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In a previous paper, we introduced the idea of a scale-free system, and applied this to
extend the Lanchester equations of industrial age warfare into the information age, cor-
responding to the shift towards more self-organising force elements in future conflicts.
Here, we present evidence from an agent-based model of conflict (MANA) which sup-
ports our theoretical analysis.

Copyright © 2006 James Moffat et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

MANA (Map Aware Nonuniform Automata) is a cellular automata-based simulation
model of conflict which has been developed by the New Zealand Defence Technology
Agency. It is based on the foundation ideas of complexity and emergence (Lauren and
Stephen [12]). It has been developed using as a start point the ISAAC model developed
for the US Marine Corps by Illachinski [5]. ISAAC was developed in order to explicitly
explore in an experimental fashion the relation between local unit interactions and the
resultant emergent properties and behaviour of the overall force.

In the MANA simulation model, a scenario is defined by the battlespace and the char-
acteristics of the two sides (Blue and Red). Each of the two forces is composed of a number
of units. These units have the ability to locally sense their environment, and then decide,
on the basis of a number of simple algorithms (based on attraction or repulsion to/from
neighbouring units of each side and their attraction to their final goal), how to move
around the battlespace. Waypoints can also be defined which help to steer the flow of
forces in broad general directions.

Over several years we have been working with its main author, Dr. Michael Lauren,
through The Technical Cooperation Program (TTCP) on a number of theoretical de-
velopments related to MANA. These developments allow an analytical approach to the
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2 Emergent behaviour

linkage between local clustering assumptions concerning the forces, and the resultant
emergent behaviour seen in the battlespace. This emergent behaviour is measured in
terms of both expected attrition across the whole simulated conflict and the dynamics
of the time series of casualties over simulated time.

Information age forces. The approach is particularly relevant to dispersed, dynamically
evolving “information age” scenarios, involving local force clustering and reclustering (a
form of local self-organisation). This is in contrast to the force-on-force attrition ap-
proach to “industrial age” warfare typified by Lanchester’s equations [16]. In [4], Darilek
et al. discuss the implications of this thinking for the “information age” US Army, in
which autonomous units of force move and cluster across a dispersed battlespace.

Network centric warfare. The linkage between such local self-organisation and global
emergent behaviour also lies at the core of ideas such as network centric warfare. This
relationship is discussed particularly in the most recent book by Alberts and Hayes [1].
Initial mathematical ideas are also discussed in the book by Moffat [13].

2. Theoretical analysis

In a previous paper [14], we considered such a conflict between “Red” and “Blue” forces
as an example of a scale-free system, based on the fluid dynamic ideas of Barenblatt [2]
and Lauren [9]. We then derived a general relationship for the casualties produced over
time in such a conflict. This has the form

E0<t<T

(
Δb

Δt

)
= E0<t<T

(−ckD/2Δt−(1−D/2)r(t)
)
. (2.1)

Here k is the unit effectiveness of a Red agent, b (resp., r) is the remaining Blue (resp.,
Red) force strength at time t. D is the fractal dimension of the Red force at time t. D is
time-dependent in general as shown by the examples in [14]. c is the constant of pro-
portionality. There is a corresponding relationship for Δr/Δt in terms of the Blue fractal
dimension.

2.1. Correlation in time. We assume that the system is similar to a turbulent flow system
where turbulence is multiscaling (in the sense that the effect is recursive at different levels
of system resolution). This leads to the assumption of multifractal statistics. This means
that the form of expression above applies in a analogous way to all of the moments of
the random variable |(b(t +Δt)− b(t))/Δt|. Thus we have, from the general form of the
fractal attrition relationship at (2.1), that

E
(∣∣∣∣b(t+Δt)− b(t)

Δt

∣∣∣∣
p)
∝ Δt f (D,p), (2.2)

where f is a function only of the battlespace casualties fractal dimension D and the order
of the moment p ≥ 1.
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In particular (noting that Δt is a constant relative to the expectation E over time t), the
second moment (p = 2) should have the relationship

E

(∣∣∣∣b(t+Δt)− b(t)
Δt

∣∣∣∣
2
)
= 1

Δt2
E
(∣∣b(t+Δt)− b(t)

∣∣2)∝ Δt f (D,2), (2.3)

and hence

E
(∣∣b(t+Δt)− b(t)

∣∣2)∝ Δt f (D,2)+2. (2.4)

Initial work by Lauren [7, 10] indicates that this relationship is in fact of the form

E
(∣∣b(t+Δt)− b(t)

∣∣2)∝ ΔtD. (2.5)

In other words, f (D,2) + 2=D. We recall that in (2.5) b(t) is the number of Blue agents
at time t, E denotes expectation over time t, and D is the fractal dimension corresponding
to local clustering of Red agents. In this way, clustering in time of Blue casualties is related
to clustering in space of Red (and hence Red casualties) on the battlefield. In the network
centric warfare context, we can hypothesise that agile clustering and reclustering of forces
by Red (such as swarming effects), measured by the Red fractal dimension D, creates
clustering in time of Blue casualty effects and hence a particular fractal-based form for
the plot of Blue casualties over time.

If we expand the square term on the left-hand side of (2.5), we have

E
(∣∣b(t+Δt)− b(t)

∣∣2)= E
[
b(t+Δt)2− 2b(t)b(t+Δt) + b(t)2]

= 2s2− 2corr
(
b(Δt)

)
,

(2.6)

where s2 is the second moment of the random variable b(t), and corr(b(Δt)) is the auto-
correlation for the time series of Blue agents b(t) with lag Δt. We assume (as is usual) that
Δt is small relative to the complete time span T over which we are taking expectations E,
with 0≤ t ≤ T .

Since s2 is assumed constant, we can thus see from (2.5) that

corr
(
b(Δt)

)∝ ΔtD. (2.7)

Considering now a range of values of the lag Δt, then if a variable such as corr(b(Δt))
varies as ΔtD with 0≤D ≤ 2, it follows from [6, 8] that

F
{

corr
(
b(Δt)

)}
( f )∝ | f |−(D+1), (2.8)

where F is the Fourier transform.
From standard Fourier transform theory, the left-hand side of this expression is just

the power spectrum of the time series of Blue agents b(t):

∣∣F(b)( f )
∣∣2 = F

{
corr

(
b(Δt)

)}
( f )∝ | f |−(D+1). (2.9)
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According to (2.9), the power spectrum should vary with frequency f in accordance with
a power law, where the exponent (the exponent (D + 1) in (2.9)) is proportional to the
fractal dimension of the locations of Red agents on the battlefield, corresponding to the
agile clustering of these Red agents. Since the Red fractal dimension D lies in the range
0 to 2, this exponent should lie in the range −1 to −3. However, the precise form of this
exponent will have to be determined experimentally. We assume that a similar power law
applies to casualties.

3. Initial experimental evidence

In order to derive experimental evidence of these various relationships, an international
defence research exchange was set up by the study team under TTCP. Through this pro-
cess, access was obtained to the Maui High Performance Computer Centre (MHPCC)
owned by the US Air Force. This is a supercomputer cluster which allowed, through the
US Marine Corps Project Albert process of “data farming” [17], the ability to run models
such as MANA many thousands of times across large parameter sets. This was ideal for
our purpose of attempting to obtain experimental evidence for our postulated relation-
ships.

3.1. The first term of the fractal attrition relationship. One clear implication of the
theory discussed earlier is that the expected rate of Blue attrition E(|Δb/Δt|) is related to
Red unit firepower effectiveness k through the relationship

E
(∣∣∣∣ΔbΔt

∣∣∣∣
)
∝ kα, (3.1)

where α is a power law exponent. A similar relation should also hold between expected
Red attrition and Blue unit effectiveness. In the full metamodel at (2.1), this exponent is
related to the local clustering between the agents, as measured by the fractal dimension
D, implying that a noninteger exponent should be anticipated, in general. We analyse this
using regression analysis, as part of testing the hypothesis that there is such a power law
relationship between expected attrition and unit effectiveness, across a number of sample
scenarios.

3.2. Sample scenarios in the MANA simulation model. In MANA, the developers, Lau-
ren and Stephen [11], have noticed four types of emergent behaviour. They are

(i) a Lanchester style battle with two single blocks of force fighting;
(ii) a line of force on force battle which is stable and moves in a wave;

(iii) a line of force on force battle which is unstable;
(iv) swarming behaviour or manoeuvre warfare.

We have used these as a basis for developing a number of scenarios for our experimen-
tal investigation. Specifically, we investigated a line of force that is stable and moves in a
wave (the “Meet” scenario), swarming behaviour (the “Swarm” scenario), and a Lanch-
ester style battle (the “Lanchester” scenario). The measure of effectiveness that we used
for these scenarios was the casualties suffered by the forces, in order to compare with the
theoretical metamodel prediction of a power law relationship.
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Figure 3.1. Blue attrition against Red unit firepower for different values of Blue unit firepower.
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Figure 3.2. Figure 3.1 data shown on a Log-Log plot.

3.3. Experimental results for the “Meet” scenario. Figure 3.1 shows how expected Blue
casualties (“attrition”) as a proportion of the initial force varies as Red unit firepower is
varied along the x-axis. In MANA, unit firepower varies between 0 and 100, and the x-axis
shows the normalised values. A number of these plots are superimposed, each represent-
ing a different value of Blue unit firepower effectiveness. Figure 3.2 shows these same re-
sults plotted on a Log-Log scale in order to investigate the power law behaviour predicted
by theory. (A power law relationship becomes a straight line on a Log-Log scale.)

Looking at Figure 3.2, we see that the Log-Log plots form very obvious straight lines,
indicating that the data has a power law relationship between individual agent firepower
and enemy attrition. The gradients of these lines (close to integer values in this case) were
found using linear regression and are shown in Table 3.1. They remain stable across the
various cases considered. These gradients are the exponent values of the first term of the
metamodel at (2.1).
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Table 3.1. Regression line fits for Blue force attrition; “Meet” scenario.

Blue firepower Points Gradient Intercept

0.01 8 0.95 0.73

0.02 8 0.92 0.62

0.03 8 0.9 0.54

0.04 8 0.87 0.46

0.05 8 0.94 0.67

0.06 8 0.87 0.5

0.07 8 0.94 0.68

0.08 8 0.93 0.61

0.09 8 0.89 0.5

0.1 8 0.85 0.37
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Figure 3.3. Red attrition against Blue unit firepower for different values of Red unit firepower.

Figures 3.3 and 3.4 show the equivalent data for Red casualties.
Table 3.2 shows the linear regression analysis results for the plots in Figure 3.4. Again,

the gradient remains reasonably stable across the cases considered. There is evidence here
of noninteger gradients, corresponding to fractal effects, as discussed in the earlier theory.

3.4. Implications for the theory. These experimental results for the “Meet” scenario
confirm the power law relationship between casualties and unit firepower effectiveness.
Similar results were obtained for the “Lanchester” and “Swarm” scenarios. Thus we have
established that the first term of (2.1) is of the correct general form for the “Lanchester,”
“Meet,” and “Swarm” scenarios.
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Table 3.2. Regression line fits for Red force attrition; “Meet” scenario.

Red firepower Points Gradient Intercept

0.01 8 0.74 1.5

0.02 8 0.76 1.55

0.03 8 0.8 1.59

0.04 8 0.8 1.6

0.05 8 0.82 1.59

0.06 8 0.85 1.66

0.07 8 0.88 1.69

0.08 8 0.91 1.74

0.09 8 0.9 1.7

0.1 8 0.9 1.64
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Figure 3.4. Figure 3.3 data shown on a Log-Log plot.

4. The second term of the metamodel

By writing (2.1) as

E
(∣∣∣∣ΔbΔt

∣∣∣∣
)
∝ Δt−r(D), (4.1)

for some function r(D), we can focus on the second term of the metamodel. Equation
(2.9) showed that the resulting power spectrum of Blue agents P( f ) is in the form of
a power law, P( f ) = a| f |−(D+1), where a is some constant. This implies that logP( f ) =
loga− (D+ 1)log| f |. In other words, when the power spectrum is plotted on a Log-Log
plot, we expect a straight line with gradient −(D+ 1), with a value between −1 and −3.

To test this for casualties, a variety of MANA scenarios were run and the time series
representing Blue casualty data were recorded. We then looked for evidence of a power
law relationship between the power spectrum of this data P( f ) and the frequency f .
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4.1. Data. The data required for this part of the work were time series of casualty data,
that is, the number of agents killed at each time step. MANA can record such step-by-
step data, however in our work we have used “contact data.” Contact data measure the
number of enemy agents that each friendly agent can see. Therefore, enemy agents can be
counted more than once.

We have used contact data because there is not enough information from casualty data
to calculate a good power spectrum. For example, quite often, there are no casualties for
several time steps. This is because it is, for example, the companies that are modelled, not
the individual men, and therefore the probability of killing an agent (a company) is small.
However, we assume that every time there is contact between agents (i.e., they can detect
one another), there will be casualties (perhaps only on a small scale). Therefore, contact
data can be used to represent casualties. Note that when contact increases, the number of
casualties is likely to increase.

4.2. Scenarios in MANA. Several MANA scenarios were used in order to analyse differ-
ent types of situations. These scenarios were

(i) Western Front in World War Two [11];
(ii) the “Lanchester,” “Meet,” and “Swarm” scenarios mentioned earlier.

4.3. Power spectrum analysis. When using sampled data, the discrete Fourier transform
approximation is used, and the squared modulus is found for each of the elements of the
approximate Fourier transform. Using sampled (discrete) data rather than the “actual”
continuous data means that we can only estimate the power spectrum. There is a limit
to the number of data points that can be produced, as well as the length of the time step.
When using the discrete Fourier transform, there are standard methods for overcoming
the problems of “aliasing” and “frequency leakage” that are associated with this situation,
as discussed in Press et al. [15] and Bracewell [3].

In our work we have sought to improve the estimate by
(i) averaging over a partition of the data, in which each segment has had its power

spectrum taken;
(ii) using a window function to reduce leakage;

(iii) replicating MANA runs and aggregating the resulting power spectra.
As no tool existed to do all of this analysis automatically, and so that we had maximum

control over the approach used, we have developed our own algorithms to carry this out.
The details are given below.

4.4. Power spectrum analysis tool. The mathematical definition of the power spectrum
(P as a function of frequency f ) is the absolute value of the Fourier transform (FT) of
the time series data (ct), squared. We are dealing with sampled data, and we thus used
the power spectrum approximation known as the periodogram estimate, as discussed in
Press et al. [15]. Firstly we define the discrete Fourier transform

FTk =
N−1∑
j=0

cje
2Πi jk/N for k = 0,1,2, . . . ,N. (4.2)

Thus the power spectrum approximation is P( fk)= |FTk |2 for k = 0,1,2, . . . ,N .
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Figure 4.1. Power spectrum of contact data from Lauren’s European Western Front scenario with line
of best fit.
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Figure 4.2. Power spectrum of casualty data from “Lanchester” scenario with line of best fit.

The periodogram estimate is then used to normalise the power spectrum such that
Parseval’s theorem holds (i.e., the sum of all the power terms equals the mean-squared
amplitude of the transform), so that we have

PE
(
f0
)= 1

N2
P
(
f0
)
,

PE
(
fk
)= 2

N2
P
(
fk
)

for k = 1,2, . . . ,
(
N

2
− 1
)

,

PE
(
fN/2
)= 1

N2
P
(
fN/2
)
.

(4.3)
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Figure 4.3. Power spectrum of contact data from “Meet” scenario with line of best fit.
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Figure 4.4. Power spectrum of contact data from “Swarm” scenario with line of best fit.

Note that the values of P from points (N/2 + 1) to (N − 1) are equal to the values at the
points (N/2− 1) to 1, respectively, because the input data are always real. Therefore, it is
not necessary to calculate these.

To prevent “leakage,” a window function can be used. This weights the input data
so that the beginning and end of the time series are given less emphasis. The weighting
function we considered was the Parzen window:

wj = 1−
∣∣∣∣ j− (1/2)(N − 1)

(1/2)(N + 1)

∣∣∣∣. (4.4)
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Figure 4.5. Aggregated results from 255 replications of European Western Front scenario power spec-
tra, with line of best fit.

Therefore, the FT is calculated as

FTk =
N−1∑
j=0

wjcje
2Πi jk/N for k = 0,1,2, . . . ,

N

2
. (4.5)

To reduce the variance of the estimate of the power spectrum then calculated, data is par-
titioned into segments (each must have a multiple of 2 data points). The power spectrum
estimate calculated from each set of data is then averaged at each frequency to increase
confidence in the result. K segments reduce the variance of the estimate by a factor of
K . In the results presented below, we did not use the Parzen window function (i.e., all
weights are set to 1). This was because it appeared to distort the calculation of the best fit
approximation to the power spectrum for our data sets.

4.5. Initial results. Four graphs follow in Figures 4.1 to 4.4. These depict the Log-Log
plot of the power spectrum of the contact data from a single MANA run in each of our
scenarios. The graphs illustrate (using regression analysis) that a power law (indicated
by a straight line) explains 88% to 96% of the data in our experiments. In addition, the
gradients of the straight lines are between −1 and −3, as expected from our theory.

In order to reduce the variance of the estimate further, we have replicated the MANA
scenarios over 200 times so that the power spectra of these runs can be averaged, to pro-
duce a better estimate. The results of this analysis are displayed in Figures 4.5 and 4.6.

It can be seen that a straight line explains 97% of the data in the aggregated case in
Figure 4.5. This is a better fit that the individual replication shown in Figure 4.1, in which
a straight line explained 91% of the data. This result confirms the gradient of about −2.3
that was seen in the single replication.

In Figure 4.6, 91% of the data is now explained by a straight line, compared to 88% in
the single replication. A gradient of about −2.5 is seen, which confirms the result from
Figure 4.2.
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Figure 4.6. Aggregated results from 250 replications of “Lanchester” scenario power spectra, with line
of best fit.

Figures 4.5 and 4.6 show that over many replications of these scenarios, a power law
relationship is very clear and the gradient is still between −1 and −3, as expected.

5. Conclusions

We had previously developed a theory of casualty generation which replaced the “indus-
trial age” Lanchester equations with the fractal attrition relationship. This is more ap-
propriate to the more self-organising types of conflict likely to occur in the “information
age.” Here we have shown that the predictions of this theory are consistent, in general
terms, with the results of a number of scenarios investigated experimentally using the
MANA agent-based simulation model of conflict.
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