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Ordinal consensus ranking problems have received much attention in the management
science literature. A problem arises in situations where a group of k decision makers
(DMs) is asked to rank order n alternatives. The question is how to combine the DM
rankings into one consensus ranking. Several different approaches have been suggested
to aggregate DM responses into a compromise or consensus ranking; however, the sim-
ilarity of consensus rankings generated by the different algorithms is largely unknown.
In this paper, we propose a new hybrid distance-based ideal-seeking consensus ranking
model (DCM). The proposed hybrid model combines parts of the two commonly used
consensus ranking techniques of Beck and Lin (1983) and Cook and Kress (1985) into
an intuitive and computationally simple model. We illustrate our method and then run
a Monte Carlo simulation across a range of k and n to compare the similarity of the con-
sensus rankings generated by our method with the best-known method of Borda and
Kendall (Kendall 1962) and the two methods proposed by Beck and Lin (1983) and Cook
and Kress (1985). DCM and Beck and Lin’s method yielded the most similar consensus
rankings, whereas the Cook-Kress method and the Borda-Kendall method yielded the
least similar consensus rankings.

Copyright © 2007 Madjid Tavana et al. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The problem of combining a set of rankings to obtain an overall consensus or compro-
mise ranking representative of the group has been studied by numerous authors and re-
searchers for more than two centuries. Consensus ranking has a strong interdisciplinary
nature and is considered in many disciplines like organizational sciences, psychology,
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public policy administration, marketing research, and management science. Several dif-
ferent approaches have been suggested to aggregate DM responses into a compromise
or consensus ranking. Many methods for aggregating individual preferences have been
proposed since the early works of Borda [1, 2], Black [3], Arrow [4], Goodman and
Markowitz [5], Coombs [6], Riker [7], Kemeny and Snell [8], Kendall [9], Inada [10],
Davis et al. [11], Bogart [12, 13], Bowman and Colantoni [14], Blin and Whinston [15],
Keesey [16], and Anscombe [17].

Consensus ranking problems can be categorized into two basic groups—cardinal prob-
lems and ordinal problems. Cardinal ranking formulations occur where a decision maker
(DM) is able to express the degree of preference of one alternative over another. Cardi-
nal ranking is a form of utility function. In contrast, ordinal rankings do not require a
degree of preference. A complete ordinal ranking of n alternatives must be an arrange-
ment of the integers (1,2, . . . ,n). Consensus derivation with cardinal ranking involves the
optimization of continuous functions over the entirety of a convex region. However, ordi-
nal problems are more complex because they involve such optimization over a particular
discrete region. In this study, we concentrate on ordinal ranking problems. The attractive-
ness of ordinal representation and formulation is due, in part, to the minimal amount of
information required where each DM only expresses a preference of one alternative over
another.

The simplest form of consensus derivation from ordinal ranking is the majority rule.
Borda [1, 2] proposed the “method of marks” to derive a consensus of opinions by de-
termining the average of the ranks assigned by DMs to each alternative with the winning
alternative being the one with the lowest average. A similar version of this model was
later presented by Kendall [9]. Kendall [9] was the first to study the ordinal ranking prob-
lem in a statistical framework by approaching the problem as an estimation problem.
Kendall’s solution—to rank alternatives according to the sums of the ranks—is equiva-
lent to Borda’s method of marks. The Borda-Kendall (BAK) technique is the most widely
used consensus ranking method in practice because of its computational simplicity (see
Cook and Seiford [18], Jensen [19]). However, many authors regard the BAK technique
as unstructured and ad hoc. These authors argue that the BAK method does not satisfy
the social welfare axioms proposed by Arrow [4]. Cook and Seiford [18] further studied
the BAK technique and proposed a “minimum variance” method for determining the
consensus ranking. Inada [10] also studied the majority rule and showed the conditions
under which the majority rule satisfies Arrow’s axioms. Bowman and Colantoni [14] and
Blin and Whinston [15] presented integer programming models to solve the majority rule
problems under transitivity.

A popular method for deriving a consensus is to define a distance function on the set
of all rankings and then determine the closest possible ordinal ranking in the minimum
distance sense. Kemeny and Snell [8] proposed a distance measure that represented the
degree of correlation between a pair of rankings along with a set of axioms similar to
those given by Arrow [4]. Using their distance measure, Kemeny and Snell [8] proposed
the median and mean rankings as acceptable forms of consensus. Bogart [12, 13] gener-
alized the Kemeny and Snell [8] theory to a broader group of problems by considering
both transitive and intransitive orderings. Cook and Saipe [20] developed a branch and
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bound algorithm to determine the median of a set of ordinal rankings. Cook and Seiford
[21] examined the problem of deriving consensus among a set of ordinal rankings and
developed a set of axioms which any “reasonable” distance measure should satisfy. Cook
and Kress [22] extended the Kemeny and Snell [8] theory by replacing their binary matrix
with a preference intensity matrix representing strength of preference within an ordinal
scale. Cook and Kress [23] and Cook et al. [24] further studied the complete preference
case using distance functions and developed a network model for deriving the optimal
consensus ranking that minimized disagreement among a group of DMs (see Cook and
Kress [22]).

Several other researchers have used integer programming and goal programming to
solve consensus ranking problems since the early work of Bowman and Colantoni [14]
and Blin and Whinston [15]. Ali et al. [25] presented an integer programming approach
to derive consensus rankings from the distance function. Cook et al. [26] used an ex-
tensive simulation experiment to compare the integer-programming approach with a
heuristic procedure. Iz and Jelassi [27] used goal programming to measure the individ-
ual preferences of group members through an ordinal ranking scheme. González-Pachón
and Romero [28] further developed an interval goal programming model for aggregating
incomplete individual patterns of preference in group consensus problems.

Multiple criteria are also commonly used to formulate and solve consensus ranking
problems. Cook and Kress [29] proposed a weighted ordinal ranking model in which
each of a set of n alternatives was given an ordinal rank on a set of criteria. Their model
addressed (1) the importance weight associated with each criterion, (2) the importance
of the various positions at which an alternative can be placed, and (3) the precision with
which a DM can differentiate among alternatives on any given criterion. Cook et al. [30]
extended this concept to the situation where each alternative can be assessed in terms of
only a subset of the set of criteria under consideration. Muralidharan et al. [31] have also
proposed a consensus ranking model combining ordinal rankings with multiple crite-
ria and importance weights. Valadares Tavares [32] proposed a consensus ranking model
in terms of the weights space by avoiding any assumptions about the distance between
ranked alternatives.Jensen [19] has suggested that various consensus ranking methods
proposed in the literature yield controversial rankings and/or rankings that are vulnera-
ble to considerable dispute. They concluded that an optimal consensus ranking method
cannot be dictated to a group of DMs. It is better to understand the strengths and weak-
nesses of each method and leave the choice of a particular method to the DMs.

In this paper, we propose a new hybrid distance-based ideal-seeking consensus ranking
method, that is, the distance-based consensus model (DCM). DCM satisfies the axioms
for a “reasonable” distance measure proposed by Arrow [4] and Cook and Seiford [21].
We first identify an initial preference matrix showing the number of times each alternative
is ranked ahead of each of the other alternatives. Next, we find all possible ideal consen-
sus ranking matrices where the rankings of all n alternatives for all k DMs are identified.
Finally, the distance between each ideal matrix and the initial preference matrix is used
to find the optimal solution. The optimal solution is the ideal consensus ranking matrix
with the minimum distance. The similarity of consensus rankings generated by the dif-
ferent algorithms is largely unknown. We examine the similarity in rankings generated by
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our method with the best-known method of BAK and two other commonly used tech-
niques proposed by Beck and Lin [33] and Cook and Kress [22]. We use a Monte Carlo
simulation to examine the extent to which these algorithms yield similar rank ordering
across a range of problems with k DMs and n alternatives.

Beck and Lin [33] have developed a procedure for approximating the optimal consen-
sus rankings known as maximize agreement heuristic (MAH). MAH is commonly used
in practice because of its simplicity, flexibility, and general performance (see Kengpol and
Tuominen [34], Lewis and Butler [35], Tavana et al. [36], Tavana [37, 38]). MAH is in-
tended to derive consensus orderings that reflect collective DM agreement. An agreement
is defined as a case where alternative i is preferred to alternative j by a given DM and al-
ternative i is ranked above alternative j in the final consensus ranking. A disagreement is
a case where alternative i is preferred to alternative j by a DM and alternative j is ranked
above alternative i in the final consensus ranking. Under the MAH, alternative i is posi-
tioned above alternative j in the final ordering if the difference in total DM agreement
and disagreement about the relative orderings of alternatives i and j is positive, and alter-
native j is positioned above alternative i if this difference is negative. These positioning as-
signments are iteratively made based on the maximum absolute agreement/disagreement
difference of all unassigned alternatives. A detailed explanation of MAH is presented in
Appendix A.

Cook and Kress [22] have suggested a more complicated method referred to as the
consensus ranking model (CRM) for representing strength of preference within an ordi-
nal scale. In CRM, a DM orders n alternatives in q positions where n ≤ q. The resulting
ranking shows the DM order of preference and the relative positioning of the alternatives
represents his or her intensity of preference. CRM guarantees common units across DMs
if each DM orders the same number of alternatives into the same number of positions.

The remainder of the paper is organized as follows. The next section describes the
mathematical details of our model followed by an illustrative example in Section 3 and a
description of our study in Section 4. In Section 5, we discuss our results and in Section 6,
we present our conclusions.

2. The model

DCM is a hybrid model that combines the most clear-cut and precise algorithms of MAH
(see Beck and Lin [33]) and CRM (see Cook and Kress [22]) into an intuitive and compu-
tationally simple model. Like MAH, DCM creates a single preference matrix representing
the number of times each alternative is ranked ahead of each of the other alternatives.
MAH evaluates each alternative individually, ranking one alternative at a time, rebuilding
agreement matrices inconsiderate of any previously ranked alternatives, until all alterna-
tives are ranked. Like CRM, DCM employs the ideal matrix comparison methodology in
lieu of the repetitive task of rebuilding agreement matrices in MAH. An ideal matrix is
developed for each possible permutation of alternatives. The ideal matrix is an “agree-
ment matrix” that would result if all DMs were in total agreement on the rankings of all
alternatives. Distance comparisons (sum of the absolute differences of the actual versus
each ideal matrix) are used to find the optimal solution or the “nearest” ideal matrix to
the initial preference matrix.
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To formulate an algebraic model of DCM, consider a general consensus ranking prob-
lem with k DMs and n alternatives. Let us define an initial preference matrix, A = (ai j),
where ai j is the number of times alternative, i is ranked ahead of alternative j. We further
define an ideal matrix, C = (ci j), where the rankings of all n alternatives for all k DMs are
identical and ci j = k, when i is ranked ahead of j and ci j = 0, when i is not ranked ahead
of j. Note that cii = 0 for i= 1,2, . . . ,n.

Next, we define a set of properties, definitions, and axioms similar to those proposed
by Cook and Kress [22]. Consider all the ideal matrices C = (ci j). Each matrix represents
a ranking of the n alternatives by the k DMs.

Property 2.1 (transitivity). For each matrix C, if alternative i is preferred to alternative j
and j is preferred to k, then alternative i is preferred to alternative k.

Definition 2.2. A ranking C1 is said to be adjacent to a ranking C2 if there exist an i and j
such that (c1

i, j = k and c2
i, j = 0) or (c1

i, j = 0 and c2
i, j = k) and (c1

i, j = c2
i, j for all other pairs of

(i, j)).

Definition 2.3. A ranking C1 is said to be adjacent of degree m to a ranking C2 if there are
m different pairs (i, j) such that (c1

i, j = k and c2
i, j = 0) or (c1

i, j = 0 and c2
i, j = k).

Disagreement between two different rankings Ci will be measured in terms of a dis-
tance function on the set of all the rankings. A set of conditions or axioms which such a
distance function should satisfy are as follows.

Axiom 2.4 (metric requirements). For any three rankings C1, C2, C3,
(a) d(C1,C2)≥ 0,
(b) d(C1,C2)= d(C2,C1),
(c) d(C1,C2) +d(C2,C3)≥ d(C1,C3).

Axiom 2.5 (proportionality). The distance between two adjacent rankings is proportional
to the degree of adjacency.

Given these definitions and axioms, the following distance function can be defined
between any two rankings C1 and C2:

d
(
C1,C2

)=
n∑

i=1

n∑

j=1

∣
∣c1

i, j − c2
i, j

∣
∣. (2.1)

Now, we consider all possible ideal matrices and calculate the distance between each
one and the initial preference matrix. We use the distance function defined in (2.1) to
calculate the distance between an ideal matrix C and the preference matrix A as follows:

d(C,A)=
n∑

i=1

n∑

j=1

∣
∣ci j − ai j

∣
∣. (2.2)

The optimal solution is denoted by the ideal consensus ranking matrix that minimizes
the distance between C and A.
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Table 3.1. The initial individual rankings.

DM

Project

First
choice

Second
choice

Third
choice

Fourth
choice

Fifth
choice

A 3 1 2 4 5

B 3 2 5 1 4

C 4 3 1 5 2

D 4 5 2 1 3

E 3 2 5 4 1

F 1 4 3 5 2

G 4 5 1 3 2

Table 3.2. BAK consensus ranking solution (3-4-1-5-2).

Project Mean rank values Consensus ranking

1 3.14 3

2 3.57 5

3 2.43 1

4 2.57 2

5 3.29 4

3. An illustrative example

The problem of ranking advanced-technology projects by the Shuttle Project Engineer-
ing Office at the Kennedy Space Center (KSC) is used to further describe the DCM model
developed in this study. Project evaluation is the primary responsibility of the ground-
system working committee, which has seven members. We refer to the seven members
as the DMs. Contractors and divisions within KSC routinely submit proposals for eval-
uation and possible funding. The committee considers the importance of each project
relative to the longevity of the space-shuttle program. Each of the seven DMs is asked
to provide his or her rankings of the five projects under consideration in this example.
Table 3.1 shows the individual rankings for DMs A through G and projects 1 though 5.

Borda-Kendall model (BAK). Using Borda-Kendall, we calculate the mean value of the
ranks for each project over all DMs. For example, in Table 3.1, project 1 was ranked 2nd
by DM A, 4th by DM B, 3rd by DM C, 4th by DM D, and 5th by DM E, 1st by DM F, and
3rd by DM G. The mean ranking for project 1 over all DMs is (2 + 4 + 3 + 4 + 5 + 1 + 3)/7=
3.14. Table 3.2 shows the mean ranked values for all Projects along with the final com-
bined (consensus) rankings. The project with the lowest combined score is most preferred
and the project with the highest combined score is lest preferred. The final consensus
ranking of the five projects under consideration using BAK is 3-4-1-5-2.
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Consensus ranking model (CRM). Using CRM, we first construct a preference intensity
matrix showing the number of times project i is preferred over project j for each DM.
CRM evaluates all possible rank order permutations by developing a frequency matrix
of total agreement (ideal) for each permutation. There are 120 possible permutations for
the five projects under consideration. For each possible permutation, a total agreement
frequency matrix is constructed and compared to each DM’s preference intensity ma-
trix. Next, for each total agreement frequency matrix, the distance from that matrix to
the preference intensity matrix is computed by calculating the sum of the absolute differ-
ences between the total agreement frequency matrix and the preference intensity matrix.
Table 3.3 shows the preference intensity matrices, the total agreement matrix, absolute
differences, and distance sums for the consensus ranking where project 3 is ranked 1st,
project 5 is ranked 2nd, project 2 is ranked 3rd, project 1 is ranked 4th, and project 4
is ranked 5th (permutation 3-5-2-1-4). The total agreement matrix shown in Table 3.3,
naturally the same for each DM, is the matrix that minimizes the absolute differences
across DMs and hence is the matrix for the best of the 120 permutations. In essence, the
same process was followed for the other 119 total agreement frequency matrices and the
one presented in Table 3.3 is the “best” matrix or stated differently reflects the optimal
ranking according to CRM.

Maximize agreement heuristic model (MAH). MAH uses an agreement matrix to rank
each project one-at-a-time. If for project i, Pi = 0, implying that no DM prefers project
i to any other project, project i is placed at the bottom of the final consensus ranking.
However, if for project i, Ni = 0, implying that no DM prefers any other alternative over
project i, project i is placed at the top of the ranking. Table 3.4 shows the consensus rank-
ing calculations for our example.

As shown in Table 3.4(a), there are no zero values in either P or N in this example.
Therefore, the difference in total DM agreement and disagreement (Pi−Ni) is calculated
for each project, and project 2 with the smallest (Pi −Ni) is placed at the bottom of the
consensus ranking. Since project 2 is assigned a position in the final consensus ranking, it
is eliminated from further consideration. The remaining projects form a new matrix and
the process is repeated until all projects are ranked. Tables 3.4(b) through 3.4(e) show the
remaining iterations. The consensus ranking is 4-3-1-5-2. That is, project 4 is ranked 1st;
project 3, 2nd; project 1, 3rd; project 5, 4th; and project 2, 5th.

Hybrid distance-based model (DCM). Like MAH, DCM creates a single preference ma-
trix representing the number of times each project is ranked ahead of all other projects
and like CRM, DCM employs the ideal matrix comparison methodology in lieu of the
repetitive task of rebuilding agreement matrices in MAH. The first step in DCM is to de-
velop an initial frequency matrix showing the number of times project i is ranked ahead
of project j. Next, we consider an ideal matrix where the rankings of all five projects for
all seven DMs are identical. An ideal matrix is developed for each possible permutation of
projects. Distance comparisons (sum of the absolute differences of the frequency matrices
and the ideal matrices) are used to find the optimal solution or the “nearest” ideal matrix
to the frequency matrix. In this example, permutation 4-3-5-1-2 with a total distance of
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Table 3.3. CRM consensus ranking solution (3-5-2-1-4).

Preference intensity
matrix

Total agreement
frequency matrix

Absolute
difference Distance

sumProject j Project j Project j

DM Project 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

A i

1 0 1 −1 2 3 0 2 −1 −2 1 0 1 0 4 2

48

2 −1 0 −2 1 2 −2 0 −3 −4 −1 1 0 1 5 3

3 1 2 0 3 4 1 3 0 −1 2 0 1 0 4 2

4 −2 −1 −3 0 1 2 4 1 0 3 4 5 4 0 2

5 −3 −2 −4 −1 0 −1 1 −2 −3 0 2 3 2 2 0

B i

1 0 −2 −3 1 −1 0 2 −1 −2 1 0 4 2 3 2

64

2 2 0 −1 3 1 −2 0 −3 −4 −1 4 0 2 7 2

3 3 1 0 4 2 1 3 0 −1 2 2 2 0 5 0

4 −1 −3 −4 0 −2 2 4 1 0 3 3 7 5 0 5

5 1 −1 −2 2 0 −1 1 −2 −3 0 2 2 0 5 0

C i

1 0 2 −1 −2 1 0 2 −1 −2 1 0 0 0 0 0

0

2 −2 0 −3 −4 −1 −2 0 −3 −4 −1 0 0 0 0 0

3 1 3 0 −1 2 1 3 0 −1 2 0 0 0 0 0

4 2 4 1 0 3 2 4 1 0 3 0 0 0 0 0

5 −1 1 −2 −3 0 −1 1 −2 −3 0 0 0 0 0 0

D i

1 0 −1 1 −3 −2 0 2 −1 −2 1 0 3 2 1 3

52

2 1 0 2 −2 −1 −2 0 −3 −4 −1 3 0 5 2 0

3 −1 −2 0 −4 −3 1 3 0 −1 2 2 5 0 3 5

4 3 2 4 0 1 2 4 1 0 3 1 2 3 0 2

5 2 1 3 −1 0 −1 1 −2 −3 0 3 0 5 2 0

E i

1 0 −3 −4 −1 −2 0 2 −1 −2 1 0 5 3 1 3

60

2 3 0 −1 2 1 −2 0 −3 −4 −1 5 0 2 6 2

3 4 1 0 3 2 1 3 0 −1 2 3 2 0 4 0

4 1 −2 −3 0 −1 2 4 1 0 3 1 6 4 0 4

5 2 −1 −2 1 0 −1 1 −2 −3 0 3 2 0 4 0

F i

1 0 4 2 1 3 0 2 −1 −2 1 0 2 3 3 2

28

2 −4 0 −2 −3 −1 −2 0 −3 −4 −1 2 0 1 1 0

3 −2 2 0 −1 1 1 3 0 −1 2 3 1 0 0 1

4 −1 3 1 0 2 2 4 1 0 3 3 1 0 0 1

5 −3 1 −1 −2 0 −1 1 −2 −3 0 2 0 1 1 0

G i

1 0 2 1 −2 −1 0 2 −1 −2 1 0 0 2 0 2

32

2 −2 0 −1 −4 −3 −2 0 −3 −4 −1 0 0 2 0 2

3 −1 1 0 −3 −2 1 3 0 −1 2 2 2 0 2 4

4 2 4 3 0 1 2 4 1 0 3 0 0 2 0 2

5 1 3 2 −1 0 −1 1 −2 −3 0 2 2 4 2 0

Sum 284
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Table 3.4. MAH consensus ranking solution (4-3-1-5-2).

(a) Project 2 is selected: X-X-X-X-2

Project 1 2 3 4 5 Pi Pi−Ni

1 0 4 3 3 3 13 −2

2 3 0 1 3 3 10 −8

3 4 6 0 3 5 18 8

4 4 4 4 0 5 17 6

5 4 4 2 2 0 12 −4

Ni 15 18 10 11 16 — —

(b) Project 5 is selected: X-X-X-5-2

Project 1 3 4 5 Pi Pi−Ni

1 0 3 3 3 9 −3

3 4 0 3 5 12 3

4 4 4 0 5 13 5

5 4 2 2 0 8 −5

Ni 12 9 8 13 — —

(c) Project 1 is selected: X-X-1-5-2

Project 1 3 4 Pi Pi−Ni

1 0 3 3 6 −2

3 4 0 3 7 0

4 4 4 0 8 2

Ni 8 7 6 — —

(d) Project 3 is selected: X-3-1-5-2

Project 3 4 Pi Pi−Ni

3 0 3 3 −1

4 4 0 4 1

Ni 4 3 — —

(e) Project 4 is selected: 4-3-1-5-2

Project 4 Pi Pi−Ni

4 0 4 1

Ni 3 — —

52 is the consensus ranking. Table 3.5 shows the frequency and ideal matrices along with
the absolute difference matrix for the consensus ranking solution.

4. The study

In this study, we used Monte Carlo simulation (see Figure 4.1) to compare the perfor-
mance of our method (DCM) with BAK (see Kendall [9]), MAH (see Beck and Lin
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Table 3.5. DCM consensus ranking solution (4-3-5-1-2).

Frequency matrix
(actual)

Ideal matrix
(order 4-3-5-1-2)

Absolute
difference

Sum of
absolute
differences
(distance)

Project j Project j Project j

Project 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

i

1 0 4 3 3 3 0 7 0 0 0 0 3 3 3 3

52
2 3 0 1 3 3 0 0 0 0 0 3 0 1 3 3

3 4 6 0 3 5 7 7 0 0 7 3 1 0 3 2

4 4 4 4 0 5 7 7 7 0 7 3 3 3 0 2

5 4 4 2 2 0 7 7 0 0 0 3 3 2 2 0

[33]), and CRM (see Cook and Kress [22]). Our testing platform was a Pentium 4 CPU,
3.33 GHz, with 1.00 GB RAM, running under Microsoft Windows XP.

We randomly generated rankings of n alternatives for each of the k DMs. Initial indi-
vidual rankings for each trial were generated using uniformly distributed random num-
bers from the Mersenne Twister (see Matsumoto and Nishimura [39]) random number
generator. Each of the four consensus algorithms was then used to aggregate the individ-
ual rankings into a single consensus ranking of all n items for all k DMs.

For each scenario, the number of alternatives to be ranked, n, varied from 3 to 6. The
number of DMs, k, varied from 3 to 7. One thousand repetitions for each n, k com-
bination were conducted. The result of the experiment was twenty separate unique n,
k combinations. One thousand repetitions of each unique n, k combination resulted in
20,000 total trials. For each trial, each of the four techniques was used to generate group
consensus rankings. Therefore, the analysis generated a total of 80,000 data vectors in the
form of group consensus rankings.

5. The results

For each trial, where each trial begins with the same initial individual DM rankings of
the n alternatives, there were four consensus rankings of the alternatives (DCM, BAK,
MAH, and CRM). One goal of our Monte Carlo simulation was to examine the extent to
which the four algorithms yield similar rank ordering across a range of problems with k
DMs and n alternatives. The most commonly used measures of association (similarity)
with ordinal rankings are Spearman’s rho and Kendall’s tau, but these two measures are
not identical in magnitude because their underlying logic and computational formulae
are quite different. The choice of measures is not a trivial one because Kendall [40] has
noted that values of tau and rho are similar at some magnitudes, but differ appreciably
at others. Some advantages of tau over rho have long been discussed (see Schaeffer and
Levitt [41]). For example, the distribution of tau is normal not only for large values of N
(as is rho) but also for very small values (see Kendall [40]). Also, in most instances, rho
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Given the rankings of each
of n alternatives by each

of k decision makers,
determine a consensus

ranking using
(BAK/CRM/MAH/DCM)

Randomly generate a
ranking for the nth

alternative and
the kth decision maker

Compare paired rankings
using the rank correlation

coefficient

End

Yes

n= 6
No

Yes

k = 7
No

k = k+ 1 n= n+ 1

k = 3

n= 3

Start

Figure 4.1. Monte Carlo simulation flowchart.

is a biased estimator, whereas tau provides an unbiased estimate of the true population
correlation (see Hays [42]). One study found that, relative to rho, tau provided adequate
control aof type I errors and tighter confidence intervals (see Arndt et al. [43]).

Despite its advantages relative to rho, Emond and Mason [44] have recently shown
that Kendall’s tau is a flawed measure of agreement between weak orderings (i.e., when
tied rankings are allowed). They therefore presented a new rank correlation coefficient
(tau-x) and described its application to consensus ranking problems. Tau-x is an exten-
sion of Kendall’s tau that handles tied rankings in a different way. It is the unique rank
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Table 5.1. Mean similarity (tau-x) of consensus rankings generated by four algorithms for combina-
tions of n alternatives ranked by k decision makers.

CRM MAH DCM

3n 4n 5n 6n 3n 4n 5n 6n 3n 4n 5n 6n

BAK

3k 0.94 0.85 0.81 0.77 0.94 0.91 0.90 0.88 0.94 0.89 0.87 0.85

4k 0.84 0.86 0.85 0.81 0.94 0.93 0.91 0.86 0.94 0.92 0.88 0.85

5k 0.87 0.82 0.78 0.74 0.92 0.90 0.87 0.85 0.92 0.88 0.85 0.83

6k 0.81 0.84 0.82 0.80 0.92 0.91 0.89 0.86 0.92 0.89 0.87 0.85

7k 0.83 0.80 0.77 0.75 0.90 0.88 0.86 0.84 0.90 0.86 0.83 0.82

CRM

3k 1.00 0.93 0.89 0.83 1.00 0.97 0.94 0.90

4k 0.89 0.91 0.92 0.89 0.89 0.93 0.94 0.92

5k 0.95 0.90 0.85 0.80 0.95 0.93 0.90 0.86

6k 0.89 0.90 0.88 0.87 0.89 0.92 0.91 0.90

7k 0.94 0.88 0.84 0.79 0.94 0.91 0.88 0.84

MAH

3k 1.00 0.96 0.95 0.92

4k 1.00 0.98 0.96 0.95

5k 1.00 0.97 0.93 0.91

6k 1.00 0.98 0.95 0.94

7k 1.00 0.96 0.93 0.90

correlation coefficient that is equivalent to the Kemeny-Snell distance metric on the set
of all weak orderings of n alternatives. Emond and Mason [44] describe the advantages
of tau-x (relative to Kendall’s tau) and show that tau-x provides a more mathematically
tractable solution because all the ranking information can be summarized in a single
combined input matrix. Moreover, tau-x allows researchers to handle consensus ranking
problems with weights, ties, and partial inputs. In view of the above, we used tau-x to
assess the similarity of consensus rankings generated by the four different approaches.

We conducted several analyses to help clarify the results presented in Table 5.1. First, it
is noteworthy that across all 120 cells in Table 5.1, the mean similarity (tau-x) of rankings
was 0.89 (SD = 0.06). This indicates that the consensus rankings generated by the four
algorithms (DCM, CRM, MAH, and BAK) were generally similar.

We examined whether the number of alternatives to be ranked (n) or the number of
DMs (k) was related to the similarity of rankings. Across all 120 cells in Table 5.1, the
correlation of n with mean similarity (tau-x) of rankings was −0.50 (P < .01). As the
number of alternatives to be ranked increased, the similarity of rankings generated by the
four algorithms decreased. When there were 3 alternatives to be ranked, the mean simi-
larity among the four algorithms was 0.93. When there were 4 alternatives to be ranked,
the mean similarity was 0.91. When there were 5 alternatives to be ranked, the mean sim-
ilarity was 0.88. When there were 6 alternatives to be ranked, the mean similarity was
0.85.
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Table 5.2. Mean similarity (tau-x) for each pair of consensus algorithms. Note that homogeneous
subsets (based on post-hoc Tukey HSD tests) share a common superscript.

Mean similarity Standard deviation

DCM and MAH 0.96 0.03

DCM and CRM 0.92 0.04

DCM and BAK 0.88 0.04

MAH and CRM 0.89 0.05

MAH and BAK 0.89 0.03

CRM and BAK 0.82 0.05

The correlation of k with mean similarity (tau-x) of rankings was −0.24 (P < .01). As
the number of decision makers increased, the similarity of rankings generated by the four
algorithms tended to decrease. When there were 3 decision makers, the mean similarity
among the four algorithms was 0.91. When there were 4 decision makers, the mean sim-
ilarity was also 0.91. When there were 5 decision makers, the mean similarity was 0.88.
When there were 6 decision makers, the mean similarity was 0.89. And when there were
7 decision makers, the mean similarity was 0.87.

Next, to determine whether some pairs of algorithms generated more similar consen-
sus rankings than other pairs, we conducted a one-way analysis of variance (ANOVA)
where the dependent variable was the mean similarity (tau-x) of rankings and the inde-
pendent variable was the six pairs of algorithms (i.e., DCM and MAH, DCM and CRM,
DCM and BAK, MAH and CRM, MAH and BAK, and CRM and BAK). Results indi-
cated that there were significant differences in the similarity of rankings generated by
different pairs of algorithms (F = 28.52, df = 5,114,P < 0.01). The mean similarity (tau-
x) for each pair of algorithms is listed in Table 5.2. The similarity of rankings generated
by different pairs of algorithms ranged from 0.82 to 0.96. DCM and MAH yielded the
most similar consensus rankings (tau-x = 0.96), whereas CRM and BAK yielded the least
similar consensus rankings (tau-x = 0.82). From the perspective of computational com-
plexity, DCM is much simpler than CRM; it is therefore noteworthy that DCM and CRM
yielded quite similar consensus rankings (tau-x = 0.92).

In sum, these results show that, although consensus rankings generated by different
algorithms were often similar, differences in rankings among the algorithms were some-
times of sufficient magnitude that they cannot routinely be viewed as interchangeable
from a practical perspective.

6. Conclusions

These results can be interpreted from the perspective of psychometric theory where re-
liability is often estimated by examining the correlation between two methods of rank
ordering individuals (or alternatives). If two methods (e.g., two judges, two “parallel”
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forms of a test) yield highly similar results, this is viewed as evidence of their reliability.
That is, when two judges generate highly similar ratings (or rankings) of a group of indi-

viduals or alternatives, their ratings (or rankings) are said to be reliable. Nunnally’s [45]
classic text notes that the level of “satisfactory” reliability depends on how a measure is
used. In the context of basic research, measures with reliability of 0.80 (e.g., the correla-
tion between two “parallel” forms of a test) are useful. In applied settings (e.g., where an
exact score on a measure determines whether an applicant will be accepted into a school,
program, or organization), higher levels of reliability (above 0.90) are desirable. In this
context, it is noteworthy that the mean similarity of rankings (tau-x) generated by DCM
and MAH (0.96) and by DCM and CRM (0.92) exceeds the level associated with satisfac-
tory reliability in applied settings. The similarity of rankings generated by other pairs of
algorithms exceeds 0.80, thereby indicating that rankings generated by these algorithms
are similar but certainly not identical.

Future research should examine how various algorithms perform under different con-
ditions. For example, when there is relatively high agreement among the rankings initially
provided by different DMs, consensus controversies are likely to be minimal and a variety
of algorithms will lead to similar consensus rankings (Valadares Tavares [32]). Consensus

controversies are more likely to arise when there is considerable disagreement among the
rankings initially provided by different DMs (especially when these disagreements occur
concerning the top or bottom alternatives). In applied settings, consensus controversies
are especially likely to arise when there are two or more subsets of DMs, each of whom
displays high agreement within the subset but high disagreement with the other subset(s)
of DMs.

It would also be useful to understand whether any consensus algorithms closely mirror
the consensus decisions reached by interacting groups whose members have first com-
pleted individual rankings. That is, individuals sometimes rank alternatives (e.g., job ap-
plicants, requests for capital funding) before meeting as a group to discuss their rankings
and arrive at a group consensus. In some instances, group members with some character-
istics (e.g., high status, assertive) are likely to be more influential than others (e.g., with
less status, deferential), and thereby ultimately persuade other group members to accept
their rankings. In such cases, the group’s consensus ranking will closely correspond to
the individual rankings initially generated by some (influential) members but will dif-
fer from the individual rankings initially generated by other members. It would be of
practical and theoretical value to understand the similarity between consensus rankings
arrived at by group discussion and consensus rankings arrived at solely by the application
of algorithms such as those examined in this paper. From a practical perspective, if some
algorithms yield rankings that closely match the consensus decisions reached by interact-
ing groups, then groups might be more comfortable using those algorithms to combine
their individual rankings without investing the sometimes substantial time and energy
required to discuss individual rankings and reach consensus.

It is unlikely that any consensus algorithm will be free from criticism in all circum-

stances (see Jensen [19]). Future research should examine the performance and proper-
ties of algorithms under real-world conditions where consensus controversies are likely
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to arise, and explore user reactions to and acceptance of different algorithms. Doing so
will enhance the likelihood that consensus algorithms will be adopted by DMs in applied
settings.

Appendices

A. Maximize agreement heuristic model (MAH) of Beck and Lin [33]

Assume that each one of a group of k DMs has ranked n alternatives. Assuming further
that the opinions of the k DMs are to be valued equally, the MAH seeks to arrive at the
consensus ranking of the alternatives for the group as a whole. According to Beck and Lin,
MAH defines an agreement matrix, A, where each element ai j represents the number of
DMs who have preferred Alternative i to Alternative j. Strict preference is important. If
a DM is indifferent between i and j, he or she is not counted in ai j . The sum of ai j for
each alternative i across all columns represents the positive preference vector, P, where
Pi =

∑n
j=1 ai j ; i= 1,2,3, . . . ,n. Similarly, the sum of ai j for each alternative across all rows

represents the negative preference vector, N , where Ni =
∑n

j=1 aji; i= 1,2,3, . . . ,n.
If for alternative i, Pi = 0, implying that no DM prefers alternative i to any other al-

ternative, alternative i is placed at the bottom (in subsequent iterations, at the next avail-
able position at the bottom) of the final consensus ranking. However, if for alternative i,
Ni = 0, implying that no DM prefers any other alternative over alternative i, alternative i
is placed at the top (in subsequent iterations, at the next available position at the top) of
the ranking.

When there are no zero values in either P or N , the difference in total DM agreement
and disagreement (Pi −Ni) is calculated for each alternative, and alternative i with the
largest absolute difference |Pi −Ni| is considered. If (Pi −Ni) is positive, alternative i is
placed in the next available position at top of the final consensus ranking, and if the dif-
ference is negative, alternative i is placed in the next available position at the bottom of
the consensus ranking. Any ties are broken arbitrarily. Once an alternative is assigned a
position in the final consensus ranking, that alternative is eliminated from further consid-
eration. The remaining alternatives form a new matrix and the process is repeated until
all alternatives are ranked.

B. Consensus ranking model of Cook and Kress [22]

Assume that a group of k DMs has ranked n alternatives (v1, . . . ,vn). Each DM ranks the
alternatives. A preference intensity matrix, M = {mij}, is given for each DM where mij

is the number of times vi is preferred over vj (mij = 0 if vi is tied with vj). A consensus
ranking matrix, B = {bi j}, is the matrix that minimizes the distance between B and the

matrices Mi, M(B)=minB∈D
∑k

i=1d(Mi,B) and D is the set of all n×n preference inten-
sity matrices, d(M,B) = (1/2)

∑
i j |mij − bi j|. The following constraints should be satis-

fied for bi j : bik −
∑k−1

j=1 bj j+1 = 0; (i = 1, . . . ,n− 2; k = i+ 2, . . .,n and 1− n ≤ bi j ≤ n− 1;
bi j integer).
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