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The following problem arises in the study of survivable connection-oriented networks.
Given a demand matrix to be routed between nodes, we want to route all demands, so that
the residual capacity given by the difference between link capacity and link flow is maxi-
mized. Each demand can use only one path. Therefore, the flow is modeled as nonbifur-
cated multicommodity flow. We call the considered problem nonbifurcated congestion
(NBC) problem. Solving NBC problem enables robust restoration of failed connections
in a case of network failure. We propose a new heuristic algorithm for NBC problem and
compare its performance with existing algorithms.

Copyright © 2006 Krzysztof Walkowiak. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The congestion problem arises in many practical applications encountered in computer
networks. In this paper we concentrate on a special version of the congestion problem.
Our objective is to maximize the minimum residual capacity of network links. The resid-
ual capacity is defined as the difference between capacity and flow of link and denotes the
link capacity not used currently. Since we focus on connection-oriented high-speed net-
works using techniques like multiprotocol label switching (MPLS), asynchronous transfer
mode (ATM), or optical networks each demand can use only one route. It means that the
network flow is modeled as nonbifurcated multicommodity flow. The problem formu-
lated in this work is called nonbifurcated congestion (NBC) problem.

We are interested in the NBC problem from the perspective of network survivability.
Our objective is to route all demands in the network maximizing the minimum residual
capacity of links. Such formulation of the optimization problem is important in net-
work survivability, because resources of residual capacity, indispensable for rerouting of
failed connections in a case of network failure, are located “proportionally” in the net-
work. Survivability techniques require residual capacity to perform restoration of broken
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connections. The main idea of approach used to enable survivability in connection-ori-
ented networks is as follows. Each circuit, that is, virtual path in ATM or label switched
path in MPLS, has a primary route and a backup route. The primary route is used for
transmitting of data in normal, failure-free state of the network. After a failure of the
primary route the failed circuit is switched to the backup route. Less residual capacity
in the network links means that fewer connections would be restored when a failure oc-
curs. In other words, it is probable that more failed connections would be restored due
to higher value of residual capacity. It should be noted that the residual capacity could be
applied for assignment of both primary and backup routes in the network. Considerable
information on issues of network survivability can be found in [10].

Minimum congestion/maximum throughput problems are common in networking
applications. An issue of great significance is the fact that we are routing at the same time
many commodities in a network. Moreover, considered problems are the min-max prob-
lems. Another common property is that these problems formulated as linear programs
(bifurcated flows) or integer problems (nonbifurcated flows) are quite difficult.

In this paper we propose an heuristic algorithm for the NBC problem. The concept of
approximation and heuristics has a significant role in all areas of science and engineering.
It is expected to be possible to develop approximation algorithms for optimization prob-
lems with solid mathematical foundations and which can be efficiently implemented. Ac-
cording to experience with various optimization problems, it is evident that obtaining a
partially accurate answer, quickly, can be much preferable to having to wait an excessively
long time for an optimal solution. Therefore, approximation algorithms based on vari-
ous heuristic approaches should be able to combine mathematical theory, computational
efficiency, and practicality [2].

The remainder of this paper is organized as follows. In next section the nonbifurcated
congestion problem is formulated as zero-one integer problem. Section 3 includes the
discussion on related work on congestion problems and various optimization methods
applied to problems similar to NBC. In Section 4 we introduce a congestion avoidance
algorithm for NBC problem. In Section 5 we present some results of computational tests
with a special focus on tuning of algorithm’s parameters and comparison of CA against
other algorithms. Finally, we conclude and suggest further research.

2. Nonbifurcated congestion problem

We are given a network (G,c) where G = (N ,A) is a directed graph with n nodes and
m arcs, c : A→ R+ is a function that defines capacities of the arcs. We assume that all
commodities (demands) included in a set P are numbered from 1 to p, where p denotes
the number of all commodities. For kth commodity sk denotes a source and tk denotes a
destination of the commodity. Each commodity of flow requirement Qk must be routed
from node sk to node tk through a given network. A multicommodity (m.c.) flow is a set
of functions

f k : A−→R+∪{0}, k = 1, . . . , p (2.1)

for which flow of the kth commodity in arc (x, y) f k(x, y) for k = 1, . . . , p satisfies the
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following conditions:

∑

y∈D(x)

f k(x, y)−
∑

y∈B(x)

f k(y,x)=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Qk for x = sk,

−Qk for x = tk,

0 otherwise,

(2.2)

f k(x, y)≥ 0 for (x, y)∈A, k ∈ P, (2.3)

where D(x)= {y : y ∈N and (x, y)∈ A} is a set of destination nodes of edges leaving the
node x and B(x)= {y : y ∈N and (y,x)∈ A} is a set of source nodes of edges entering the
node x. The condition (2.2) is called the conservation of the flow at nodes. The condition
(2.3) is a nonnegativity of flow in directed edges. The definition of m.c. flow given by
(2.1)–(2.3) is called node-path notation.

f (x, y) denoting flow of arc (x, y) is defined as

f (x, y)=
∑

k∈P
f k(x, y). (2.4)

Multicommodity flows are of two types: bifurcated and nonbifurcated. The former one is
a flow in which one commodity can be transported using many paths. Each path carries
only a part of the commodity. For the nonbifurcated flow each commodity flows along
one path only. An example of bifurcated flow is flow of the Internet using the TCP/IP pro-
tocols. Connection-oriented networks like ATM, MPLS, and Frame Relay are examples
of networks applying the nonbifurcated m.c. flows. It should be noted that the nonbifur-
cated flow problem are called in the literature unsplittable flow problem (UFP) [13–15].

In this work we focus on a static flow assignment problem for nonbifurcated flows.
The global m.c. flow denoted by f = [ f1, f2, . . . , fm] is defined as a vector of flows in all
arcs according to constraints (2.1)–(2.4).

In this work we apply a link-path formulation of the nonbifurcated m.c. flow [19].
It is obtained by providing for each commodity i ∈ P a set of routes (paths) Πi = {πk

i :
k = 1, . . . , li} from node sk to node tk. For nonbifurcated m.c. flow commodity, you can
use only one path πk

i . Let xki denote a 0/1 variable, which equals 1 if πk
i is the path for

commodity i and is 0 otherwise. Another binary variable aki j indicates whether or not path

πk
i uses the arc j ∈A. Using this representation of m.c. flow the nonbifurcated congestion

(NBC) problem is as follows:

maxz (2.5)

such that
∑

πk
i ∈Πi

xki = 1 ∀i∈ P, (2.6)

xki ∈ {0,1} ∀i∈ P; πk
i ∈Πi, (2.7)

f j =
∑

i∈ P

∑

πk
i ∈Πi

aki jx
k
i Qi, (2.8)
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fa ≤ ca ∀a∈ A, (2.9)

z ≤ ca− fa ∀a∈ A. (2.10)

The objective is to maximize the minimum arc residual capacity of network function
(2.5). Since we consider the nonbifurcated multicommodity flow, condition (2.6) states
that each commodity can use only one primary route. Constraint (2.7) ensures that deci-
sion variables xki are binary ones. Condition (2.8) is a definition of a link flow. Equation
(2.9) is a capacity constraint. Finally, constraint (2.10) measures the residual capacity of
each link. Variable z is the minimum value of the residual capacity over all arcs in the
network. Therefore, the objective function can be also formulated as

maxz =min
a∈A

(
ca− fa

)
. (2.11)

Note that if we change constraint (2.7) to

0≤ xki ≤ 1 ∀i∈ P; πk
i ∈Πi, (2.12)

we will obtain the bifurcated multicommodity flow problem.
NBC is a 0/1 integer program but it is generally considered as a very hard problem. The

first reason why this occurs is that the objective function (in the min-max formulation) is
convex piecewise linear and not separable with respect to arcs. The second reason is that
the solution space that includes all possible paths is extremely large.

3. Related work

Congestion problems formulated similarly to our formulation given by (2.5)–(2.10) can
be found in the literature. The maximum concurrent flow problem consists in maximizing
the throughput of the network, that is, as large a common percentage of each demand as
possible should be routed while not exceeding the capacity constraint. In the minimum
congestion problem full demands must be routed in order to minimize the maximum
load of an arc and satisfy the capacity constraint. Also the relative congestion defined as
the maximum ratio over all arcs of flow fa divided by the capacity ca can be applied as an
objective function [2, 3, 6, 7, 14, 15].

As mentioned above, our main focus in this work is on the network survivability of
connection-oriented networks. Therefore, in this work we apply formulation (2.5)–(2.10)
of the congestion problem using nonbifurcated m.c. flows, which is more convenient for
use in optimization of flows in survivable networks. Some of algorithms developed for the
maximum concurrent flow and the minimum congestion problems can be also applied
to our NBC problem.

Most literature we have found either concerns congestion problems of bifurcated m.c.
flows, or some limited versions of UFP in the context of congestion.

A comprehensive treatment of various algorithms developed for maximum concur-
rent flow and minimum congestion problems is given in [2]. Author focuses only on
bifurcated m.c. flows. Most of discussed algorithms are based on the flow deviation (FD)
method [8]. FD has been proposed in the context of design of packet-switched networks
and has been broadly used by the community of telecommunication networks.
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Authors of [7] consider a routing problem of bifurcated multicommodity flows con-
sisting in minimizing the maximal relative congestion on the arcs of the network with a
bounded number of paths. An algorithm derived from the FD method is proposed. The
main idea of Duhamel et al. is the use of a convex increasing congestion function sepa-
rable on the arcs what tends to push flow on a subset of the active paths produced by the
minimum congestion solution. Similar approach is proposed in [4]—an adaptation of
the FD method based on Kleinrock’s delay function is used to obtain a fully polynomial
approximation scheme.

Chlamatac et al. proposed an algorithm for optimization of virtual paths in ATM net-
works that minimizes the load on networks links [6]. Since ATM is a connection-oriented
technique, the network flow is modeled as nonbifurcated m.c. flow. The central idea be-
hind the algorithm is to assign random weights to the links in a special way that assures,
for any possible realization of the weights, that the minimum weight path between two
nodes will be inevitably a minimum-hop path. Authors prove that for large networks the
solution provided by the algorithm is within a small factor of the best possible solution.
Numerical evaluation of the algorithm is provided.

Ott et al. consider various problems of flow allocation in the context of MPLS. A rel-
ative congestion is taken into account as an objective in one of optimization problems.
Since, the problem is formulated as bifurcated m.c. flow, linear programming methods
are used [18].

There are many papers concentrating on developing constant-factor approximation
algorithms and bounds for various versions of unsplittable flow problems (UFP). Some
of them consider a limited versions of UFP—the single-source unsplittable flow problem,
which consists in allocating a set of commodities having the same source node to single
paths [13, 14]. Approximation algorithms for multisource UFP are discussed in [1, 15].
However, works concentrating on constant-factor approximation algorithms lack numer-
ical experiments presenting performance of algorithms in real networks. Main focus is
reduced to mathematical properties of algorithms, while the way of how to use these
algorithms for optimization of flows in real computer networks is not discussed, what
limits significance of such papers for the telecommunication practitioners.

The NBC problem, like many other network design problems, is very complex and
numerically intractable even for networks with a small number of nodes. Notice that
the NBC problem is an integer 0-1 problem with linear constraints. However, size of the
problem is very large even for relatively small networks. A popular method to solve 0-
1 problems is the branch-and-bound (B & B) approach. Such algorithms were applied
to many problems related to NBC [12, 19, 20]. Nevertheless, B & B algorithms are in-
tractable for networks of medium and large sizes. The only way to solve the NBC prob-
lem by an exact algorithm that can produce the optimal solution is to reduce size of the
problem and consider only a part of all possible routes. Such an approach, called path
generation technique is discussed in [19]. Another possible method to reduce size of the
considered problem is the hop-limit approach proposed in [11].

Lagrangian relaxation is a decomposition method that can be applied to 0/1 optimiza-
tion problems. This approach consists in relaxation of the primal problem by incorpo-
rating a subset of constraints to Lagrangian function using dual multipliers. The new
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optimization problem, called dual problem, in which the Lagrangian is the criterion func-
tion, is much more simpler than primal problem, because the set of constraint is reduced.
Moreover, reducing of some constraints (by introducing them into the Lagrangian) elim-
inates dependency between variables and the Lagrangian problem can be divided into
two (or more) separate subproblems. Consequently, we obtain a much less complicated
optimization problem, which is tractable in a reasonable time. This is a highly desired
feature of the Lagrangian relaxation that motivates the use of this approach. The most
common method to solve the dual problem is subgradient optimization, which has long
been popular among optimization practitioners, because of its ease of implementation,
general applicability and (potential) computational success [19].

The Lagrangian relaxation and subgradient optimization technique is used in [9] to
solve the nonbifurcated problem. The goal is to select a set of routes which minimizes the
expected end-to-end delay function defined by Kleinrock. Since the objective function
is separable with respect to arcs, the Lagrangian relaxation leads to two relatively simple
kinds of subproblems. First subproblem can be separated into m (number of arcs) sub-
problems solved very simply. The second subproblem can be separated into p (number
of demands) subproblems, which require calculation of the shortest path under a given
metric. Results reported in [9] shows robustness of the Lagrangian approach.

However, the Lagrangian relaxation does not work efficiently for NBC and other min-
max 0/1 problems. The main reason of this is that the objective function of NBC is not
separable with respect to arcs. Therefore, Lagrangian approach cannot yield subproblems
that could be solved effectively.

All references discussed above consider the static optimization of network flows. There
are also related works that focus on dynamic, online optimization of network demands.
In dynamic routing, requests arrive one-by-one and future demands are unknown. Tra-
ditional routing protocols applies a single metric such as hop count or delay that char-
acterizes the network, and use the shortest-path algorithms for path computation [22].
However, in order to support bottleneck metrics like residual capacity or link utilization,
other algorithms have been proposed. We focus on one of them, that is, the shortest-
widest path (SWP) algorithm proposed in [16, 22]. SWP algorithm finds a path with the
maximum residual capacity among all feasible paths. If there are several such paths, the
one with minimum hop count is selected. Dynamic routing algorithms can be used also
for static optimization of network flows by applying the same algorithm sequentially for
all demands. Since all demands are known a priori in static optimization, sequence of
processed demands can be changed to improve the results.

4. Congestion avoidance algorithm

In this section we present a new algorithm called congestion avoidance (CA) for the
nonbifurcated congestion problem given by (2.5)–(2.10). The main idea of CA algo-
rithm is derived from FD algorithm for nonbifurcated m.c. flows proposed in [8]. The
FD algorithm and its modifications have proven its effectiveness in many network de-
sign problems [2, 5, 17, 21]. We present two versions of congestion avoidance algo-
rithm.



Krzysztof Walkowiak 7

For the sake of simplicity we define the residual capacity of arc j in the following way:

ra = ca− fa ∀a∈A. (4.1)

We assume that Xj is a set of variables xki , which are equal to one. The set Xj is called a
selection. Each selection determines the unique set of selected routes for all demands. Let
X1 denote a feasible initial solution. In order to find X1 we apply an algorithm based on
the initial phase of the FD algorithm. Let z(H) denote a value of the minimal arc’s residual
capacity obtained for routes allocation given by a selection H . We start with j := 1.

Algorithm CA1 (α,β)

Step 1. For a solution Xj find the minimal value of residual capacity rmin = mina∈A ra
and the maximal value of residual capacity rmax =maxa∈A ra. Let Cong(α) be a set that
includes all α-congested arcs a ∈ A for which ra ≤ (rmin + α(rmax − rmin)). Next, let Pcong

be a set that consists of all demands that path of the demand uses at least one arc included
in the set Cong(α).

Step 2. Find a selection SWP(Xj) of variables xki associated with the widest-shortest route
πk
i for a selection Xj . To find a widest-shortest route for each demand i∈ P first remove

the demand from the network, and next using the SWP algorithm calculate the path. Set
i := 1 and go to Step 3.

Step 3. Let H := Xr .
(a) If i∈ Pcong, then calculate a selection V from the selection H in the following way:

V := (H −{xmi })∪{xki } where xmi ∈H , xki ∈ SWP(Xj). Routes for other demands except
demand i remain unchanged. Otherwise, if i /∈ Pcong, go to Step 3(c).

(b) If z(V)≥ z(H), then set H :=V .
(c) If i= p, then go to Step 4. Otherwise set i := i+ 1 and go to Step 3(a).

Step 4. If j ≥ β, stop the algorithm. Otherwise set j := j + 1, Xj :=H and go to Step 1.
The central idea of the CA1 algorithm is as follows. The algorithm has two param-

eters that can be tuned. Parameter α ∈ (0,1] is used to find set Cong(α) including all
α-congested arcs (Step 1). The second parameter of the CA algorithm, β, is a number of
iterations for which the main loop of the algorithm is repeated.

We start with a feasible solution X1, which defines all routes used by demands. Con-
sequently, having these routes and bandwidth requirements of all demands, flow and
residual capacity of each arc can be found. To find all α-congested arcs we first find the
minimal value of residual capacity rmin =mina∈A ra and the maximal value of residual ca-
pacity rmax =maxa∈A ra for an m.c. flow given by current selection. An arc a is α-congested
if the following condition is satisfied:

ra ≤
(
rmin +α

(
rmax− rmin

))
. (4.2)

Note that if α = 1, all arcs are included in the set Cong(α). If α = 0.1, only arcs for
which the residual capacity is between rmin and (0.9rmin + 0.1rmax) are included in the set
Cong(α). The Cong(α) is applied to calculate set Pcong. The Pcong set includes all demands,
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which routes use at least one α-congested arc (Step 1). The main idea of using parameter α
is to concentrate the algorithm on the most congested arcs and try to increase the residual
capacity of arcs included in Cong(α) by changing routes for demands included in the set
Pcong. To improve the solution, we find set SWP(Xj) that comprises new routes for each
demand i∈ Pcong calculated according to the shortest-widest path algorithm (Step 2). In
particular, for each i∈ Pcong we remove the demand i from the network (decrease flow on
each arc used by the demand i by the value of i capacity), and calculate a new route using
SWP algorithm. Next, we try to improve the solution by deviation of one selected de-
mand i∈ Pcong to the widest route (Step 3(a)). In Step 3(b) we evaluate the new solution
denoted as V . If minimal residual capacity of V is greater or equal to the minimal resid-
ual capacity of previous selection, we accept the change of route for demand i. Note that
in nonbifurcated flow deviation algorithm [8], solutions are compared using condition
“less” (“less” because the problem is to minimize objective function, in our case we want
to maximize the objective function). We use the “greater or equal” condition to enlarge
the solution space analyzed by algorithm CA. Moreover, another difference between FD
and CA is the stopping condition. The FD stops if the m.c. flow is not changed after the
deviation. Since we apply the “greater or equal,” we have to repeat the main loop of CA β
times. Finally, FD uses a shortest path algorithm to obtain a new route for deviation while
CA applies shortest-widest path algorithm because our objective is to maximize residual
capacity.

Now we present a second version of congestion avoidance algorithm.

Algorithm CA2 (α,δ).
Steps 1–3. The same as in algorithm CA1.

Step 4. If z(Xj) = z(Xj−(δ−1)), stop the algorithm. Otherwise set j := j + 1, Xj :=H and
go to Step 1.

Algorithm CA2 has also two parameters that can be tuned. Parameter α has the same
task as in CA1. The second parameter of the CA2-δ is used in the stopping condition.
We suppose that if for a particular number of iterations the algorithm yields the same
result, we can stop the algorithm because a local minimum is obtained. Therefore, if for
δ consecutive iterations CA2 does not improve the network congestion given by formula
(2.11), the algorithm terminates. Deployment of CA2 was motivated by initial results
of CA1 computational tests. Comprehensive analysis of results can be found in the next
section.

5. Numerical results

All tested algorithms were coded in C++, and the program was run on an IBM-compatible
PC with 2 GHz Intel processor and 512 MB of RAM. To evaluate algorithms CA1, CA2
and other tested algorithms for various networks in terms of topology and density (av-
erage node degree) we selected to numerical experiments 7 networks. Three topologies
are shown in Figure 5.1. Table 5.1 summarizes the parameters of all sample networks.
The first column specifies the name of the parameter, next columns include values of
these parameters for each network. Let bandwidth unit (BU) denote an arbitrary unit of
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128

108ring120mesh

Figure 5.1. Topologies of tested networks 128, 120mesh, and 108ring.

Table 5.1. Parameters of tested networks.

Name of network 104 114 128 144 162 108ring 120mesh

Number of nodes 36 36 36 36 36 36 36

Number of links 104 114 128 144 162 108 120

Topology
Irregular mesh Ring

Regular

mesh

Node degree (average) 2.88 3.17 3.56 4.00 4.50 3.00 3.33

Number of tests experiment A 15 15 15 15 15 15 15

Number of tests experiment B 20 20 20 20 20 20 20

Number of tests experiment C 10 10 10 10 10 10 10

bandwidth, for instance, 1 Mb/s. We assume that for all networks capacity of each link is
5000 BU.

We run three sets of experiments. In experiment A it is assumed that there is a re-
quirement to set up a connection for each direction of every node pair. Thus, the to-
tal number of demands (commodities) is 1260. Each demand is defined by the source
node, destination node, and flow requirement. Several demand patterns are examined
for each network. However, all demands are homogenous and flow requirement for each
demand is the same. For instance, for network 104 we perform 15 simulations starting
with flow requirement of each demand equal to 50 BU, the biggest value of flow require-
ment is 64 BU. In experiment B, there are also 1260 demands—one demand for each
origin-destination node pair. However, bandwidth requirements are heterogeneous—a
random value is chosen independently for each demand. Finally, in experiment C 2500
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fully heterogeneous demands are generated, that is, origin node, destination node, and
bandwidth requirement are chosen for each demand at random.

The first objective of experiments is tuning of the CA1 algorithm. As a starting solution
we use the solution given by the initial phase of the FD for nonbifurcated flows [8]. Due
to initial trial runs we decided to set the number of iterations (parameter β) to 50. We
run simulations for the following values of parameter α= {1;0.75;0.5;0.25;0.1;0.05;0.01;
0.005;0.001}.

To compare results we apply the competitive ration performance indicator. The com-
petitive ration, which indicates how well an algorithm performs for a given parame-
ter α, is defined as the difference between result obtained for a particular parameter α
and the maximum value of minimal residual capacity obtained in a considered simu-
lation (unique in terms of network topology and demand pattern). For instance, if for
the test consisting of 9 simulations of CA (9 different values of parameter α) maxi-
mum value of minimal residual capacity is 2500 and the minimal residual capacity of
the considered simulation is 2000; the competitive ration is calculated as follows: (2500−
−2000)/2500= 20%. The competitive ration indicates quality of obtained result of given
simulation compared to results of other simulations for a particular network and de-
mand. Low value of competitive ration means that the result of current simulation is very
close to the best results obtained in a given test. Notice that the competitive ration must
be in the range [0,100%]. For presentation of aggregate results we apply the aggregate
competitive ration, which is a sum of competitive rations over all considered experiments.

In Table 5.2, for each experiment, and network topology combination, we report ag-
gregate competitive ration obtained for tested values of α. Generally, we can see that
results obtained for irregular mesh topologies (104, 114, 128, 144, 162) are similar for
various values of α. Only for networks 108ring and 120mesh more differences can be ob-
served. However, for experiment C the difference between regular and irregular topolo-
gies is relatively smaller. The experimental data is reasonably well explained by the fact
that for experiment C there are more demands (2500) and demands are heterogeneous.
For experiments A and B there are 1260 homogeneous demands (one demand for each
origin-destination node pair).

Table 5.3 shows the ranking of all tested values of parameter α. For instance, the sec-
ond column of Table 5.3 demonstrates that setting α = 1 provides the “first place” (best
results) in 101 of 105 simulations run for experiment A, 89 of 140 simulations run for
experiment B and 23 of 70 simulations run for experiment C. Columns 3–10 of Table 5.3
present detailed ranking for other values of α. In experiments A and B for many demand
patterns algorithm CA1 yields the same result regardless of parameter α. As above, the
results obtained for experiment C differ from other experiments. This follows from the
heterogeneity of demands. More demands with random bandwidth requirements mean
more combinations of routes and more possible solutions. Therefore, CA1 generates dif-
ferent results for various α.

Now we focus on the second parameter of algorithm CA1–number of iterations de-
noted as β. Recall, that in our simulations we set β to 50. However, for each simulation
we record the number of iteration in which the final (best) solution is obtained. After this
iteration the solution was not improved. Table 5.4 reports our results. As in Table 5.2,
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Table 5.2. Aggregate competitive ration of various simulation scenarios for experiments A, B, C.

Network α= 1 α= 0.75 α= 0.5 α= 0.25 α= 0.1 α= 0.05 α= 0.01 α= 0.005 α= 0.001

Experiment A

All nets 56.5% 56.5% 56.5% 56.5% 56.5% 56.5% 11.5% 11.5% 11.5%

104 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 7.2% 7.2% 7.2%

114 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

128 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

144 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

162 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

108ring 16.0% 16.0% 16.0% 16.0% 16.0% 16.0% 4.3% 4.3% 4.3%

120mesh 40.6% 40.6% 40.6% 40.6% 40.6% 40.6% 0.0% 0.0% 0.0%

Experiment B

All nets 81.5% 81.5% 81.5% 81.5% 79.7% 76.0% 94.6% 100.3% 80.5%

104 6.4% 6.4% 6.4% 6.4% 6.4% 1.8% 5.7% 13.3% 13.6%

114 8.3% 8.3% 8.3% 8.3% 8.3% 8.1% 11.4% 9.7% 6.6%

128 11.3% 11.3% 11.3% 11.3% 10.4% 11.6% 11.9% 13.0% 12.8%

144 11.3% 11.3% 11.3% 11.3% 10.3% 8.2% 6.7% 5.8% 4.4%

162 35.3% 35.3% 35.3% 35.3% 35.3% 37.4% 23.2% 15.7% 7.8%

108ring 1.2% 1.2% 1.2% 1.2% 1.2% 1.2% 18.8% 27.0% 19.6%

120mesh 7.7% 7.7% 7.7% 7.7% 7.7% 7.7% 16.9% 15.9% 15.7%

Experiment C

All nets 20.2% 20.1% 19.1% 18.0% 21.2% 18.0% 12.9% 19.9% 34.7%

104 1.2% 1.5% 1.1% 1.1% 2.2% 2.3% 2.4% 2.3% 8.2%

114 0.5% 0.5% 0.5% 0.7% 0.8% 1.0% 0.6% 0.6% 1.0%

128 1.5% 1.4% 1.2% 1.5% 0.9% 1.2% 0.9% 0.7% 1.6%

144 1.9% 1.9% 1.8% 1.8% 1.6% 1.4% 1.5% 1.5% 1.1%

162 5.1% 5.0% 4.4% 4.1% 3.5% 3.0% 0.8% 4.3% 7.4%

108ring 5.0% 4.7% 4.2% 4.5% 4.5% 3.4% 2.1% 5.0% 7.7%

120mesh 5.1% 5.1% 6.0% 4.4% 7.9% 5.7% 4.7% 5.5% 7.8%

Table 5.3. Ranking of various values of parameter α.

Experiment α= 1 α= 0.75 α= 0.5 α= 0.25 α= 0.1 α= 0.05 α= 0.01 α= 0.005 α= 0.001

A 101 101 101 101 101 101 103 103 103

B 89 89 89 89 90 93 96 97 101

C 23 24 22 20 27 25 31 25 23
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analysis of Table 5.4 shows that the results depend on the experiment. When the num-
ber of demands grows, the CA1 algorithm needs more iterations to find a stable solution.
Also of significance is that the number of iterations grows as the value of α decreases. This
is also evident from the construct of algorithm CA1. In each iteration we try to change
routes of demands that use α-congested arcs. If α is low, only few arcs are taken into
account, and consequently relatively small number of demands are deviated. Therefore,
CA1 needs more iteration for small values of α. However, since fewer paths are rerouted,
the calculation time should be lower for low α. This can be observed in Table 5.5, which
summarizes the decision time needed to run all 50 iterations of CA1. The time required
to find the initial solution is not included, since it is the same for all tested α.

Figure 5.2 shows the convergence of the CA1 algorithm obtained in experiment C for
network topology 128. Curves for five values of parameter α are presented. We can see
that for α > 0.1 the algorithm requires only few iterations to find a stable solution. For
smaller values of α, the number of iterations grows.

Summarizing the discussion on the CA1 parameter tuning we conclude that the algo-
rithm offer similar results for tested values of α. However, if we take into account also the
number of iterations and decision time, we can see that for α= 0.01 combination of both
objectives: quality of result and calculation time is in our opinion the best. The parameter
β defining the number of algorithm’s iterations can be reduced to value 10 for experiment
C and 5 for the two other experiments.

Our analysis of the CA1 performance suggests that the stopping criterion of the algo-
rithm can be improved to minimize the decision time. Therefore, we developed a second
algorithm, CA2, that examines results of consecutive iterations and if for a particular
number of iterations the results are the same, the algorithm stops. Since CA2 is very sim-
ilar to CA1, we apply results of CA1 tuning and decide to use the CA2 algorithm with the
following parameters: α= 0.01, δ = 3.

For reference we selected several algorithms developed of nonbifurcated versions of
the congestion problem. We implement the algorithm CFZ proposed by Chlamatac et al.
[6]. CFZ minimizes the network load, however, the capacity constraint is not taken into
account, that is, links have no limits on the load they can carry. Therefore, we propose
a modification of the CFZ algorithm (called CFZMod), in which only feasible paths are
considered in Step 4 of CFZ. By a feasible path for a particular demand we mean a path
that has residual capacity of all arcs not lower than bandwidth requirement of the de-
mand. Consequently, we try to avoid allocating demands to paths that cannot transport
the whole capacity of the demand. If a feasible path does not exist for, it means that the
algorithm cannot yield a feasible (in terms of capacity constraint) solution.

Another possible method of solving the NBC problem can be derived from works [4, 7]
that propose applying a convex increasing congestion function separable on the arcs that
leads to improvement of network congestion. As in [4] we implement the FD algorithm,
however we use the nonbifurcated version of FD, while Bienstock and Raskina focuses
on bifurcated flows. As objective we apply the average delay function that fulfills required
conditions; it is a convex increasing function separable on the arcs.

We also use the shortest-widest path (SWP) algorithm [16, 22] for comparison of re-
sults. Since we consider a static problem, we can employ the SWP for various orderings
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Table 5.4. Average number of CA1 iterations, after which the final solution is obtained.

Network α= 1 α= 0.75 α= 0.5 α= 0.25 α= 0.1 α= 0.05 α= 0.01 α= 0.005 α= 0.001

Experiment A

All nets 1.3 1.3 1.3 1.3 1.3 1.4 2.3 2.3 2.3

104 1.6 1.6 1.6 1.6 2.2 2.2 2.9 2.9 2.9

114 1.0 1.0 1.0 1.0 1.0 1.7 3.1 3.1 3.1

128 1.0 1.0 1.0 1.0 1.0 1.1 1.3 1.3 1.3

144 1.0 1.0 1.0 1.0 1.0 1.0 2.1 2.1 2.1

162 1.0 1.0 1.0 1.0 1.0 1.0 1.7 1.7 1.7

108ring 2.2 2.2 2.2 2.2 2.2 2.2 3.7 3.7 3.7

120mesh 1.0 1.0 1.0 1.0 1.0 1.0 1.3 1.3 1.3

Experiment B

All nets 1.1 1.1 1.1 1.1 1.2 1.3 2.1 2.5 3.4

104 1.5 1.5 1.5 1.5 2.1 2.5 3.4 3.8 4.9

114 1.0 1.0 1.0 1.1 1.1 1.3 2.5 3.1 4.0

128 1.0 1.0 1.0 1.0 1.1 1.2 2.2 2.8 4.4

144 1.0 1.0 1.0 1.0 1.0 1.0 1.8 2.1 3.3

162 1.0 1.0 1.0 1.0 1.0 1.0 1.9 2.1 2.9

108ring 1.1 1.1 1.1 1.1 1.1 1.1 1.4 1.5 1.8

120mesh 1.3 1.3 1.3 1.3 1.3 1.3 1.7 2.0 2.9

Experiment C

All nets 3.2 3.2 3.2 3.3 3.6 3.9 5.6 7.1 8.9

104 1.5 1.5 1.6 1.7 2.7 3.5 5.3 6.6 7.0

114 1.8 1.8 1.5 1.7 2.4 3.2 5.0 6.4 6.9

128 2.0 1.9 2.1 1.9 2.9 3.4 6.0 6.5 8.9

144 1.1 1.4 1.2 1.2 1.7 2.4 4.5 5.5 7.0

162 2.3 2.5 2.6 2.5 3.3 4.3 6.9 7.5 9.3

108ring 7.0 6.4 7.5 7.9 7.2 4.5 7.0 10.3 13.4

120mesh 6.6 6.6 5.7 5.9 5.0 6.1 4.7 6.6 9.8

Table 5.5. Average decision time of CA1 for various values of parameter α given in seconds.

Experiment α= 1 α= 0.75 α= 0.5 α= 0.25 α= 0.1 α= 0.05 α= 0.01 α= 0.005 α= 0.001

A 76 74 69 62 53 51 38 38 38

B 81 78 73 65 56 53 25 13 6

C 324 319 299 261 210 156 100 64 27
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Figure 5.2. Convergence of CA algorithm for network 128 in experiment C.

of commodities. In particular, we develop three versions of algorithm using the shortest-
widest path (SWP) method. In SWPNorm algorithm paths are processed without any
sorting, that is, demands are allocated one-by-one as they are located in the set to paths
found by SWP. SWPRand(n) method assumes that paths are sorted randomly, n various
(in terms of demands’ ordering) sets are generated. In SWPSort algorithm initially paths
are allocated by the SWPNorm algorithm. Next, for each path the path’s residual capacity
(i.e., the miminal value of residual capacity over all arcs belonging to the path) is calcu-
lated. Finally, paths are sorted according to their residual capacity, starting from the path
with the smallest value of residual capacity. If two paths have the same residual capacity,
we compare the value of paths’ bandwidth requirement.

As discussed in a related work, there are also many other methods developed for con-
gestion problems for bifurcated m.c. flows. However, since we consider a network that
uses a connection-oriented technique (e.g., MPLS, ATM), the algorithms developed for
bifurcated flows cannot be applied in our case.

According to the discussion on the CA1 parameter setting we decided to use the fol-
lowing two combinations of CA1 parameters for comparison with other algorithms:
CA1(0.01,5) (α = 0.0l; β = 5) and CA1(0.01,10) (α = 0.0l; β = 10). We also report re-
sults of CA2(0.01,3) (α = 0.0l; δ = 3). As a starting solution of both CA algorithms we
use the route combination yielded by the initial phase of nonbifurcated FD algorithm.

Table 5.6 shows the ranking of all tested algorithms. For instance, the seventh column
of Table 5.6 demonstrates that CA1(0.01,5) algorithm provides the “first place” (best re-
sults) in 103 of 105 simulations run for experiment A, 137 of 140 simulations run for
experiment B, and 42 of 70 simulations run for experiment C. In experiments A and B for
many demand patterns algorithms CA1 and CA2 yield the same result regardless of pa-
rameter α. As above, the results obtained for experiment C differ from other experiments.
This is due to heterogeneity of the demands. More demands with random bandwidth re-
quirements mean more combinations of routes and more possible solutions. Therefore,
CA1 and CA2 generate different results.
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Table 5.6. Ranking of tested algorithms.

Experiment SWP SWPSort SWPRand CFZ CFZMod FD CA1(0.01,5) CA1(0.01,10) CA2(0.01,3)

A 15 2 36 0 3 25 103 105 105

B 0 1 0 0 0 16 137 140 140

C 0 2 0 0 0 0 42 65 70

Table 5.7. Number of tests in which algorithm cannot find a feasible solution.

Experiment SWP SWPSort SWPRand CFZ CFZMod FD CA1(0.01,5) CA1(0.01,10) CA2(0.01,3)

A 26 36 11 93 7 0 0 0 0

B 87 76 82 131 4 0 0 0 0

C 9 8 7 38 4 0 0 0 0

It should be noted that tested algorithms do not always yield a feasible solution. De-
tailed results are reported in Table 5.7. The worst performance yields the CFZ algorithm.
In experiment A for only 12 of 105 tests (unique in terms of network topology and de-
mand pattern) CFZ can find a feasible solution. This is because, as mentioned above, CFZ
does not apply the capacity constraint. Furthermore, CFZ uses only the shortest routes for
each demand. In congested networks to omit highly congested arcs, other longer routes
should be used. We can observe that the modified CFZ produce much more feasible so-
lutions. Only FD, CA1(0.01,5), CA1(0.01,10), and CA2(0.01,3) can find a feasible result
for each test.

In Table 5.8, for each experiment and network combination, we report aggregate com-
petitive ration obtained all for tested algorithms. Two versions of CA outperform other
algorithms in all experiments. For the most heterogeneous case-experiment C-CA2 pro-
vides the best results. SWPRand and FD offer the best performance, regardless of CA. We
do not show results of CFZ, because as mentioned above in most of tests, CFZ cannot
find a feasible solution.

Table 5.9 summarizes the decision time needed to run tested algorithms. Recall that
to run the CA algorithm we need an initial solution, which is provided by FD. SWP and
SWPSort require only one execution of the shortest-widest path algorithm for each de-
mand. Therefore, the decision time is relatively low. The CA algorithm itself needs only
few seconds to find solution. However, when we add the decision time of FD the time
grows substantially. Notice that, since in experiment C the number of demands (2500) is
about twice the number of demands in experiments A and B (1260), calculation time is
also larger. Generally, decision times obtained for various network topologies are compa-
rable.

Concluding, both versions of CA outperform all other tested algorithms. Evaluating
jointly objectives of solution quality and decision time CA2(0.01,3) offers the best per-
formance among all tested algorithms. Another important observation is that network
topology and demand pattern can affect the performance of CA algorithms in terms of
decision time and quality of results.
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Table 5.8. Aggregate competitive ration of various simulation scenarios for all tested algorithms.

Network SWP SWPSort SWPRand CFZMod FD CA1(0.01,5) CA1(0.01,10) CA2(0.01,3)

Experiment A

All nets 5341% 6143% 2932% 8728% 3312% 18% 0% 32%

104 455% 929% 228% 1396% 754% 0% 0% 0%

114 461% 450% 0% 1408% 713% 0% 0% 0%

128 1354% 695% 513% 1346% 415% 0% 0% 0%

144 716% 458% 352% 1238% 702% 0% 0% 0%

162 0% 638% 0% 1178% 560% 0% 0% 0%

108ring 1341% 1473% 903% 801% 68% 18% 0% 32%

120mesh 1014% 1500% 934% 1361% 99% 0% 0% 0%

Experiment B

All nets 11542% 10318% 10616% 12726% 4002% 80% 74% 74%

104 954% 1674% 1113% 1954% 909% 6% 0% 0%

114 1155% 774% 547% 1920% 566% 74% 74% 74%

128 1909% 791% 1859% 1935% 700% 0% 0% 0%

144 1666% 1273% 1282% 1845% 820% 0% 0% 0%

162 1858% 1806% 1815% 1424% 825% 0% 0% 0%

108ring 2000% 2000% 2000% 1920% 77% 0% 0% 0%

120mesh 2000% 2000% 2000% 1728% 106% 0% 0% 0%

Experiment C

All nets 2284% 2020% 1980% 5130% 3220% 101% 6% 1%

104 208% 154% 159% 888% 513% 5% 0% 0%

114 48% 32% 29% 627% 500% 6% 0% 0%

128 328% 270% 301% 740% 509% 10% 0% 0%

144 281% 171% 191% 911% 443% 5% 1% 1%

162 105% 74% 80% 849% 693% 42% 0% 0%

108ring 706% 685% 623% 850% 247% 30% 4% 0%

120mesh 608% 634% 597% 265% 314% 3% 0% 0%

Table 5.9. Average decision time of tested algorithms given in seconds.

Experiment SWP SWPSort SWPRand CFZ CFZMod FD CA1(0.01,5) CA1(0.01,10) CA2(0.01,3)

A 0.4 0.4 9.8 54.9 57.6 21.3 3.3 7.3 2.6

B 0.3 0.4 10.3 54.9 57.6 26.2 2.5 5.1 2.0

C 2.2 2.3 46.2 108.9 141.2 49.8 7.1 19.0 14.4
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6. Concluding remarks

In this paper a new algorithm-congestion avoidance (CA) for the congestion problem
in connection-oriented networks has been proposed. We have discussed main properties
of two versions of CA. Next we have run simulations to calibrate two input parameters
of CA1. According to obtained results, performance of CA depends on both parameters.
However, the influence of α parameter is not substantial. If we take into account jointly
the quality of results and computation time, we can conclude that the best results pro-
vide α = 0.01. The second parameter denoting the number of CA1’s iterations depends
on traffic demands pattern. For heterogeneous demands the algorithm needs more it-
erations than for homogenous demands. Increasing the number of demands causes that
more calculations steps are required to converge CA1 to a stable solution. Finally, we have
evaluated CA1 and CA2 against existing heuristics. Results show supremacy of CA com-
paring to other algorithms. In future work we plan to apply CA to the problem of primary
routes assignment in survivable connection-oriented networks like MPLS and ATM. In
our opinion, allocation of demand paths that maximizes residual capacity can guarantee
good restoration performance after a network failure.
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