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Hardie (2001) used general Markov chains to study the linear “recursive projects” in
which some activities may be revisited after a later activity is completed. In this paper,
we propose that it is better to treat the project as an absorbing chain. This allows us to
calculate the expected value and the variance of the project duration.
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1. Introduction

Project management is usually calculated as a set of static activities, whereas in reality
these activities tend to be dynamic involving multiple feedbacks (Park and Peña-Mora
[5]). This results in many late project completions. Recently research has been done
to formulate and analyze various methods to improve project prediction and control.
These include concurrent engineering (Carter and Baker [1]) and stage-gate systems
(Cooper [2]) in which projects must meet specifications before they pass from one stage
to another. The activities within a project are governed by constraints as well as prece-
dence relationships in traditional network scheduling like CPM (critical path method,
Dupont Inc. and Remington Rand, 1958), PDM (procedure diagramming method, IBM
Co., 1964) and PERT (program evaluation and review technology, US Navy, Booz-Allen
Hamilton and Lockheed Co. 1958).

Normally, in a CPM/PERT project, we assume that the activities are carried out only
once. Hardie [3] observed that this is not true in many projects, in which some activ-
ities may have to be revisited after a later activity is completed. He called such models
the “recursive networks.” For example, consider a project having the following five ac-
tivities: (1) specification, (2) design, (3) test and integration, (4) manufacture and (5)
marketing. We assume that they are listed in the predecessor order; that is, an activity
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cannot start until all activities listed before it have been completed. It is more realistic
to assume that the project is recursive, in that there is a non-zero probability that the
project is sent back to design (2) after test and integration (3). In this paper, we restrict
ourselves only to linear projects; that is, those having no branches. We will present a
method to obtain the expected value and the variance of the duration of a linear recur-
sive project.

A linear recursive project can be a “super-activity” inside a larger PERT project. In
this case, our method allows us to calculate accurately the mean and the variance of this
super-activity, rather than approximating them by the Beta assumption or any other ap-
proximating formulas.

2. Methodology

Consider a project with N activities, labeled 1,2, . . . ,N . Let the time be divided into dis-
crete steps, starting at step 0. Hardie [3] assumes that, if activity i is being carried out at
step n, there is a probability pi j ( j < i) that an early activity j is revisited at step n+ 1, a
probability pii that activity i is performed again, and a probability pi,i+1 that the project
advances to the next activity i+ 1. (

∑i+1
j=1 pi j = 1).

The total duration of activity i thus has a geometric distribution with mean 1/(1− pii).
Similar to Hardie [3], we analyze the system as a Markov chain. The transition matrix

representing the chain is of the form

P=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 2 3 4 ··· N E

1 p11 p12 0 0 ··· 0 0
2 p21 p22 p23 0 ··· 0 0
3 p31 p32 p33 p34 ··· 0 0
4 p41 p42 p43 p44 ··· 0 0
··· ··· ··· ··· ··· ··· ··· ···
N pN1 pN2 pN3 pN4 ··· pNN pNE

E 0 0 0 0 ··· 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (2.1)

where E denotes the end of the project.
Hardie [3] notes that raising the transition matrix P to the power of n will give the

probability that activity i is performed at time n. Especially, the probability that the
project is finished by the time n is the (1,E) element of the matrix Pn. In this paper we
recognize this project as an “absorbing chain.” This allows many important results related
to this kind of chain be adapted to the current model (see Minh [4]).

First we write the transition matrix (2.1) in the following form:

P=
(

T S
0 1

)

, (2.2)
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where

T=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 2 3 4 ··· N

1 p11 p12 0 0 ··· 0

2 p21 p22 p23 0 ··· 0

3 p31 p32 p33 p34 ··· 0

4 p41 p42 p42 p44 ··· 0

··· ··· ··· ··· ··· ··· ···
N pN1 pN2 pN3 pN4 ··· pNN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, S=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

E

1 0

2 0

3 0

4 0

··· ···
N pNE

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (2.3)

Standard results in the study of absorbing chains would immediately yield the follow-
ing results.

(1) The expected total duration the project spends in activity i is the (1, i) element of
the following “fundamental matrix”:

U= (I−T)−1. (2.4)

(2) Let D be the project duration. Its expected value E[D] is the sum of the expected
durations the project spends in each activity; that is, the sum of the first row of
the fundamental matrix U.

(3) The second moment of the project duration E[D2] is the first element of column
(2U− I)Ue, where I is an identity matrix, and e a column in which all elements
are 1.

3. Examples

We now present two examples—the first can be calculated numerically and the second
analytically.

In the first example, consider a project A having 4 activities X , Y , Z, T and the follow-
ing transition matrix (in days):

PA =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

X Y Z T E

X .1 .9 0 0 0

Y .2 .1 .7 0 0

Z .1 0 .3 .6 0

T 0 .1 .1 .4 .4

E 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3.1)

Hardie [3] shows that the probability that project A reaches the end E after day 5 is
.28728, which is the (1,E) element of (PA)5.
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Now treating project A as an absorbing chain, we write

TA =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

X Y Z T

X .1 .9 0 0

Y .2 .1 .7 0

Z .1 0 .3 .6

T 0 .1 .1 .4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, SA =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

E

X 0

Y 0

Z 0

T .4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3.2)

The fundamental matrix for this chain is

UA =

⎛

⎜
⎜
⎜
⎝

1 −.1 −.9 0 0
−.2 1 −.1 −.7 0
−.1 0 1 −.3 −.6

0 −.1 −.1 1 −.4

⎞

⎟
⎟
⎟
⎠

−1

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

X Y Z T

X 1.8651 2.1429 2.5 2.5

Y .75397 2.1429 2.5 2.5

Z .43651 .71429 2.5 2.5

T .19841 .47619 .83333 2.5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(3.3)

This means that the expected total duration that project A spends in activity Y is
2.1429 days, which is the (X ,Y) element of UA. Also, the expected duration of project
A is

E[D]= 1.8651 + 2.1429 + 2.5 + 2.5= 9.008days. (3.4)

Furthermore, because

(2U− I)Ue=

⎛

⎜
⎜
⎜
⎝

109.23
90.324
63.789
37.379

⎞

⎟
⎟
⎟
⎠

(3.5)

we have E[D2]= 109.23. The variance of the project duration is thus

Var[D]= E[D2]−E2[D]= 109.23− 9.0082 = 28.086. (3.6)
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In the second example, we assume that the project can only revert to the beginning of
the project (Back to the drawing board). We write the transition matrix in the form

PB =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 2 3 4 ··· N E

1 q1 s1 0 0 ··· 0 0

2 q2 r2 s2 0 ··· 0 0

3 q3 0 r3 s3 ··· 0 0

4 q4 0 0 r4 ··· 0 0

··· ··· ··· ··· ··· ··· ··· ···
N qN 0 0 0 ··· rN sN

E 0 0 0 0 ··· 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (3.7)

where qi + ri + si = 1 for all 1≤ i≤N .
It can be proved by induction that the closed-form for E[D] is

E[D]= 1
sN

(
R2R3 ···RN

s1s2 ···sN−1
+

R3 ···RN

s2 ···sN−1
+ ···+

RN−1RN

sN−2sN−1
+

RN

sN−1
+ 1
)

, (3.8)

where Ri = 1− ri for all 2≤ i≤N . Especially, when qi = q, ri = r and si = s for all 1≤ i≤
N , we obtain

E[D]= 1
s

(
γN−1 + γN−2 + ···+ γ+ 1

)
= 1

s

(
1− γN

1− γ

)

, (3.9)

where γ = (1− r)/s.
This confirms that the expected project duration is longer when the reversion proba-

bility q is larger, and/or the probability s of advancing to the next activity is smaller.

4. Conclusion

In this paper, we show that by considering a linear recursive project as an absorbing chain,
we can calculate the expected value and the variance of its total duration. These results
can give a project manager better insight into planning the overall project management.
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