120 100 8

1300–3800 180 100 12

3800–7800 300 100 20

7800–15000 360 100 24

Table 3.2. Data for the product.

Product
no.

Annual
demand
(kg/year)

Production rate
(kg/year) in
stage 1

Production
rate (kg/year)
in stage 2

Production
costs in
stage 1 ($/kg)

Total
production
costs ($/kg)

1 32000 2325000 2400000 2.83 3.11

2 138000 724000 750000 2.31 2.60

3 54500 766000 780000 2.31 2.66

4 27000 687000 700000 2.35 2.65

5 113000 546000 580000 2.30 2.59

Table 3.3. Total costs.

Basic period (days) Total cost ($) Basic period (days) Total cost ($)

1 5102.482 7 8966.13

2 5201.231 8 8966.13

3 6108.755 9 8966.13

4 4971.364 10 10187.89

5 7117.474 11 10960.28

6 7805.082 12 11142.78

performing the same job with the same production rate. Depending on the size of the
container used, the setup times and costs are given in Table 3.1.

Production of five different paints produced in the company is taken as an example,
and the related data is given in Table 3.2.

Since the first stage of the production process is a bottleneck, we will use it as the
production rate of the system to determine reorder intervals and lot sizes. To find the
holding cost rate, we assume an interest rate of 30%.

Using (2.13) and (2.14), the upper and lower bounds for the basic period can be cal-
culated. Since Trc = 0.000781 year = 0.28 day and Tcc = 0.033679 year = 12.3 days, it is
more convenient to use days from 1 to 12 as basic period candidates. For each basic pe-
riod candidate, bounds for power-of-two multipliers are calculated using (2.8) and (2.9).
After running the lot-size determination model, (2.10), the total costs obtained are given
in Table 3.3.
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Table 3.4. Multipliers for 4-day basic period.

Product no. ki ρ∗i , equation (2.17)

5 1 0.207

2 2 0.381

3 2 0.142

4 4 0.157

1 4 0.055

Table 3.5. Assignment of products to each basic period.

Basic period

1 2 3 4

Product no.

5 5 5 5

2 3 2 3

— 4 — 1

The minimum cost is obtained for 4-day-basic period length. Since the largest ki value
is 4 in Table 3.4 (product no. 1), the global cycle length is 16 days (ki ∗ B). Production
sequence is given as 1, 2, 3, 4, and 5 by the company. This sequence is important for setup
purposes. Container and machine cleaning is easier when this sequence is used in pro-
duction stages. In order to find schedules, products should be assigned to 4—maximum
ki value—basic periods of length 4 days. Assignment sequence is 5, 2, 3, 4, and 1. The
result of assignment sorted by ki and ρ∗i values is given in Table 3.5.

The obtained schedules are given in Table 3.6. Starting time shows the initiation of the
operation after the setup. Setup time of the initial operation starts at time 0.

In order to compare the results of the proposed method, we calculate the EOQ val-
ues for each product type. Actually, in the first part of the model, that is, during the
calculations of lot sizes, the model determines the power-of-two multiplier for a given
basic period candidate, so the product reorder intervals are independent of each other.
Therefore, the best reorder interval can be found by individual EOQ formulas:

EOQi =
√

2Aiλi
hi
(
1− λi/pi

) . (3.1)

However, since there are 4 different setup costs, we calculate EOQ values with each of
them and analyze the feasibility of the obtained EOQ values (see Table 3.7). The last col-
umn shows the ki values obtained in Part 1.

Since for products no.1 and no.4, EOQ values are less than min values, they are as-
sumed to be produced at the technical lower bound of 800 kg. The total costs calculated
with EOQi and ELSP(PoT) policy are shown in Table 3.8.

As the example indicates that the largest increases occur in products no.1 and no.4, no
feasible solution can be obtained in the related regions. For products no.2 and no.3, the
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Table 3.6. Schedules obtained for each basic period.

For period no.1 and no.3

Product
no.

Starting time at
stage 1 (h)

Machine no.
at stage 1

Starting time at
stage 2 (h)

Machine no.
at stage 2

End of
production

2 3 1 36 1 40

5 19 2 37 2 39

For period no.2

Product
no.

Starting time at
stage 1 (h)

Machine no.
at stage 1

Starting time at
stage 2 (h)

Machine no.
at stage 2

End of
production

3 2 1 15 1 16

4 17 1 42 1 44

5 26 2 44 2 45

For period no.4

Product
no.

Starting time at
stage 1 (h)

Machine no.
at stage 1

Starting time at
stage 2 (h)

Machine no.
at stage 2

End of
production

1 3 1 6 2 8

3 2 2 15 2 16

5 8 1 27 1 28

Table 3.7. EOQi values.

EOQi

Product
no.

A= 8$ A= 12$ A= 20$ A= 24$ ti = EOQi /λi ki

(800–1300 kg) (1300–3800) (3800–7800) (7800–15000) (days) (days)

1 746→800 914 1180 1292 9.125 16

2 1872 2293 2960 3242 6.064 8

3 1085 1329 1715 1879 7.265 8

4 753→800 922 1190 1304 10.815 16

5 1715 2100 2711 2970 6.783 4

policy leads to insignificant increases. For product no.5, the model can capture better re-
sults with the container capacity limits which cannot be obtained by EOQ formula. Also,
it should be noted that without container capacity constraints, Muckstadt and Roundy
[10] state that total cost exceeds the EOQ solution no more than 6%. Using the results of
this study, the most important advantage is that one can easily organize the production
of lots in the manufacturing environment when the global cycle is 16 days. Nonetheless,
in the above case, with the EOQ formula the scheduling process becomes cumbersome
(see ti values in Table 3.7)
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Table 3.8. Total cost and percentage change.

Product no. EOQi($) ELSP(PoT) ($) Change (%)

1 688 919 34

2 1445 1500 4

3 804 808 0

4 575 634 10

5 1291 1111 −14

Total 4803 4971 4

Finally, we note that the models were solved on P IV 3.2 MHz 512 Mb ram computer
using LINGO 8 software in a matter of seconds. Hence larger scale instances of the model
can easily be solved.

4. Conclusions

In this paper, we propose a heuristic decomposition approach to model the problem of
determining realistic and easy-to-schedule lot sizes in a multiproduct, multistage, mul-
timachine manufacturing environment using PoT policy. The approach is composed of
two parts in order to find solutions to reorder interval determination (and consequently
lot sizing), and assignment and scheduling problems separately.

In the first part of the method, we develop a binary integer programming model to find
optimum reorder intervals which are power-of-two multiples of a basic period. The basic
period length can be a day, a week, or a month to secure a realistic time period. As the
optimum reorder intervals are determined, we then calculate the optimum lot sizes for
each product. The basic contribution of the first model of the decomposition approach is
that we not only consider the technical upper and lower bounds of the production pro-
cess, but also develop the formulation to accommodate process-dependent setup costs.
To facilitate the solution of the problem, we assume the production system as a single
entity.

In the second part of the study, we first try to assign those lots to basic periods of the
global cycle length (a cycle length in which production cycles of all products are com-
pleted). Then a mixed integer programming model schedules the lots already assigned to
basic periods to multistages and multimachines at each stage.

Although the approach is designed for a specific flow-shop-type production, it could
be easily modified to accommodate other types of production systems, for example, as-
sembly systems.

Despite the problem is designed for deterministic demand, the results of lot sizing
problem are stable since they are based on reorder intervals rather than lot sizes. They

can be rescheduled again in case of small demand variations.
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Finally, in our opinion, the main advantage of the approach is that we find realistic
and easy-to-apply reorder intervals. As seen in Tables 3.7 and 3.8, it is rather difficult to
order lots every 9.125 days for product no. 1, 6.064 days for product no. 2, and so forth,
and on the overall, the cost increase is only 4%.
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